Design and Test of Agri-Voltaic System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sustainable Intensification of Agriculture by Intercropping
Science of the Total Environment 615 (2018) 767–772 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv The new Green Revolution: Sustainable intensification of agriculture by intercropping Marc-Olivier Martin-Guay a, Alain Paquette b,JérômeDuprasa, David Rivest a,⁎ a Département des sciences naturelles and Institut des sciences de la forêt tempérée (ISFORT), Université du Québec en Outaouais (UQO), 58 rue Principale, Ripon, QC J0V 1V0, Canada b Département des sciences biologiques, Université du Québec à Montréal, CP 8888, Succursale Centre-ville, Montréal QcH3C 3P8, Canada HIGHLIGHTS GRAPHICAL ABSTRACT • Global productivity potential of intercropping was determined using a meta-analysis. • Global land equivalent ratio of intercropping was 1.30. • Land equivalent ratio of intercropping did not vary through a water stress gra- dient. • Intercropping increases gross energy production by 38%. • Intercropping increases gross incomes by 33%. article info abstract Article history: Satisfying the nutritional needs of a growing population whilst limiting environmental repercussions will require Received 14 July 2017 sustainable intensification of agriculture. We argue that intercropping, which is the simultaneous production of Received in revised form 3 October 2017 multiple crops on the same area of land, could play an essential role in this intensification. We carried out the first Accepted 4 October 2017 global meta-analysis on the multifaceted benefits of intercropping. The objective of this study was to determine Available online xxxx the benefits of intercropping in terms of energetic, economic and land-sparing potential through the framework fi Editor: Jay Gan of the stress-gradient hypothesis. We expected more intercropping bene ts under stressful abiotic conditions. -
Annual Report 2018 2
P HOTOVOLTAIC P OWER S YSTEMS P ROGRAMME ANNUAL REPORT 2018 2 COVER PHOTO: GREEN ENERGY PARK - A First Model in Africa The Green Energy Park photovoltaic plant, inaugurated by His Majesty King Mohammed VI in January 2017, is a unique model in Africa. The plant, with a total capacity of 250 kW, installed and connected to the grid is composed by different sub-systems with capacities varying between 5 kW and 30 kW. Its outdoor test platforms are designed in collaboration with the Fraunhofer CSP institute, and combine a multitude of test-set-ups, in order to investigate and characterize PV modules in harsh weather conditions and to obtain valuable data about their performances onsite. Located in the Green City of Ben Guerir, it covers the electrical needs of the Green Energy Park platform laboratories. It covers an area of approximately 1,5 ha. The plant, considered as a living laboratory by itself, contributes to R&D projects for the determination and identification of the most suited technologies for local conditions. It also gives the opportunity for national and worldwide PV module producers to test and characterize their photovoltaic technologies in real conditions. The plant is owned and operated by the Green Energy Park platform. KEY POINTS • Installed in self-consumption configuration to cover the R&D platform needs in terms of electricity; • Composed of many types of technologies (crystalline, thin film, CPV, fixed static structures, trackers); • Total area 1,5 ha; • 25 solar string inverters with different capacities are used and distributed for each sub-system; • Test of photovoltaic technologies at module level to identify the degradation mechanisms occurring on the different components of the PV modules in real conditions; • Test of photovoltaic technologies at string level to characterize their behavior in terms of power ratio and degradation mechanisms on the different component of PV plants in real local conditions. -
Redalyc.BIOMASS, YIELD and LAND EQUIVALENT RATIO OF
