Fritz J. and Dolores H. Russ Prize

Total Page:16

File Type:pdf, Size:1020Kb

Fritz J. and Dolores H. Russ Prize 2011 –2012 CALL FOR NOMINATIONS DRAPER ◆ RUSS GORDON ◆ FOUNDERS ◆ BUECHE NAE AWARDS Charles Stark Draper Prize Fritz J. and Dolores H. Russ Prize Bernard M. Gordon Prize Founders Award Arthur M. Bueche Award The National Academy of Engineering . Recognizing the Engineers Behind the Achievements The National Academy of Engineering (NAE) serves the riculum vitae of no more than two pages per candidate. United States government and the engineering community Though not required, you may also choose to submit the by advising on technology issues that impact society. candidate’s bibliographical listing of no more than two Each year the NAE salutes leaders in engineering for their pages. lifetime dedication to their field and their commitment to The nominator is responsible for soliciting supporting letters advancing the human condition through great engineering and ensuring that the letters are submitted to the NAE by the achievement and/or through innovation in engineering submission deadline. Supporting letters may be addressed to and technology education. The NAE dedicates more than the nominator or selection committee chair and forwarded $1 million annually to recognize these leaders and to bring to the NAE Awards Office. Note: Nominations without better understanding of the importance of engineering and supporting letters will not be considered. Supporting let- engineering education to society. ters may accompany the nomination cover form or may be The NAE currently presents five awards for engineering sent separately, however all components of the nomination achievement and innovation—the Charles Stark Draper must be received by April 1, 2011. Prize, the Fritz J. and Dolores H. Russ Prize, the Bernard Highly competitive nominations from previous years will M. Gordon Prize for Innovation in Engineering and Tech- be considered this year. The NAE will notify the original nology Education, the Founders Award, and the Arthur nominator that the nomination will be eligible and request M. Bueche Award. the submission of updated material. How to Complete the Nomination Form How to Submit the Nomination Form Inside this packet you will find information on how to Submit your nomination by: submit a nomination for any of NAE’s awards. There are 1. Mail no restrictions on who may nominate candidates, but self- NAE Awards nominated entries are not accepted. National Academy of Engineering To complete the nomination procedure, simply follow the 500 Fifth Street, NW, Keck 1048 Award Guide to select the appropriate award that best Washington, DC 20001 suits your nomination. Eligibility information is specific to each award and is printed on the following pages. 2. Fax (202) 334-2290 The nomination cover form is standard for all the awards. Simply mark the appropriate award and complete the 3. E-mail required information. The nomination cover form must be [email protected] typewritten in English. The nomination cover form is also available online. Visit www.nae.edu/awards for informa- Nominations must be received tion about downloading the form. by April 1, 2011. In addition to the nomination cover form and additional For more information on NAE Awards, contact the NAE requested materials, at least three supporting letters must Awards Office at (202) 334-1266. accompany the nomination, as well as the candidate’s cur- Award Guide Use this guide to select the best award suited to your nomination. Charles Stark Draper Prize $500,000 CASH AWARD Recognized as one of the world’s preeminent awards for engineering achievement, this prize honors an engineer whose accomplishment has significantly impacted society by improving the quality of life, providing the ability to live freely and comfortably, and/or permitting the access to information. The Draper Prize is awarded annually and recog- nizes achievements in all engineering disciplines. Fritz J. and Dolores H. Russ Prize $500,000 CASH AWARD Awarded biennially, the Russ Prize recognizes a bioengineering achievement in widespread use that improves the human condition. This achievement should help the public better understand and appreciate the contributions of engineers to our health, well-being and quality of life. An auxiliary purpose of the Russ Prize is to encourage collaboration between the