Chapter 4 Surfaces

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 Surfaces Chapter 4 Surfaces In this chapter we turn to surfaces in general. We discuss the following topics. Describing surfaces with equations and parametric descriptions. ² Some constructions of surfaces: surfaces of revolution and ruled surfaces. ² Tangent planes to surfaces. ² Surface area of surfaces. ² Curvature of surfaces. ² Figure 4.1: In this design for the 1972 Olympic Games in Munich, Germany, Frei Otto illustrates the role of surfaces in modern architecture. (Photo: Wim Huisman) 91 92 Surfaces 4.1 Describing general surfaces 4.1.1 After degree 2 surfaces, we could proceed to degree 3, but instead we turn to surfaces in general. We highlight some important aspects of these surfaces and ways to construct them. 4.1.2 Surfaces given as graphs of functions Suppose f : R2 R is a di®erentiable function, then the graph of f consisting of all points of the form!(x; y; f(x; y)) is a surface in 3{space with a smooth appearance due to the di®erentiability of f. Since we are not tied to degree 1 or 2 expressions for f, the resulting surfaces may have all sorts of fascinating shapes. The description as a graph can 1 1 0.5 0.5 0 0 2 2 -0.5 -0.5 -1 -1 0 -6 0 -2 -4 -2 0 -2 0 -2 2 2 Figure 4.2: Two `sinusoidal' graphs: the graphs of sin(xy) and sin(x). be seen as a special case of a parametric description: x = u y = v z = f(u; v); where u and v are the parameters. Just like in parametric descriptions of planes, two parameters are needed. This reflects the 2{dimensionality of a surface. Although we are used to thinking of graphs for which the points are of the form (x; y; f(x; y)), it is sometimes more convenient to think of y as a function of x and z, or of x as a function of y and z. For instance, a portion of the hyperboloid x2 + y2 z2 = 1 is described by the graph of x = 1 + z2 y2. So the function is a function of ¡y and z. ¡ So points of the graph are of the formp ( 1 + z2 y2; y; z). ¡ p 4.1.3 Surfaces given by an equation In principle, a single equation in x, y and z describes a surface in R3. Depending on the structure of the equation, the surface may look more or less smooth. Examples we have come across before include planes, like x + 2y 3z = 5, and quadrics, like the sphere x2 + y2 + z2 = 3. ¡ 4.1 Describing general surfaces 93 4.1.4 Surfaces given by a parametric description A surface is 2{dimensional. This 2{dimensionality is the reason why surfaces or parts of surfaces can be described using two parameters. So, if x, y and z all three depend on the two parameters u and v, then x, y and z will run through the points of a surface if u and v vary. We denote such a parametric description by a boldface symbol, usually x. Note that x is a `vector{valued function', so that x(u; v) is a 3d vector for every pair u; v. The coordinate functions are ordinary functions of two variables, whose values at (u; v) are denoted by x(u; v), y(u; v) and z(u; v), respectively. Whether the surface looks nice depends on the explicit expressions for x(u; v), y(u; v) and z(u; v). In general, if x(u; v), y(u; v) and z(u; v) depend di®erentiably on u and v, the surface usually does look nice. 4.1.5 Curves in space and their tangents Just like representing a curve in the plane by a parametric description of the form, x(t) = (x(t); y(t)), curves in 3{space can be described in the following way: x(t) = (x(t); y(t); z(t)); where t runs through (part of) the real numbers. For instance, x(t) = (cos t; sin t; 0) (with 0 t 2¼) is a circle in the x; y{plane, but x(t) = (cos t; sin t; t) is a kind of spiral in 3{space.