Classical and Quantum Gravity PAPER • OPEN ACCESS Lie sphere geometry in lattice cosmology To cite this article: Michael Fennen and Domenico Giulini 2020 Class. Quantum Grav. 37 065007 View the article online for updates and enhancements. This content was downloaded from IP address 131.169.5.251 on 26/02/2020 at 00:24 IOP Classical and Quantum Gravity Class. Quantum Grav. Classical and Quantum Gravity Class. Quantum Grav. 37 (2020) 065007 (30pp) https://doi.org/10.1088/1361-6382/ab6a20 37 2020 © 2020 IOP Publishing Ltd Lie sphere geometry in lattice cosmology CQGRDG Michael Fennen1 and Domenico Giulini1,2 1 Center for Applied Space Technology and Microgravity, University of Bremen, 065007 Bremen, Germany 2 Institute for Theoretical Physics, Leibniz University of Hannover, Hannover, Germany M Fennen and D Giulini E-mail:
[email protected] Received 23 September 2019, revised 18 December 2019 Lie sphere geometry in lattice cosmology Accepted for publication 10 January 2020 Published 18 February 2020 Printed in the UK Abstract In this paper we propose to use Lie sphere geometry as a new tool to CQG systematically construct time-symmetric initial data for a wide variety of generalised black-hole configurations in lattice cosmology. These configurations are iteratively constructed analytically and may have any 10.1088/1361-6382/ab6a20 degree of geometric irregularity. We show that for negligible amounts of dust these solutions are similar to the swiss-cheese models at the moment Paper of maximal expansion. As Lie sphere geometry has so far not received much attention in cosmology, we will devote a large part of this paper to explain its geometric background in a language familiar to general relativists.