Tropical and Subtropical Agroecosystems E-ISSN: 1870-0462 [email protected] Universidad Autónoma de Yucatán México Morales-Rosales, Edgar Jesús; Franco-Mora, Omar BIOMASS, YIELD AND LAND EQUIVALENT RATIO OF Helianthus annus L. IN SOLE CROP AND INTERCROPPED WITH Phaseolus vulgaris L. IN HIGH VALLEYS OF MEXICO Tropical and Subtropical Agroecosystems, vol. 10, núm. 3, septiembre-diciembre, 2009, pp. 431-439 Universidad Autónoma de Yucatán Mérida, Yucatán, México Available in: http://www.redalyc.org/articulo.oa?id=93912996011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Tropical and Subtropical Agroecosystems, 10 (2009): 431 - 439 BIOMASS, YIELD AND LAND EQUIVALENT RATIO OF Helianthus annus L. IN SOLE CROP AND INTERCROPPED WITH Phaseolus vulgaris L. IN HIGH VALLEYS OF MEXICO Tropical and [BIOMASA, RENDIMIENTO Y USO EQUIVALENTE DE LA TIERRA DE Helianthus annus L. EN UNICULTIVO Y ASOCIADO CON Phaseolus vulgaris Subtropical L. EN VALLES ALTOS DE MÉXICO] Agroecosystems Edgar Jesús Morales-Rosales* and Omar Franco-Mora Centro de Investigación y Estudios Avanzados en Fitomejoramiento, Facultad de Ciencias Agrícolas, Universidad Autónoma del Estado de México. Carretera Toluca- Ixtlahuaca Km. 15 C. P. 50200. Toluca, Estado de México. E-mail: [email protected] *Corresponding author SUMARY RESUMEN The aim of the -
Competitive Behaviour of Groundnut in Sesame/Groundnut Intercropping System Under Varying Poultry Manure Rates and Planting Arrangement
Sustainable Agriculture Research; Vol. 2, No. 3; 2013 ISSN 1927-050X E-ISSN 1927-0518 Published by Canadian Center of Science and Education Competitive Behaviour of Groundnut in Sesame/Groundnut Intercropping System Under Varying Poultry Manure Rates and Planting Arrangement Haruna I. M.1, Aliyu L.2 & Maunde S. M.3 1 Department of Agronomy, Nasarawa State University, Keffi, Nigeria 2 Department of Agronomy, Ahmadu Bello University, Zaria, Nigeria 3 Adamawa State College of Agriculture, Ganye, Nigeria Correspondence: Haruna I. M., Department of Agronomy, Nasarawa State University, Keffi, Nigeria. Tel: 234-803-968-3552. E-mail: [email protected] Received: February 14, 2013. Accepted: March 20, 2013 Online Published: March 22, 2013 doi:10.5539/sar.v2n3p22 URL: http://dx.doi.org/10.5539/sar.v2n3p22 Abstract Field experiment was conducted during the rainy seasons of 2011 and 2012 at the Teaching and Research Farm of the Faculty of Agriculture, Nasarawa State University, Keffi-Lafia Campus to study the competitive behaviour of groundnut in Sesame-groundnut intercropping system. The experiment consisted of four rates of poultry manure (0, 3.0, 6.0 and 9.0 t ha-1) and two planting arrangement (single alternate row and double alternate row planting arrangement). The eight treatment combinations were laid out in a randomized complete block design with four replications. The results obtained in both the years showed that sesame when grown with groundnut under different rates of poultry manure and planting arrangement appeared to be a dominant crop as indicated by its higher values of Land equivalent ratio, competitive ratio, higher and positive values for aggressivity and area time equivalent ratio. -
Hybrid Wind-Solar Reliable Solution for Turkey to Meet Electric Demand
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING DOI: 10.17694/bajece.73922 62 Hybrid wind-solar reliable solution for Turkey to meet electric demand K. Dawood Abstract— Energy is the most important part of life, it is essential for social and economic development. Turkey is importing more than half of the energy from other countries to produce electricity by thermal plants. Air pollution is also becoming quite a big problem for Turkey due to the thermal production of the energy. One of the most effective solution for air pollution is renewable energy because nowadays renewable energy is environment Fig.1. Generation of electric power since 2011 [2] friendly. Turkey has many geographical location advantages one of them is renewable energy resources. Turkey has limited fossil fuel Figure 1 shows the generation of electricity in Turkey from resources and due to this reason Turkey must shift more electricity 2011 to 2015. Last year, more than 68 percent of total production to the renewable