· · By the way, both of these curves lie on the cylinder with equation x2 + y2 = 1, since cos2 t + sin2 t = 1. Just like in 2{space, a tangent vector to the curve at x(t0) is computed by di®erentiating the components of the curve, i.e., 0 0 0 0 x (t0) = (x (t0); y (t0); z (t0)) is the tangent vector (at least if not all three components are 0). The tangent line at x(t0) has parametric description 0 x(t0) + ¸x (t0): For example, in the case x(t) = (cos t; sin t; t), the tangent vector is x0(t) = ( sin t; cos t; 1). In particular, the tangent vector at (1; 0; 0) corresponding to t = 0, is the ¡vector (0; 1; 1). The tangent line is then described by (1; 0; 0) + ¸(0; 1; 1). The length of a (part of a) curve can be computed through an integral: t=b x0(t) dt Zt=a j j computes, under some mild conditions, the length of the part of the curve, where t ranges from a to b. In our example, the length of the curve if t varies from 0 to 4 is 4 ( sin t)2 + cos2 t + 12 dt = 4 p2 dt = 4p2. 0 ¡ 0 R pThe tangent vectors themselvRes can be used to compute the curvature of a curve, but we will not explore that topic in these notes. 94 Surfaces 4.2 Some constructions of surfaces 4.2.1 In this section we present a few ways of constructing surfaces: surfaces of revolution and ruled surfaces. Surfaces of revolution 4.2.2 Rotating a curve around a coordinate axis A surface of revolution arises by rotating a curve around a line. We have briefly discussed surfaces of revolution in Chapter 1, but only in a special case. Since the descriptions of surfaces of revolution in terms of equations or parametric descriptions can be quite complicated, we discuss this topic using an example. Suppose, we have a curve whose parametric description is as follows: x(t) = (t; t2; t3): Now suppose we rotate this curve around the x{axis and ask for a parametric description and an equation of the resulting surface of revolution. Constructing a parametric description. ² To construct a parametric description, take t to be ¯xed for the moment. The point (t; t2; t3) rotates along the circle in the plane x = t, whose radius is pt4 + t6 (the distance between (t; 0; 0) and (t; t2; t3)) and whose center is (t; 0; 0). A parametric description of this circle is (t; pt4 + t6 cos u; pt4 + t6 sin u). Varying t again, we ¯nd the parametric description of the surface of revolution: x(t; u) = (t; pt4 + t6 cos u; pt4 + t6 sin u); where 0 u 2¼ for instance. Here is maybe the most direct method: use a rotation · · Figure 4.3: Rotating the curve (t; t2; t3) around the x{axis. matrix. The matrix 1 0 0 0 0 cos u sin u 1 0 sin u ¡cos u @ A 4.2 Some constructions of surfaces 95 describes a rotation around the x{axis over an angle of u (radians, say). So we multiply each vector (t; t2; t3) with this matrix: 1 0 0 t t 0 0 cos u sin u 1 0 t2 1 = 0 t2 cos u t3 sin u 1 ; 0 sin u ¡cos u t3 t2 sin u +¡t3 cos u @ A @ A @ A and ¯nd the parametric description x(t; u) = (t; t2 cos u t3 sin u; t2 sin u + t3 cos u). ¡ Constructing an equation. ² There are several ways to ¯nd an equation. One is to start with the ¯rst parametric description obtained above and try to eliminate the parameters t and u. Since cos2 u+ sin2 u = 1 (for every u), the parameter u can be eliminated by taking the sum of the squares of the y{ and z{coordinates: y2 + z2 = (pt4 + t6 cos u)2 + (pt4 + t6 sin u)2 = t4 + t6: Since x = t, we ¯nally ¯nd y2 + z2 = x4 + x6. (Try eliminating t and u from the second parametric description yourself.) Here is another approach, without using the parametric description. Every point (t; t2; t3) will move along a circle in the plane x = t. This circle can be viewed as the intersection of the sphere with center (0; 0; 0) and radius x(t) , and the plane x = t. In terms of equations: j j x2 + y2 + z2 = t2 + t4 + t6; x = t: To get the equation of the surface of revolution, we have to eliminate the parameter t so that an equation in terms of x, y and z remains. This is easily done using the second equation: we replace t in the ¯rst equation by x, so we get x2 +y2 +z2 = x2 +x4 +x6. This simpli¯es to an equation of degree 6: x4 x6 + y2 + z2 = 0: ¡ ¡ In general, if you rotate the curve x(t) = (x(t); y(t); z(t)) around the x{axis, you have to eliminate t from x2 + y2 + z2 = x(t)2 + y(t)2 + z(t)2; x = x(t): Even for relatively simple curves, this may turn out to be a complicated matter. 4.2.3 The torus or `dough{nut' Take the circle (x 2)2 + z2 = 1, y = 0 in the x; z{plane and rotate this circle around the z{axis.