engineering and medical/biological disciplines and professions. Bernard M. Gordon Prize for Innovation in Engineering and Technology Education $500,000 CASH AWARD The intent of the Gordon Prize, which is awarded annually, is to recognize new modalities and experiments in education that develop effective engineering leaders. The focus is on innovations such as curricular design, teaching methods, and technology-enabled learning that strengthen students’ capabilities and desire to grow into leadership roles. Founders Award $2,500 CASH AWARD This annual award honors an outstanding NAE member or foreign associate who has upheld the ideals and principles of the NAE through professional, educational, and per- sonal achievement and accomplishment. Arthur M. Bueche Award $2,500 CASH AWARD The honor of this annual award is bestowed on an engineer who has shown dedication in science and technology, as well as active involvement in determining U.S. science and tech- nology policy, promoting technological development, and contributing to the enhancement of the relationship between industries, government, and universities. Charles Stark Draper Prize In 1989 the National Academy of Engineering established the Nomination Materials Charles Stark Draper Prize, endowed by The Charles Stark Draper (All Draper Prize nomination materials may be found under the Call Laboratory, Inc., Cambridge, Mass., to recognize achievement for Nominations section on our website at www.nae.edu/awards.) specifically directed to the advancement of society and its ability to sustain a certain quality of life and freedom. The following information constitutes a complete nomination: 1. 1.A completed nomination cover form. About Charles Stark Draper 2. Attached information that includes: The Draper Prize honors Charles Stark “Doc” Draper, the “father • A narrative description of the achievement, in an attachment of inertial navigation.” Charles Stark Draper evolved the theory, of no more than four (4) pages that addresses the selection invented and developed the technology, and led the effort that criteria and each candidate(s)’s contribution. Use the adden- brought inertial navigation to operational usage in aircraft, space dum specific to the Draper Prize to create this narrative. vehicles, and submarines. Founder of The Charles Stark Draper Laboratory and institute professor at the Massachusetts Institute • The candidate’s curriculum vitae (no more than two (2) pages of Technology (MIT), he stands as a pioneer among aircraft engi- per candidate). neers. Draper was elected to membership in the NAE in 1965 and • A selected bibliography of publications relevant to the innova- died in 1987. tion (no more than two (2) pages)—optional. • At least three (3) and not more than six (6) supporting letters. About the Draper Prize Presented annually during National Engineers Week in February, the Previous Recipients and Achievements recipient receives a $500,000 cash award, gold medallion, and hand- 1989: Jack S. Kilby and Robert N. Noyce—monolithic integrated scribed certificate. circuit. The Draper Prize is awarded for a specific achievement or for a series 1991: Sir Frank Whittle and Hans J. P. von Ohain—turbojet engine. of achievements in any engineering discipline, and may be awarded 1993: John Backus—FORTRAN, the first widely used, general to an individual or a group of individuals contributing to the same purpose, high-level computer language. achievement. NAE The Draper Prize is not awarded posthumously. 1995: John R. Pierce and Harold A. Rosen—communication satel- members and non-members worldwide are eligible to receive the lite technology. Draper Prize. 1997: Vladimir Haensel—chemical engineering process of Draper Prize Selection Criteria platforming. The narrative description of the achievement that accompanies the 1999: Charles K. Kao, Robert D. Maurer, and John B. MacChesney nomination form and additional materials should provide qualita- —fiber optics. tive and quantitative evidence that the following criteria are met: 2001: Vinton G. Cerf, Robert E. Kahn, Leonard Kleinrock, and • Benefit: Describe the success of the achievement or innovation Lawrence G. Roberts—the foundations of the Internet. in terms of estimates of the number of people actually or poten- 2002: Robert Langer—biocompatible polymer technologies that tially benefited and the extent of this benefit. control the release of medicine over time. • Novelty: Describe the demonstrated novelty, originality, and fun- 2003: Ivan A. Getting and Bradford W. Parkinson—Global Posi- damental character of the technical idea or concept underlying tioning System (GPS). the innovation or achievement. 