Section Ii – Optical Tools

Section Ii – Optical Tools

ECE 425 CLASS NOTES – 2000 SECTION II – OPTICAL TOOLS Introduction Radiometry Sources of Radiant Energy Photometry Radiometric Transfer 120 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 Introduction An imaging system consists of several subsystems image light transmission display human scene acquisition vision source subsystem subsystem* subsystem subsystem coder decoder optics neural network optics detector* electronics retina* brain • * points of signal transduction, optical <—> electronic From the light source to the image acquisition subsystem, we’re concerned with: • how much energy gets through (radiometry) 121 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 • contrast and sharpness of the image (linear systems) Similarly from the display subsystem to the human vision subsystem 122 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 Radiometry Radiometry involves the propagation of radiation in space and through optical apertures Need to use 3-D geometry to describe 3-D spherical coordinate system (r,θ,φ) n θ Q r P φ 123 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 • 3-D vector with radius r • angle to the surface normal θ (radians) • azimuth angle φ (radians) Radiation propagates from a source into a conical volume spherical cap area A r source 124 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 • Define a solid angle Ω (steradians) 2 Ω = Ar⁄ (steradians) • Ω = 1 (unit solid angle) when the spherical area subtended by the cone = radius of the sphere Example: calculate the solid angles corresponding to a hemisphere and a sphere • flat surface sources radiate into a hemisphere • point sources radiate into a sphere • set up integration over solid angle 125 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 θ rsinθ dθ r P • Assume the source P is an isotropic radiator • Element of solid angle • circumference of element of solid angle (“belt”) around sphere is 2πr sinθ • width of “belt” is rdθ 126 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 • therefore area of “belt” is 2πr sinθ ⋅ rdθ and solid angle subtended by “belt” is 2πr sinθ ⋅ rdθ dΩ = ---------------------------------- 2 r = 2πθsin dθ • Total solid angle θ Ωθ()= ∫2πθsin dθ 0 = 2π()1 – cosθ • For θ = π/2 (hemisphere) Ω = 2π steradians • For θ = π (sphere) Ω = 4π steradians 127 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 Projected Area • Useful in many radiometric calculations for both sources and detectors • Area of surface element dA as viewed from an angle θ n θ dAcosθ θ dA 128 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 Radiant Energy Quantities and Units • Radiometric (valid for general case) quantitiy symbol definition common units abbreviation radiant Q joule J energy radiant ∂Q joule per cubic w w = J m-3 density ∂V meter ∂Q radiant flux Φ Φ = watt W ∂t M ∂Φ M = (exitance) ∂A radiant flux watt per -2 density E square meter W m ∂Φ (irradi- E = ∂A ance) 129 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 quantitiy symbol definition common units abbreviation radiant ∂Φ watt per I I = W sr-1 intensity ∂Ω steradian 2 ∂Φ watt per L = ∂Ω∂Acosθ radiance L steradian and W sr-1 m-2 ∂I = ∂Acosθ square meter 130 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 • Photometric (special to visual sensing) quantity symbol common units abbreviation lumen-second (tal- luminous energy Q lm s bot) lumen-second per luminous density w -3 cubic meter lm s m luminous flux Φ lumen lm M lumen per square (luminous meter exitance) (lux) -2 luminous flux den- lm m (lx) sity lm ft-2 (fc) E lumen per square foot (illuminance) (footcandle) 131 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 quantity symbol common units abbreviation luminous intensity lumen per steradian I lm sr-1 (cd) (candlepower) (candela) candela per square meter (nit) nt luminance L candela per square π foot per steradian fL (footlambert) 132 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 • Radiometric <—> photometric conversion common quantity symbol definition units abbreviation Φ ⁄ Φ -1 luminous KK = v e lumen lm