Recommended publications
  • 1 on the Design and Invariants of a Ruled Surface Ferhat Taş Ph.D
    On the Design and Invariants of a Ruled Surface Ferhat Taş Ph.D., Research Assistant. Department of Mathematics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul,Turkey. [email protected] ABSTRACT This paper deals with a kind of design of a ruled surface. It combines concepts from the fields of computer aided geometric design and kinematics. A dual unit spherical Bézier- like curve on the dual unit sphere (DUS) is obtained with respect the control points by a new method. So, with the aid of Study [1] transference principle, a dual unit spherical Bézier-like curve corresponds to a ruled surface. Furthermore, closed ruled surfaces are determined via control points and integral invariants of these surfaces are investigated. The results are illustrated by examples. Key Words: Kinematics, Bézier curves, E. Study’s map, Spherical interpolation. Classification: 53A17-53A25 1 Introduction Many scientists like mechanical engineers, computer scientists and mathematicians are interested in ruled surfaces because the surfaces are widely using in mechanics, robotics and some other industrial areas. Some of them have investigated its differential geometric properties and the others, its representation mathematically for the design of these surfaces. Study [1] used dual numbers and dual vectors in his research on the geometry of lines and kinematics in the 3-dimensional space. He showed that there 1 exists a one-to-one correspondence between the position vectors of DUS and the directed lines of space 3. So, a one-parameter motion of a point on DUS corresponds to a ruled surface in 3-dimensionalℝ real space. Hoschek [2] found integral invariants for characterizing the closed ruled surfaces.
    [Show full text]
  • OBJ (Application/Pdf)
    THE PROJECTIVE DIFFERENTIAL GEOMETRY OF RULED SURFACES A THESIS SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE BY WILLIAM ALBERT JONES, JR. DEPARTMENT OF MATHEMATICS ATLANTA, GEORGIA AUGUST 1949 t-lii f£l ACKNOWLEDGMENTS A special expression of appreciation is due Mr. C. B. Dansby, my advisor, whose wise tolerant counsel and broad vision have been of inestimable value in making this thesis a success. The Author ii TABLE OP CONTENTS Chapter Page I. INTRODUCTION 1 1. Historical Sketch 1 2. The General Aim of this Study. 1 3. Methods of Approach... 1 II. FUNDAMENTAL CONCEPTS PRECEDING THE STUDY OP RULED SURFACES 3 1. A Linear Space of n-dimens ions 3 2. A Ruled Surface Defined 3 3. Elements of the Theory of Analytic Surfaces 3 4. Developable Surfaces. 13 III. FOUNDATIONS FOR THE THEORY OF RULED SURFACES IN Sn# 18 1. The Parametric Vector Equation of a Ruled Surface 16 2. Osculating Linear Spaces of a Ruled Surface 22 IV. RULED SURFACES IN ORDINARY SPACE, S3 25 1. The Differential Equations of a Ruled Surface 25 2. The Transformation of the Dependent Variables. 26 3. The Transformation of the Parameter 37 V. CONCLUSIONS 47 BIBLIOGRAPHY 51 üi LIST OF FIGURES Figure Page 1. A Proper Analytic Surface 5 2. The Locus of the Tangent Lines to Any Curve at a Point Px of a Surface 10 3. The Developable Surface 14 4. The Non-developable Ruled Surface 19 5. The Transformed Ruled Surface 27a CHAPTER I INTRODUCTION 1.
