6: Parametrized Surfaces Implicit to Parametric: find the Center (A, B, C) and the Radius R Possibly by Completing the Square
Math S21a: Multivariable calculus Oliver Knill, Summer 2011 2 Spheres: Parametric: ~r(u, v)= a, b, c + ρ cos(u) sin(v), ρ sin(u) sin(v), ρ cos(v) . h i h i Implicit: (x a)2 +(y b)2 +(z c)2 = ρ2. − − − Parametric to implicit: reading off the radius. 6: Parametrized surfaces Implicit to parametric: find the center (a, b, c) and the radius r possibly by completing the square. There is a second, fundamentally different way to describe a surface, the parametrization. A parametrization of a surface is a vector-valued function ~r(u, v)= x(u, v),y(u, v), z(u, v) , h i where x(u, v),y(u, v), z(u, v) are three functions of two variables. Because two parameters u and v are involved, the map ~r is also called uv-map. 3 Graphs: Parametric: ~r(u, v)= u,v,f(u, v) h i A parametrized surface is the image of the uv-map. Implicit: z f(x, y) = 0. Parametric to Implicit: think about z = f(x, y) − The domain of the uv-map is called the parameter do- Implicit to Parametric: use x and y as the parameterizations. main. If we keep the first parameter u constant, then v ~r(u, v) is a curve on the surface. Similarly, if v is constant, then u ~r(u, v) traces7→ a curve the surface. These curves are called grid curves. 7→ A computer draws surfaces using grid curves. The world of parametric surfaces is intriguing and complex. You can explore this world with the help of the computer algebra system Mathematica.
[Show full text]