2004: Alan C. Kay, Butler W. Lampson, Robert W. Taylor, • Removal of fundamental barriers: Demonstrate that the inno- and Charles P. Thacker—the first practical networked personal vation or achievement has removed fundamental barriers or computers. constraints to subsequent incremental improvement and refine- 2005: Minoru S. “Sam” Araki, Francis J. Madden, Edward A. ment, or that it embodies wholly new scientific or engineering Miller, James W. Plummer, Don H. Schoessler—for the design, principles. development, and operation of Corona, the first space-based Earth • Technical ramifications and application:
Recommended publications
  • How Doc Draper Became the Father of Inertial Guidance
    (Preprint) AAS 18-121 HOW DOC DRAPER BECAME THE FATHER OF INERTIAL GUIDANCE Philip D. Hattis* With Missouri roots, a Stanford Psychology degree, and a variety of MIT de- grees, Charles Stark “Doc” Draper formulated the basis for reliable and accurate gyro-based sensing technology that enabled the first and many subsequent iner- tial navigation systems. Working with colleagues and students, he created an Instrumentation Laboratory that developed bombsights that changed the balance of World War II in the Pacific. His engineering teams then went on to develop ever smaller and more accurate inertial navigation for aircraft, submarines, stra- tegic missiles, and spaceflight. The resulting inertial navigation systems enable national security, took humans to the Moon, and continue to find new applica- tions. This paper discusses the history of Draper’s path to becoming known as the “Father of Inertial Guidance.” FROM DRAPER’S MISSOURI ROOTS TO MIT ENGINEERING Charles Stark Draper was born in 1901 in Windsor Missouri. His father was a dentist and his mother (nee Stark) was a school teacher. The Stark family developed the Stark apple that was popular in the Midwest and raised the family to prominence1 including a cousin, Lloyd Stark, who became governor of Missouri in 1937. Draper was known to his family and friends as Stark (Figure 1), and later in life was known by colleagues as Doc. During his teenage years, Draper enjoyed tinkering with automobiles. He also worked as an electric linesman (Figure 2), and at age 15 began a liberal arts education at the University of Mis- souri in Rolla.
    [Show full text]
  • 2008 Annual Report
    2008 Annual Report NATIONAL ACADEMY OF ENGINEERING ENGINEERING THE FUTURE 1 Letter from the President 3 In Service to the Nation 3 Mission Statement 4 Program Reports 4 Engineering Education 4 Center for the Advancement of Scholarship on Engineering Education 6 Technological Literacy 6 Public Understanding of Engineering Developing Effective Messages Media Relations Public Relations Grand Challenges for Engineering 8 Center for Engineering, Ethics, and Society 9 Diversity in the Engineering Workforce Engineer Girl! Website Engineer Your Life Project Engineering Equity Extension Service 10 Frontiers of Engineering Armstrong Endowment for Young Engineers-Gilbreth Lectures 12 Engineering and Health Care 14 Technology and Peace Building 14 Technology for a Quieter America 15 America’s Energy Future 16 Terrorism and the Electric Power-Delivery System 16 U.S.-China Cooperation on Electricity from Renewables 17 U.S.-China Symposium on Science and Technology Strategic Policy 17 Offshoring of Engineering 18 Gathering Storm Still Frames the Policy Debate 20 2008 NAE Awards Recipients 22 2008 New Members and Foreign Associates 24 2008 NAE Anniversary Members 28 2008 Private Contributions 28 Einstein Society 28 Heritage Society 29 Golden Bridge Society 29 Catalyst Society 30 Rosette Society 30 Challenge Society 30 Charter Society 31 Other Individual Donors 34 The Presidents’ Circle 34 Corporations, Foundations, and Other Organizations 35 National Academy of Engineering Fund Financial Report 37 Report of Independent Certified Public Accountants 41 Notes to Financial Statements 53 Officers 53 Councillors 54 Staff 54 NAE Publications Letter from the President Engineering is critical to meeting the fundamental challenges facing the U.S. economy in the 21st century.