energy resources. Renewable energy has less environment impacts as compare to the fossil fuels but still electricity was generated by thermal power plants. renewable energy sources are not reliable and competitive as Approximately 5 percent of the electricity was generated from compare to the fossil fuels. The present study deals with the renewable assets of Turkey, 26 percent of electricity generated advantages of Hybrid renewable energy systems (Solar and Wind through hydropower plants. energy) in Turkey. Turkey is one of the richest country in the world in terms of Map of Turkey with high resources of solar-wind hybrid energy renewable resources. -
Interplay Between the Potential of Photovoltaic Systems And
1 Interplay between the potential of photovoltaic systems and 2 agricultural land use 3 Luís Dias*, João Pedro Gouveia, Paulo Lourenço, Júlia Seixas 4 5 CENSE – Center for Environmental and Sustainability Research, NOVA School of Science 6 and Technology, NOVA University Lisbon 7 8 *Corresponding author. Address: CENSE – Center for Environmental and Sustainability 9 Research, NOVA School of Science and Technology, NOVA University Lisbon 2829-516 10 Caparica, Portugal 11 Tel.:+351 21 294 83 74 12 E-mail address: [email protected] (Dias, L.) 13 14 Highlights 15 • Technical potential for utility-scale solar PV projects in rural areas is assessed. 16 • Agriculture and nature conservation land use shorten solar PV farms potential. 17 • Limited PV potential ca still cover substantial shares of local annual electricity consumption. 18 • 1 MW CPV projects show the highest land-use efficiency and productivity. 19 • PV contributes significantly to region energy independence. 20 21 Abstract 22 The recent decrease in solar photovoltaic (PV) investment cost has transformed the 23 attractiveness of the technology. Southern Europe has one of the highest levels of solar radiation 24 in the world, and policy makers are very keen to take full advantage of this resource for 25 electricity and heat production. However, physiographic characteristics and specific land uses 26 (e.g. agro-forestry and nature conservation) present important spatial constraints. This paper 27 proposes a methodology for the evaluation of utility-scale solar PV projects’ (>1 MW) technical 28 potential. The municipality of Évora (Portugal) was used as a case study, considering 29 topographical features and spatial planning regulations. -
How to Leverage Climate Finance to Reach Your Investment Goals
GEOTHERMAL • WIND • CONCENTRATED SOLAR POWER • SOLAR PHOTOVOLTAICS • BIOMASS • HYDROPOWER HOW TO LEVERAGE CLIMATE FINANCE TO REACH YOUR INVESTMENT GOALS Renewable energy opportunities in emerging economies and developing countries are huge. Low-cost climate financing can help turn your vision into action. Hear how industry players are leveraging concessional financing from the Climate Investment Funds (CIF)—currently the largest source of international finance for renewable energy—to catalyze success in sustainable energy in Thailand, Turkey, Mexico, and Morocco. BARBARA BUCHNER SENIOR DIRECTOR, CLIMATE FINANCE, CLIMATE POLICY INITIATIVE (CPI) 12:00–13:00 Panel Moderator Main Conference Area MAFALDA DUARTE Level 3, Room 6 MANAGER, CLIMATE INVESTMENT FUNDS Carbon Expo 2015 Overview of CIF private sector engagement in renewable energy and energy efficiency WANDEE KHUNCHORNYAKONG “When I started to develop my first solar CHAIRPERSON AND CEO OF SOLAR POWER COMPANY GROUP (SPCG) project in Thailand, no bank here would Scaling up solar power in Thailand: SPCG’s experience in promoting solar farms finance the project until the International Finance Corporation agreed to invest in it. With ENRIQUE NIETO ITUARTE the CIF, banks believed in the project, financing DIRECTOR OF SUSTAINABLE PROJECTS, NACIONAL FINANCIERA (NAFINSA), MEXICO it with a better interest rate.” The promise of an innovative risk sharing facility for geothermal investments: WANDEE KHUNCHORNYAKONG Example from Mexico “CIF funds have been able to mobilize a SIMTEN ÖZTÜRK bigger pool of liquidity and, thus, make MANAGER, LEVERAGE FINANCE, PROJECT AND AQUISITION FINANCE, GARANTI BANK, TURKEY available larger amounts of funds permitting Leveraging CIF resources for financial intermediation in promoting energy efficiency a higher leverage for a longer tenor and at a lower risk premium. -
