Redalyc.BIOMASS, YIELD and LAND EQUIVALENT RATIO OF

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.BIOMASS, YIELD and LAND EQUIVALENT RATIO OF Tropical and Subtropical Agroecosystems E-ISSN: 1870-0462 [email protected] Universidad Autónoma de Yucatán México Morales-Rosales, Edgar Jesús; Franco-Mora, Omar BIOMASS, YIELD AND LAND EQUIVALENT RATIO OF Helianthus annus L. IN SOLE CROP AND INTERCROPPED WITH Phaseolus vulgaris L. IN HIGH VALLEYS OF MEXICO Tropical and Subtropical Agroecosystems, vol. 10, núm. 3, septiembre-diciembre, 2009, pp. 431-439 Universidad Autónoma de Yucatán Mérida, Yucatán, México Available in: http://www.redalyc.org/articulo.oa?id=93912996011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Tropical and Subtropical Agroecosystems, 10 (2009): 431 - 439 BIOMASS, YIELD AND LAND EQUIVALENT RATIO OF Helianthus annus L. IN SOLE CROP AND INTERCROPPED WITH Phaseolus vulgaris L. IN HIGH VALLEYS OF MEXICO Tropical and [BIOMASA, RENDIMIENTO Y USO EQUIVALENTE DE LA TIERRA DE Helianthus annus L. EN UNICULTIVO Y ASOCIADO CON Phaseolus vulgaris Subtropical L. EN VALLES ALTOS DE MÉXICO] Agroecosystems Edgar Jesús Morales-Rosales* and Omar Franco-Mora Centro de Investigación y Estudios Avanzados en Fitomejoramiento, Facultad de Ciencias Agrícolas, Universidad Autónoma del Estado de México. Carretera Toluca- Ixtlahuaca Km. 15 C. P. 50200. Toluca, Estado de México. E-mail: [email protected] *Corresponding author SUMARY RESUMEN The aim of the present study was to estimate the El objetivo del presente estudio fue estimar la production of biomass, yield, yield components and producción de biomasa total, rendimiento, land equivalent ratio (LER) of sunflower ‘Victoria’ componentes y razón equivalente de la tierra (RET) de (Helianthus anuuss L.) in sole crop and intercropped girasol ‘Victoria’ (Helianthus annuus L.) en unicultivo with three cultivars of bean (Phaseolus vulgaris L.) y asociado con tres cultivares de frijol (Phaseolus ‘Acerado’, ‘Criollo’ and ‘Michoacán’ in two localities vulgaris L.) ‘Acerado’, ‘Criollo’ y ‘Michoacán’ en dos of the State of Mexico (El Cerrillo and Montecillo). To localidades del Estado de México (Cerrillo y estimate the LER, the individual analyses of variance Montecillo). Para estimar la RET, se efectuó en cada were carried out in each locality for the seed yield of localidad el análisis de varianza individual para el sunflower and bean. In El Cerrillo, the seed yield on rendimiento de semilla de girasol y frijol. El Cerrillo the average (306.8 g m-2) surpassed Montecillo by (306.8 g m-2) superó en promedio a Montecillo en el 15.2%. On the average in the both sites, ‘Victoria’ rendimiento de semilla en 15.2%. ‘Victoria’ (309.9 g (309.9 g m-2) surpassed in seed yield the associations m-2) superó en promedio a las asociaciones ‘Victoria’ ‘Victoria’ + ‘Acerado’ (13.0%), ‘Victoria’ + + ‘Acerado’ (13.0%), ‘Victoria’ + ‘Michoacán’ ‘Michoacán’ (11.5%) and ‘Victoria’ + ‘Criollo’ (11.5%) y ‘Victoria’ + ‘Criollo’ (9.2%). Todas las (9.2%). All of the intercropping systems showed asociaciones mostraron valores de RET superiores a values of LER higher than 1.67; moreover, the 1.67. Asimismo, las asociaciones ‘Victoria’ + associations ‘Victoria’ + ‘Michoacán’ and ‘Victoria’ + ‘Michoacán’ y ‘Victoria’ + ‘Criollo’ presentaron ‘Criollo’ presented values of 1.80 at El Cerrillo and valores de 1.80 en ambas localidades, lo anterior Montecillo, respectively, the sunflower intercropped indica que el girasol asociado con ‘Michoacán’, with ‘Michoacán’, ‘Criollo’ or ‘Acerado’ represents a ‘Criollo’ o ‘Acerado’ representa una buena opción good option for the farmers of the high valleys of State para los agricultores de los valles altos del Estado de of Mexico. México. Key words: Competition; complementary; multiple Palabras clave: Competencia; complementación; crops. cultivos múltiples. INTRODUCTION because it guarantees bean own-consumption and good economic income with the sunflower production In the high valleys of the central zone of Mexico, (Morales et al., 2006). multiple crops are widely used by the farmers of the region, mainly because of the lack of land ownership The competition generated by plant species sharing