    [Show full text]
  • Copyright by Paul Harold Rubinson 2008
    Copyright by Paul Harold Rubinson 2008 The Dissertation Committee for Paul Harold Rubinson certifies that this is the approved version of the following dissertation: Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War Committee: —————————————————— Mark A. Lawrence, Supervisor —————————————————— Francis J. Gavin —————————————————— Bruce J. Hunt —————————————————— David M. Oshinsky —————————————————— Michael B. Stoff Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War by Paul Harold Rubinson, B.A.; M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2008 Acknowledgements Thanks first and foremost to Mark Lawrence for his guidance, support, and enthusiasm throughout this project. It would be impossible to overstate how essential his insight and mentoring have been to this dissertation and my career in general. Just as important has been his camaraderie, which made the researching and writing of this dissertation infinitely more rewarding. Thanks as well to Bruce Hunt for his support. Especially helpful was his incisive feedback, which both encouraged me to think through my ideas more thoroughly, and reined me in when my writing overshot my argument. I offer my sincerest gratitude to the Smith Richardson Foundation and Yale University International Security Studies for the Predoctoral Fellowship that allowed me to do the bulk of the writing of this dissertation. Thanks also to the Brady-Johnson Program in Grand Strategy at Yale University, and John Gaddis and the incomparable Ann Carter-Drier at ISS.
    [Show full text]
  • Historical Perspective and Further Reading 162.E1
    2.21 Historical Perspective and Further Reading 162.e1 2.21 Historical Perspective and Further Reading Th is section surveys the history of in struction set architectures over time, and we give a short history of programming languages and compilers. ISAs include accumulator architectures, general-purpose register architectures, stack architectures, and a brief history of ARMv7 and the x86. We also review the controversial subjects of high-level-language computer architectures and reduced instruction set computer architectures. Th e history of programming languages includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C+ + , and Java, and the history of compilers includes the key milestones and the pioneers who achieved them. Accumulator Architectures Hardware was precious in the earliest stored-program computers. Consequently, computer pioneers could not aff ord the number of registers found in today’s architectures. In fact, these architectures had a single register for arithmetic instructions. Since all operations would accumulate in one register, it was called the accumulator , and this style of instruction set is given the same name. For example, accumulator Archaic EDSAC in 1949 had a single accumulator. term for register. On-line Th e three-operand format of RISC-V suggests that a single register is at least two use of it as a synonym for registers shy of our needs. Having the accumulator as both a source operand and “register” is a fairly reliable indication that the user the destination of the operation fi lls part of the shortfall, but it still leaves us one has been around quite a operand short. Th at fi nal operand is found in memory.
    [Show full text]
  • John Mccarthy
    JOHN MCCARTHY: the uncommon logician of common sense Excerpt from Out of their Minds: the lives and discoveries of 15 great computer scientists by Dennis Shasha and Cathy Lazere, Copernicus Press August 23, 2004 If you want the computer to have general intelligence, the outer structure has to be common sense knowledge and reasoning. — John McCarthy When a five-year old receives a plastic toy car, she soon pushes it and beeps the horn. She realizes that she shouldn’t roll it on the dining room table or bounce it on the floor or land it on her little brother’s head. When she returns from school, she expects to find her car in more or less the same place she last put it, because she put it outside her baby brother’s reach. The reasoning is so simple that any five-year old child can understand it, yet most computers can’t. Part of the computer’s problem has to do with its lack of knowledge about day-to-day social conventions that the five-year old has learned from her parents, such as don’t scratch the furniture and don’t injure little brothers. Another part of the problem has to do with a computer’s inability to reason as we do daily, a type of reasoning that’s foreign to conventional logic and therefore to the thinking of the average computer programmer. Conventional logic uses a form of reasoning known as deduction. Deduction permits us to conclude from statements such as “All unemployed actors are waiters, ” and “ Sebastian is an unemployed actor,” the new statement that “Sebastian is a waiter.” The main virtue of deduction is that it is “sound” — if the premises hold, then so will the conclusions.
    [Show full text]
  • By Dean R. Johnson
    Alice Symposium 2009 Duke University “Who needs PowerPoint? I’ve got Alice!” By Dean R. Johnson I. Background of My Experience in Programming II. Experience with Alice A. Changes in Languages and Student Population B. Introducing Alice C. Enrollment Data III. History Lesson: Significant People in Computing A. Paper B. PowerPoint C. Alice 1. Lesson Plan 2. Grading Rubric IV. Sample Projects: Screenshots and descriptions of Student Work I. Background I started my study of Computer Science in 1982 as a high school senior when I enrolled in a one semester course titled “Computer Programming.” It was taught by my math teacher and at first seemed like a very mystifying idea. We wrote programs in BASIC b y “bubbling in” punch cards. After completing the program, we took the stack of cards to the back of the room handing them to our teacher. He was the only one allowed to insert the cards into the card reader. The PDP-11 interpreted our program and if it ran successfully, the dot matrix printer printed a table of the whole numbers from one to ten and their squares. It was amazing. The strange thing about this description is that it brings back such fond memories for me. It was during this brief exposure to programming that I was hooked for life. This is what drives me on a daily basis to do the best I can to expose students to the fascinating world of programming. I graduated from UW-Whitewater in 1986 with a Major in Mathematics and a Minor in Computer Science.