Seragie Daniel 213016737.Pdf
An application of pinch analysis in the design of a stand-alone thermochemical cycle, hydrogen hub sourced from renewables in rural South Africa By Daniel Cecil Seragie Thesis submitted in fulfilment of the requirements for the degree Master of Engineering: Chemical Engineering In the Faculty of Engineering At the Cape Peninsula University of Technology Supervisor: Mr. Joe John Co-Supervisor: Prof Daniel Ikhu-Omoregbe Bellville Campus May 2020 CPUT copyright information The dissertation/thesis may not be published either in part (in scholarly, scientific or technical journals), or as a whole (as a monograph), unless permission has been obtained from the University DECLARATION I, Daniel Cecil Seragie, declare that the contents of this dissertation/thesis represent my unaided work and that the dissertation/thesis has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology. Signed Date i | P a g e ABSTRACT Economic and social development are closely related to the accessibility of electricity. Meanwhile, non- grid connected rural areas shoulder the burden of health and environmental risks since extending the grid is considered uneconomical. Renewable hydrogen, hybrid energy systems are viewed as a promising solution in remote areas where grid extension is costly and fuel costs increase parallel to remoteness. Hence, this study applies heat and power pinch analysis in the conceptual design of an isolated, decentralized thermochemical cycle hydrogen & biogas energy hybrid, to satiate the electricity needs of a non-grid rural area in South Africa. This study highlights the value of using heat pinch and PoPA tools as a mid-term supplement to combat increasing energy costs, reduce negative environmental impacts, improve profits, and more importantly as a contribution to ensuring temperatures are kept well below 2℃ above pre-industrial levels. -
Agroforestry Benefits and Challenges for Adoption in Europe and Beyond
sustainability Review Agroforestry Benefits and Challenges for Adoption in Europe and Beyond Maya Sollen-Norrlin 1, Bhim Bahadur Ghaley 2 and Naomi Laura Jane Rintoul 1,* 1 School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1TE, UK; [email protected] 2 Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 2630 Taastrup, Denmark; [email protected] * Correspondence: [email protected] Received: 3 July 2020; Accepted: 18 August 2020; Published: 27 August 2020 Abstract: Soil degradation is a global concern, decreasing the soil’s ability to perform a multitude of functions. In Europe, one of the leading causes of soil degradation is unsustainable agricultural practices. Hence, there is a need to explore alternative production systems for enhanced agronomic productivity and environmental performance, such as agroforestry systems (AFS). Given this, the objective of the study is to enumerate the major benefits and challenges in the adoption of AFS. AFS can improve agronomic productivity, carbon sequestration, nutrient cycling, soil biodiversity, water retention, and pollination. Furthermore, they can reduce soil erosion and incidence of fire and provide recreational and cultural benefits. There are several challenges to the adoption and uptake of AFS in Europe, including high costs for implementation, lack of financial incentives, limited AFS product marketing, lack of education, awareness, and field demonstrations. Policies for financial incentives such as subsidies and payments for ecosystem services provided by AFS must be introduced or amended. Awareness of AFS products must be increased for consumers through appropriate marketing strategies, and landowners need more opportunities for education on how to successfully manage diverse, economically viable AFS. -
Iea Pvps Annual Report 2019 Photovoltaic Power Systems Programme