    [Show full text]
  • Intrinsic Volumes and Polar Sets in Spherical Space
    1 INTRINSIC VOLUMES AND POLAR SETS IN SPHERICAL SPACE FUCHANG GAO, DANIEL HUG, ROLF SCHNEIDER Abstract. For a convex body of given volume in spherical space, the total invariant measure of hitting great subspheres becomes minimal, equivalently the volume of the polar body becomes maximal, if and only if the body is a spherical cap. This result can be considered as a spherical counterpart of two Euclidean inequalities, the Urysohn inequality connecting mean width and volume, and the Blaschke-Santal´oinequality for the volumes of polar convex bodies. Two proofs are given; the first one can be adapted to hyperbolic space. MSC 2000: 52A40 (primary); 52A55, 52A22 (secondary) Keywords: spherical convexity, Urysohn inequality, Blaschke- Santal´oinequality, intrinsic volume, quermassintegral, polar convex bodies, two-point symmetrization In the classical geometry of convex bodies in Euclidean space, the intrinsic volumes (or quermassintegrals) play a central role. These functionals have counterparts in spherical and hyperbolic geometry, and it is a challenge for a geometer to find analogues in these spaces for the known results about Euclidean intrinsic volumes. In the present paper, we prove one such result, an inequality of isoperimetric type in spherical (or hyperbolic) space, which can be considered as a counterpart to the Urysohn inequality and is, in the spherical case, also related to the Blaschke-Santal´oinequality. Before stating the result (at the beginning of Section 2), we want to recall and collect the basic facts about intrinsic volumes in Euclidean space, describe their noneuclidean counterparts, and state those open problems about the latter which we consider to be of particular interest.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • 17 Measure Concentration for the Sphere
    17 Measure Concentration for the Sphere In today’s lecture, we will prove the measure concentration theorem for the sphere. Recall that this was one of the vital steps in the analysis of the Arora-Rao-Vazirani approximation algorithm for sparsest cut. Most of the material in today’s lecture is adapted from Matousek’s book [Mat02, chapter 14] and Keith Ball’s lecture notes on convex geometry [Bal97]. n n−1 Notation: We will use the notation Bn to denote the ball of unit radius in R and S n to denote the sphere of unit radius in R . Let µ denote the normalized measure on the unit sphere (i.e., for any measurable set S ⊆ Sn−1, µ(A) denotes the ratio of the surface area of µ to the entire surface area of the sphere Sn−1). Recall that the n-dimensional volume of a ball n n n of radius r in R is given by the formula Vol(Bn) · r = vn · r where πn/2 vn = n Γ 2 + 1 Z ∞ where Γ(x) = tx−1e−tdt 0 n−1 The surface area of the unit sphere S is nvn. Theorem 17.1 (Measure Concentration for the Sphere Sn−1) Let A ⊆ Sn−1 be a mea- n−1 surable subset of the unit sphere S such that µ(A) = 1/2. Let Aδ denote the δ-neighborhood n−1 n−1 of A in S . i.e., Aδ = {x ∈ S |∃z ∈ A, ||x − z||2 ≤ δ}. Then, −nδ2/2 µ(Aδ) ≥ 1 − 2e . Thus, the above theorem states that if A is any set of measure 0.5, taking a step of even √ O (1/ n) around A covers almost 99% of the entire sphere.