    [Show full text]
  • The Way Forward a New Literary History of America a Conv
    american academy of arts & sciences spring 2010 Bulletin vol. lxiii, no. 3 Page 7 A New Literary History of America Werner Sollors and Greil Marcus David Brady and Pamela S. Karlan Page 15 Challenges to Business and Society in the Twenty-First Century: The Way Forward Rajat K. Gupta and Roger W. Ferguson, Jr. Daniel Yankelovich Page 22 A Conversation on Evolving U.S. Policy toward Russia Robert Legvold and Thomas Graham inside: The Humanities: The Case for Data, Page 1 Book of Members, Page 6 From the Archives, Page 36 Calendar of Events Save the Date: Induction Weekend Friday, Sunday, Contents October 8, 2010 October 10, 2010 Evening Reception and Program– Sunday Symposium–Cambridge Cambridge Academy Projects For information and reservations, contact The Humanities: The Case for Data 1 Saturday, the Events Of½ce (phone: 617-576-5032; October 9, 2010 email: [email protected]). Book of Members 6 2010 Induction Ceremony–Cambridge Academy Meetings A New Literary History of America Werner Sollors and Greil Marcus 7 Challenges to Business and Society in the Twenty-First Century: The Way Forward Rajat K. Gupta and Roger W. Ferguson, Jr. 15 A Conversation on Evolving U.S. Policy toward Russia Robert Legvold and Thomas Graham 22 Noteworthy 32 From the Archives 36 Fellows and Friends Again Contribute More than $1.5 million to the Annual Fund In the recently completed ½scal year, the Academy’s Annual Fund surpassed last year’s total and the $1.5 million mark for the fourth consecutive year–nearly 1,200 donors helped to accomplish this goal.
    [Show full text]
  • John Mccarthy – Father of Artificial Intelligence
    Asia Pacific Mathematics Newsletter John McCarthy – Father of Artificial Intelligence V Rajaraman Introduction I first met John McCarthy when he visited IIT, Kanpur, in 1968. During his visit he saw that our computer centre, which I was heading, had two batch processing second generation computers — an IBM 7044/1401 and an IBM 1620, both of them were being used for “production jobs”. IBM 1620 was used primarily to teach programming to all students of IIT and IBM 7044/1401 was used by research students and faculty besides a large number of guest users from several neighbouring universities and research laboratories. There was no interactive computer available for computer science and electrical engineering students to do hardware and software research. McCarthy was a great believer in the power of time-sharing computers. John McCarthy In fact one of his first important contributions was a memo he wrote in 1957 urging the Director of the MIT In this article we summarise the contributions of Computer Centre to modify the IBM 704 into a time- John McCarthy to Computer Science. Among his sharing machine [1]. He later persuaded Digital Equip- contributions are: suggesting that the best method ment Corporation (who made the first mini computers of using computers is in an interactive mode, a mode and the PDP series of computers) to design a mini in which computers become partners of users computer with a time-sharing operating system. enabling them to solve problems. This logically led to the idea of time-sharing of large computers by many users and computing becoming a utility — much like a power utility.