Cover photo THE INTERNATIONAL OLYMPIC COMMITTEE’S (IOC) NEW HEADQUARTERS’ PV ROOFTOP, BUILT BY SOLSTIS, LAUSANNE SWITZERLAND One of the most sustainable buildings in the world, featuring a PV rooftop system built by Solstis, Lausanne, Switzerland. At the time of its certification in June 2019, the new IOC Headquarters in Lausanne, Switzerland, received the highest rating of any of the LEED v4-certified new construction project. This was only possible thanks to the PV system consisting of 614 mono-Si modules, amounting to 179 kWp and covering 999 m2 of the roof’s surface. The approximately 200 MWh solar power generated per year are used in-house for heat pumps, HVAC systems, lighting and general building operations. Photo: Solstis © IOC/Adam Mork COLOPHON Cover Photograph Solstis © IOC/Adam Mork Task Status Reports PVPS Operating Agents National Status Reports PVPS Executive Committee Members and Task 1 Experts Editor Mary Jo Brunisholz Layout Autrement dit Background Pages Normaset Puro blanc naturel Type set in Colaborate ISBN 978-3-906042-95-4 3 / IEA PVPS ANNUAL REPORT 2019 PHOTOVOLTAIC POWER SYSTEMS PROGRAMME PHOTOVOLTAIC POWER SYSTEMS PROGRAMME ANNUAL REPORT 2019 4 / IEA PVPS ANNUAL REPORT 2019 CHAIRMAN'S MESSAGE CHAIRMAN'S MESSAGE A warm welcome to the 2019 annual report of the International Energy Agency Photovoltaic Power Systems Technology Collaboration Programme, the IEA PVPS TCP! We are pleased to provide you with highlights and the latest results from our global collaborative work, as well as relevant developments in PV research and technology, applications and markets in our growing number of member countries and organizations worldwide. -
Thin Film Cdte Photovoltaics and the U.S. Energy Transition in 2020
Thin Film CdTe Photovoltaics and the U.S. Energy Transition in 2020 QESST Engineering Research Center Arizona State University Massachusetts Institute of Technology Clark A. Miller, Ian Marius Peters, Shivam Zaveri TABLE OF CONTENTS Executive Summary .............................................................................................. 9 I - The Place of Solar Energy in a Low-Carbon Energy Transition ...................... 12 A - The Contribution of Photovoltaic Solar Energy to the Energy Transition .. 14 B - Transition Scenarios .................................................................................. 16 I.B.1 - Decarbonizing California ................................................................... 16 I.B.2 - 100% Renewables in Australia ......................................................... 17 II - PV Performance ............................................................................................. 20 A - Technology Roadmap ................................................................................. 21 II.A.1 - Efficiency ........................................................................................... 22 II.A.2 - Module Cost ...................................................................................... 27 II.A.3 - Levelized Cost of Energy (LCOE) ....................................................... 29 II.A.4 - Energy Payback Time ........................................................................ 32 B - Hot and Humid Climates ........................................................................... -
Page 1 of 20 RSC Advances
RSC Advances This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/advances Page 1 of 20 RSC Advances Modelling and analysis on the effect of different parameters on a parabolic-trough concentrating solar system M.K. Islam ∗,a , M. Hasanuzzaman a, N.A. Rahim a,b aUM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, University of Malaya, 59990 Kuala Lumpur, Malaysia b Renewable Energy Research Group, King Abdulaziz University, Jeddah 21589, Saudi Arabia Abstract Concentrating solar power technologies are potential energy-harvesting systems. This paper simulates and analyzes the design of a parabolic-trough concentrating solar system. Optimum measurements are sought for the receiver, and collector performance is investigated using three heat transfer fluids, namely, ammonia, nitrogen, and carbon dioxide.