    [Show full text]
  • Spherical Cap Packing Asymptotics and Rank-Extreme Detection Kai Zhang
    IEEE TRANSACTIONS ON INFORMATION THEORY 1 Spherical Cap Packing Asymptotics and Rank-Extreme Detection Kai Zhang Abstract—We study the spherical cap packing problem with a observations can be written as probabilistic approach. Such probabilistic considerations result Pn ¯ ¯ in an asymptotic sharp universal uniform bound on the maximal i=1(Xi − X)(Yi − Y ) Cb(X; Y ) = q q inner product between any set of unit vectors and a stochastically Pn (X − X¯)2 Pn (Y − Y¯ )2 independent uniformly distributed unit vector. When the set of i=1 i i=1 i unit vectors are themselves independently uniformly distributed, (I.1) we further develop the extreme value distribution limit of where Xi’s and Yi’s are the n independent and identically the maximal inner product, which characterizes its uncertainty distributed (i.i.d.) observations of X and Y respectively, around the bound. and X¯ and Y¯ are the sample means of X and Y As applications of the above asymptotic results, we derive (1) respectively. The sample correlation coefficient possesses an asymptotic sharp universal uniform bound on the maximal spurious correlation, as well as its uniform convergence in important statistical properties and was carefully studied distribution when the explanatory variables are independently in the classical case when the number of variables is Gaussian distributed; and (2) an asymptotic sharp universal small compared to the number of observations. How- bound on the maximum norm of a low-rank elliptically dis- ever, the situation has dramatically changed in the new tributed vector, as well as related limiting distributions. With high-dimensional paradigm [1, 2] as the large number these results, we develop a fast detection method for a low-rank structure in high-dimensional Gaussian data without using the of variables in the data leads to the failure of many spectrum information.
    [Show full text]
  • Approximation by Ruled Surfaces
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS ELSEVIER Journal of Computational and Applied Mathematics 102 (1999) 143-156 Approximation by ruled surfaces Horng-Yang Chen, Helmut Pottmann* Institut fiir Geometrie, Teehnische UniversiEit Wien, Wiedner Hauptstrafle 8-10, A-1040 Vienna, Austria Received 19 December 1997; received in revised form 22 May 1998 Abstract Given a surface or scattered data points from a surface in 3-space, we show how to approximate the given data by a ruled surface in tensor product B-spline representation. This leads us to a general framework for approximation in line space by local mappings from the Klein quadric to Euclidean 4-space. The presented algorithm for approximation by ruled surfaces possesses applications in architectural design, reverse engineering, wire electric discharge machining and NC milling. (~) 1999 Elsevier Science B.V. All rights reserved. Keywords." Computer-aided design; NC milling; Wire EDM; Reverse engineering; Line geometry; Ruled surface; Surface approximation I. Introduction Ruled surfaces are formed by a one-parameter set of lines and have been investigated extensively in classical geometry [6, 7]. Because of their simple generation, these surfaces arise in a variety of applications including CAD, architectural design [1], wire electric discharge machining (EDM) [12, 16] and NC milling with a cylindrical cutter. In the latter case and in wire EDM, when considering the thickness of the cutting wire, the axis of the moving tool runs on a ruled surface ~, whereas the tool itself generates under peripheral milling or wire EDM an offset of • (for properties of ruled surface offsets, see [11]). For all these applications the following question is interesting: Given a surface, how well may it be approximated by a ruled surface? In case of the existence of a sufficiently close fit, the ruled surface (or an offset of it in case of NC milling with a cylindrical cutter) may replace the original design in order to guarantee simplified production or higher accuracy in manufacturing.