    [Show full text]
  • Fpgas As Components in Heterogeneous HPC Systems: Raising the Abstraction Level of Heterogeneous Programming
    FPGAs as Components in Heterogeneous HPC Systems: Raising the Abstraction Level of Heterogeneous Programming Wim Vanderbauwhede School of Computing Science University of Glasgow A trip down memory lane 80 Years ago: The Theory Turing, Alan Mathison. "On computable numbers, with an application to the Entscheidungsproblem." J. of Math 58, no. 345-363 (1936): 5. 1936: Universal machine (Alan Turing) 1936: Lambda calculus (Alonzo Church) 1936: Stored-program concept (Konrad Zuse) 1937: Church-Turing thesis 1945: The Von Neumann architecture Church, Alonzo. "A set of postulates for the foundation of logic." Annals of mathematics (1932): 346-366. 60-40 Years ago: The Foundations The first working integrated circuit, 1958. © Texas Instruments. 1957: Fortran, John Backus, IBM 1958: First IC, Jack Kilby, Texas Instruments 1965: Moore’s law 1971: First microprocessor, Texas Instruments 1972: C, Dennis Ritchie, Bell Labs 1977: Fortran-77 1977: von Neumann bottleneck, John Backus 30 Years ago: HDLs and FPGAs Algotronix CAL1024 FPGA, 1989. © Algotronix 1984: Verilog 1984: First reprogrammable logic device, Altera 1985: First FPGA,Xilinx 1987: VHDL Standard IEEE 1076-1987 1989: Algotronix CAL1024, the first FPGA to offer random access to its control memory 20 Years ago: High-level Synthesis Page, Ian. "Closing the gap between hardware and software: hardware-software cosynthesis at Oxford." (1996): 2-2. 1996: Handel-C, Oxford University 2001: Mitrion-C, Mitrionics 2003: Bluespec, MIT 2003: MaxJ, Maxeler Technologies 2003: Impulse-C, Impulse Accelerated
    [Show full text]
  • By September 1976 the Charles Stark Draper Laboratory, Inc. Cambridge
    P-357 THE HISTORY OF APOLLO ON-BOARD GUIDANCE, NAVIGATION, AND CONTROL by David G. Hoag September 1976 The Charles Stark Draper Laboratory, Inc. Cambridge, Massachusetts 02139 @ The Charles Stark Draper Laboratory, Inc. , 1976. the solar pressure force on adjustable sun vanes to drive the average speed of these wheels toward zero. Overall autonomous operation was managed on-board by a small general purpose digital computer configured by its designer, Dr. Raymond Alonso, for very low power drain except at the occasional times needing fast computation speed. A special feature of this computer was the pre-wired, read-only memory called a core rope, a configuration of particularly high storage density requiring only one magnetic core per word of memory. A four volume report of this work was published in July, 1959, and presented to the Air Force Sponsors. However, since the Air Force was disengaging from civilian space development, endeavors to interest NASA were undertaken. Dr. H. Guyford Stever, then an MIT professor, arranged a presentation with Dr. Hugh Dryden, NASA Deputy Administrator, which took place on September 15.* On November 10, NASA sent a letter of in- tent to contract the Instrumentation Laboratory for a $50,000 study to start immediately. The stated purpose was that this study would con- c tribute to the efforts of NASA's Jet Propulsion Laboratory in conducting unmanned space missions to Mars, Venus, and the Earth's moon scheduled in Vega and Centaur missions in the next few years. A relationship be- tween MIT and JPL did not evolve. JPL's approach to these deep space missions involved close ground base control with their large antenna tracking and telemetry systems, considerably different from the on- board self sufficiency method which the MIT group advocated and could best support.