W efficacy per watt luminous VVKK= ⁄ unitless — efficiency maximum • Material properties common quantity symbol definition abbreviation units ε ⁄ emissivity ε = MMblackbody unitless — α αΦ⁄ Φ absorptance = a i unitless — ρΦ⁄ Φ reflectance ρ = r i unitless — τΦ⁄ Φ transmittance τ = t i unitless — 133 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 Wavelength Notation • Some quantities are differential with respect to λ, e.g. Lλ and Eλ • Units of “per wavelength interval” • Must be integrated over λ to obtain total quantity within a given wavelength range • Some quantities simply vary with λ, e.g. ρ(λ), V(λ) and τ(λ) • Not integrated alone; used to weight another quantity 134 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 Sources of Radiant Energy Blackbody (BB) • Perfect radiator and absorber • Produces maximum M for any source at a given T • Nonattainable, ideal source • spectral radiant exitance M given by Planck’s Equation 2 2πhc M = ------------------------------------------ (wavelength in meters) λBB 5 hc ⁄ ()λkT λ []e –1 (W-m-2-µm-1) C1 = ---------------------------------------⁄ ()λ - (wavelength in micrometers) 5 C2 T λ []e –1 where 135 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 T is the blackbody’s temperature in Kelvin (K), h = 6.6256 x 10-34 (W-s2) Planck’s Constant k = 1.38054 x 10-23 (W-s-K-1) Boltzmann’s Constant c = 2.997925 x 108 (m-s-1) velocity of light λ = wavelength of radiation 8 -2 µ 4 C1 = 3.74151 x 10 W-m - m , and 4 µ C2 = 1.43879 x 10 m-K. • Departure of a given source from a BB is its emittance • Measures the efficiency of a radiator or absorber ε ⁄ ≤≤ε λ =0Mλ MλBB , λ 1 136 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 Sun • Solar Irradiance at Top-Of-Atmosphere 2500 5900K BB at earth-sun distance ) -1 2000 MODTRAN m µ - -2 1500 1000 irradiance (W-m 500 0 0.4 0.8 1.2 1.6 2 2.4 wavelength (µm) • Modeled well by a blackbody @ 5900K Solar energy propagates through the atmosphere to Earth’s surface • Atmospheric transmittance creates spectral “windows” through which energy reaches the earth 137 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 • Above 3µm wavelength, the Earth’s self-emitted radiation (BB at 300K) becomes significant • Above 8µm, Earth’s self-emitted radiation dominates and solar radiation is insignifcant wavelength radiation surface property name range source of interest Visible (V) 0.4 – 0.7µm solar reflectance Near InfraRed (NIR) 0.7 – 1.1µm solar reflectance 1.1 – 1.35µm Short Wave InfraRed 1.4 – 1.8µm solar reflectance (SWIR) 2 – 2.5µm Mid Wave 3 – 4µm reflectance, solar, thermal InfraRed (MWIR) 4.5 – 5µm temperature Thermal 8 – 9.5µm thermal temperature InfraRed (TIR) 10 – 14µm temperature (pas- thermal (passive) microwave, radar 1mm – 1m sive) artificial (active) roughness (active) 138 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 Wien’s Law • Specifies wavelength at which maximum BB radiation occurs • Differentiate Planck’s equation, set to zero and solve for λ λ = 2898 ⁄ T max where λ is in µm and T is in K λ • As T increases, |max decreases Stefan-Boltzmann’s Law • Specifies total energy radiated by BB over all wavelengths • Integrate Planck’s equation over all wavelengths 139 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 5 4 2π k 4 M = ------------------T tot 2 3 -2 15c h (W-m ) 4 = σT where σ = Stefan-Boltzmann constant = 5.67 x 10-8 (W-m-2-K-4) Examples for Wein’s and Stefan-Boltzmann’s Laws: λ µ -2 source T (K) |max ( m) Mtot (W-m ) earth 300 9.66 (TIR) 4.6 x 102 incandescent 2800 1.04 (NIR) 3.5 x 105 lamp 0.483 (blue- sun 6000 7 green) 7.3 x 10 140 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 Photometry Radiometry in the context of Human Vision System (HVS) Luminous flux Φ in lumens (lm) • Corresponds to radiometric flux in Watts (W) • Incorporates the HVS sensitivity to radiation Conversion of radiometric units to photometric units • Multiply spectral quantity of interest by photopic visual sensitivity curve • Integrate over λ 141 DR.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    37 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us