    [Show full text]
  • Surface Area of a Sphere in This Example We Will Complete the Calculation of the Area of a Surface of Rotation
    Surface Area of a Sphere In this example we will complete the calculation of the area of a surface of rotation. If we’re going to go to the effort to complete the integral, the answer should be a nice one; one we can remember. It turns out that calculating the surface area of a sphere gives us just such an answer. We’ll think of our sphere as a surface of revolution formed by revolving a half circle of radius a about the x-axis. We’ll be integrating with respect to x, and we’ll let the bounds on our integral be x1 and x2 with −a ≤ x1 ≤ x2 ≤ a as sketched in Figure 1. x1 x2 Figure 1: Part of the surface of a sphere. Remember that in an earlier example we computed the length of an infinites­ imal segment of a circular arc of radius 1: r 1 ds = dx 1 − x2 In this example we let the radius equal a so that we can see how the surface area depends on the radius. Hence: p y = a2 − x2 −x y0 = p a2 − x2 r x2 ds = 1 + dx a2 − x2 r a2 − x2 + x2 = dx a2 − x2 r a2 = dx: 2 2 a − x The formula for the surface area indicated in Figure 1 is: Z x2 Area = 2πy ds x1 1 ds y z }| { x r Z 2 z }| { a2 p 2 2 = 2π a − x dx 2 2 x1 a − x Z x2 a p 2 2 = 2π a − x p dx 2 2 x1 a − x Z x2 = 2πa dx x1 = 2πa(x2 − x1): Special Cases When possible, we should test our results by plugging in values to see if our answer is reasonable.
    [Show full text]
  • Villarceau-Section’ to Surfaces of Revolution with a Generating Conic
    Journal for Geometry and Graphics Volume 6 (2002), No. 2, 121{132. Extension of the `Villarceau-Section' to Surfaces of Revolution with a Generating Conic Anton Hirsch Fachbereich Bauingenieurwesen, FG Stahlbau, Darstellungstechnik I/II UniversitÄat Gesamthochschule Kassel Kurt-Wolters-Str. 3, D-34109 Kassel, Germany email: [email protected] Abstract. When a surface of revolution with a conic as meridian is intersected with a double tangential plane, then the curve of intersection splits into two con- gruent conics. This decomposition is valid whether the surface of revolution inter- sects the axis of rotation or not. It holds even for imaginary surfaces of revolution. We present these curves of intersection in di®erent cases and we also visualize imaginary curves. The arguments are based on geometrical reasoning. But we also give in special cases an analytical treatment. Keywords: Villarceau-section, ring torus, surface of revolution with a generating conic, double tangential plane MSC 2000: 51N05 1. Introduction Due to Y. Villarceau the following statement it is valid (compare e.g. [1], p. 412, [3], p. 204, or [4]): The curve of intersection between a ring torus ª and any double tangential plane ¿ splits into two congruent circles. We assume that r is the radius of the meridian circles k of ª and that their centers are in the distance d, d > r, from the axis a of rotation. We generalize and replace k by a conic which may also intersect the axis a. Under these conditions it is still true that the intersection with a double tangential plane ¿ is reducible.
    [Show full text]
  • Flecnodal and LIE-Curves of Ruled Surfaces
    Flecnodal and LIE-curves of ruled surfaces Dissertation Zur Erlangung des akademischen Grades Doktor rerum naturalium (Dr. rer. nat.) vorgelegt der Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden von Ashraf Khattab geboren am 12. März 1971 in Alexandria Gutachter: Prof. Dr. G. Weiss, TU Dresden Prof. Dr. G. Stamou, Aristoteles Universität Thessaloniki Prof. Dr. W. Hanna, Ain Shams Universität Kairo Eingereicht am: 13.07.2005 Tag der Disputation: 25.11.2005 Acknowledgements I wish to express my deep sense of gratitude to my supervisor Prof. Dr. G. Weiss for suggesting this problem to me and for his invaluable guidance and help during this research. I am very grateful for his strong interest and steady encouragement. I benefit a lot not only from his intuition and readiness for discussing problems, but also his way of approaching problems in a structured way had a great influence on me. I would like also to thank him as he is the one who led me to the study of line geometry, which gave me an access into a large store of unresolved problems. I am also grateful to Prof. Dr. W. Hanna, who made me from the beginning interested in geometry as a branch of mathematics and who gave me the opportunity to come to Germany to study under the supervision of Prof. Dr. Weiss in TU Dresden, where he himself before 40 years had made his Ph.D. study. My thanks also are due to some people, without whose help the research would probably not have been finished and published: Prof. Dr.