    [Show full text]
  • National Academy of Sciences July 1, 1979 Officers
    NATIONAL ACADEMY OF SCIENCES JULY 1, 1979 OFFICERS Term expires President-PHILIP HANDLER June 30, 1981 Vice-President-SAUNDERS MAC LANE June 30, 1981 Home Secretary-BRYCE CRAWFORD,JR. June 30, 1983 Foreign Secretary-THOMAS F. MALONE June 30, 1982 Treasurer-E. R. PIORE June 30, 1980 Executive Officer Comptroller Robert M. White David Williams COUNCIL Abelson, Philip H. (1981) Markert,C. L. (1980) Berg, Paul (1982) Nierenberg,William A. (1982) Berliner, Robert W. (1981) Piore, E. R. (1980) Bing, R. H. (1980) Ranney, H. M. (1980) Crawford,Bryce, Jr. (1983) Simon, Herbert A. (1981) Friedman, Herbert (1982) Solow, R. M. (1980) Handler, Philip (1981) Thomas, Lewis (1982) Mac Lane, Saunders (1981) Townes, Charles H. (1981) Malone, Thomas F. (1982) Downloaded by guest on September 30, 2021 SECTIONS The Academyis divided into the followingSections, to which membersare assigned at their own choice: (11) Mathematics (31) Engineering (12) Astronomy (32) Applied Biology (13) Physics (33) Applied Physical and (14) Chemistry Mathematical Sciences (15) Geology (41) Medical Genetics Hema- (16) Geophysics tology, and Oncology (21) Biochemistry (42) Medical Physiology, En- (22) Cellularand Develop- docrinology,and Me- mental Biology tabolism (23) Physiological and Phar- (43) Medical Microbiology macologicalSciences and Immunology (24) Neurobiology (51) Anthropology (25) Botany (52) Psychology (26) Genetics (53) Social and Political Sci- (27) Population Biology, Evo- ences lution, and Ecology (54) Economic Sciences In the alphabetical list of members,the numbersin parentheses, followingyear of election, indicate the respective Class and Section of the member. CLASSES The members of Sections are grouped in the following Classes: I. Physical and Mathematical Sciences (Sections 11, 12, 13, 14, 15, 16).
    [Show full text]
  • E Helsinki Forum and East-West Scientific Exchange
    [E HELSINKI FORUM AND EAST-WEST SCIENTIFIC EXCHANGE JOINT HEARING BEFORE THE SUBCOMMITTEE ON SCIENCE, RESEARCH AND TECHNOLOGY OF THE COMMITTEE ON SCIENCE AND TECHNOLOGY AND THE Sul COMMITTEE ON INTERNATIONAL SECURITY AND SCIENTIFIC AFFAIRS OF THE COMMITTEE ON FOREIGN AFFAIRS HOUSE OF REPRESENTATIVES AND THE COMMISSION ON SECURITY AND COOPERATION IN EUROPE NINETY-SIXTH CONGRESS SECOND SESSION JANUARY 31, 1980 [No. 89] (Committee on Science and Technology) ted for the use of the Committee on Science and Technology and the Committee on Foreign Affairs U.S. GOVERNMENT PRINTING OFFICE 421 0 WASHINGTON: 1980 COMMITTEE ON SCIENCE AND TECHNOLOGY DON FUQUA, Florida, Chairman ROBERT A. ROE, New Jersey JOHN W. WYDLER, New York MIKE McCORMACK, Washington LARRY WINN. JR., Kansas GEORGE E. BROWN, JR., California BARRY M. GOLDWATER, JR., California JAMES H. SCHEUER, New York HAMILTON FISH, JS., New York RICHARD L. OTTINGER, New York MANUEL LUJAN, JR., New Mexico TOM HARKIN, Iowa HAROLD C. HOLLENBECK, New Jersey JIM LLOYD, California ROBERT K. DORNAN, California JEROME A. AMBRO, New York ROBERT S. WALKER, Pennsylvania MARILYN LLOYD BOUQUARD, Tennessee EDWIN B. FORSYTHE, NeW Jersey JAMES J. BLANCHARD, Michigan KEN KRAMER, Colorado DOUG WALGREN, Pennsylvania WILLIAM CARNEY, New York RONNIE G. FLIPPO, Alabama ROBERT W. DAVIS, Michigan DAN GLICKMAN, Kansas TOBY ROTH, Wisconsin ALBERT GORE, JR., Tennessee DONALD LAWRENCE RITTER, WES WATKINS, Oklahoma Pennsylvania ROBERT A. YOUNG, Missouri BILL ROYER, California RICHARD C. WHITE, Texas HAROLD L. VOLKMER, Missouri DONALD J. PEASE, Ohio HOWARD WOLPE, Michigan NICHOLAS MAVROULES, Massachusetts BILL NELSON, Florida BERYL ANTHONY, JR., Arkansas STANLEY N. LUNDINE, New York ALLEN E.
    [Show full text]