    [Show full text]
  • Calculus 2 Tutor Worksheet 12 Surface Area of Revolution In
    Calculus 2 Tutor Worksheet 12 Surface Area of Revolution in Parametric Equations Worksheet for Calculus 2 Tutor, Section 12: Surface Area of Revolution in Parametric Equations 1. For the function given by the parametric equation x = t; y = 1: (a) Find the surface area of f rotated about the x-axis as t goes from t = 0 to t = 1; (b) Find the surface area of f rotated about the x-axis as t goes from t = 0 to t = T for any T > 0; (c) What is the Cartesian equation for this function? (d) What is the surface of rotation in geometric terms? Compare the results of the above questions to the geometric formula for the surface area of this shape. c 2018 MathTutorDVD.com 1 2. For the function given by the parametric equation x = t; y = 2t + 1: (a) Find the surface area of f rotated about the x-axis as t goes from t = 0 to t = 1; (b) Find the surface area of f rotated about the x-axis as t goes from t = 0 to t = T for any T > 0; (c) What is the Cartesian equation for this function? (d) What is the surface of rotation in geometric terms? Compare the results of the above questions to the geometric formula for the surface area of this shape. 3. For the function given by the parametric equation x = 2t + 1; y = t: (a) Find the surface area of f rotated about the x-axis as t goes from t = 0 to t = 1; c 2018 MathTutorDVD.com 2 (b) Find the surface area of f rotated about the x-axis as t goes from t = 0 to t = T for any T > 0; (c) What is the Cartesian equation for this function? (d) What is this function in geometric terms? Compare the results of the above ques- tions to the geometric formula for the surface area of this shape.
    [Show full text]
  • Arxiv:1509.00145V1 [Hep-Lat] 1 Sep 2015 I.Tectnr Solution Catenary the III
    Center Vortices, Area Law and the Catenary Solution Roman H¨ollwiesera1,2, † and Derar Altarawneh1,3, ‡ 1Department of Physics, New Mexico State University, PO Box 30001, Las Cruces, NM 88003-8001, USA 2Institute of Atomic and Subatomic Physics, Nuclear Physics Dept. Vienna University of Technology, Operngasse 9, 1040 Vienna, Austria 3Department of Applied Physics, Tafila Technical University, Tafila , 66110 , Jordan (Dated: June 28, 2018) We present meson-meson (Wilson loop) correlators in Z(2) center vortex models for the infrared sector of Yang-Mills theory, i.e., a hypercubic lattice model of random vortex surfaces and a con- tinuous 2+1 dimensional model of random vortex lines. In particular we calculate quadratic and circular Wilson loop correlators in the two models respectively and observe that their expectation values follow the area law and show string breaking behavior. Further we calculate the catenary solution for the two cases and try to find indications for minimal surface behavior or string surface tension leading to string constriction. PACS numbers: 11.15.Ha, 12.38.Gc Keywords: Center Vortices, Lattice Gauge Field Theory CONTENTS I. Introduction 2 II. Random center vortex models 2 A. Random vortex world-line model 2 B. Random vortex world-surface model 3 III. The Catenary Solution 4 A. Circular Wilson loops 5 B. Quadratic Wilson loops 6 IV. Measurements & Results 6 A. Quadratic Wilson loop correlators in the 4D vortex surface model 6 B. Circular Wilson loop correlators in the 3D vortex line model 7 V. Conclusions 11 A. Beltrami Identity and Catenary Solution 11 B. Catenary vs. Goldschmidt solution 11 arXiv:1509.00145v1 [hep-lat] 1 Sep 2015 Acknowledgments 12 References 12 a Funded by an Erwin Schr¨odinger Fellowship of the Austrian Science Fund under Contract No.
    [Show full text]