the and to the roughness of the topography. Since before same space is defined as a process through which the the Conquest, the associated crops have been used in crops limit the resource mutually in such a way that it this country, especially the intercropping of maize does not satisfy its demand (nutritional, physiological (Zea mays L.) with annual legumes. The combination etc.), thus generating a reduction in the survival, of sunflower with bean is attractive for the producers, growth and yield of the individual plants of the crop or 431 Morales-Rosales and Franco-Mora, 2009 its reproduction (Kruk and Satorre, 2003). In Texcoco, Mexico, when ‘Victoria’ sunflower was Complementary effects occur when each species evaluated in two planting systems (sole crop and growing next to another does not experience a intercropped with bean) the yield and yield negative effect in its growth and development. In components of sunflower did not show significant relation to the available resources, complementary differences (Morales et al., 2006). In other trial, the effect implies that the capture of the limiting resources harvest index and plant height were affected when the is higher and therefore their use is more effective in sunflower was associated to soybean (Glycine max the intercropped species with respect to the sole crop (L.) Merr.) and mungo bean (Vigna mungo L.). In (Maddonni and De la Fuente, 2003). contrast, the variables of stem diameter, capitulum diameter, seeds per capitulum and weight of 100 seeds The Land Equivalent Ratio (LER) is the sum of the were not significantly reduced (Ibrar et al., 2002). fractions of the intercropped yields divided by the sole-crop yield. LER is calculated using the equation In the combined system sunflower – peanut (Arachis LER = Σ (Ypi/Ymi), where Yp is the yield of each hipogaea L.), no significant statistical differences crop or variety in the intercrop or polyculture, and Ym were detected on number of seeds per capitulum, the is the yield of each crop or variety in the sole crop or percentage of filled seeds, the seed yield and weight of monoculture. For each crop (i) a ratio is calculated to 100 seeds, respect to the sole crop. The LER obtained determine the partial LER for that crop, the partial was 1.45 (Sahoo et al., 2003). LERs are summed to give the total LER for the intercrop (Darish et al., 2006). A LER value of 1.0, The aim of the present study was to evaluate the total indicates no difference in yield between the intercrop biomass, seed yield, yield components and land and the collection of monocultures (Mazaheri and equivalent ratio of the ‘Victoria’ sunflower in sole Moveysi, 2004). Any value greater than 1.0 indicates a crop and intercropped with three cultivars of bean yield advantage for intercrop. A LER of 1.2 for (‘Acerado’, ‘Criollo’ and ‘Michoacán’) in two example, indicates that the area planted to highlands of Mexico (El Cerrillo and Montecillo). monocultures would need to be 20% greater than the area planted to intercrop for the two species to produce MATERIAL AND METHODS the same combined yields. In a sense, the LER measures the levels of intercrop interference going on The study was carried out during the spring-summer in the cropping system. Theoretically, if the agro cycle of 2006 in two localities of the State of Mexico. ecological characteristics of each crop in mixture are El Cerrillo is located at 19º 14’ N and 99º 42’ W; 2640 exactly the same, the total LER should be 1.0 and the m altitude. It has an average rainfall of 800 mm and partial LERs should be 0.5 for each. A total LER of 12.7º C mean annual temperature. The pH of the soil is higher that 1.0 indicates the presence of positive 6.5 with a medium level of nitrogen (55 kg N ha-1), interferences among the varieties or crops components with 2.7% organic matter. Montecillo is located at 19º of the mixture, an also mean that any negative 29’ N and 98º 54’ W, with an altitude of 2240 m, interspecific interference that exists in the mixture is average annual rainfall of 558.5 mm and mean not as intensive as the intraspecific interference that monthly temperature of 15 ºC; the soil had a pH of 7.8 exists in the monoculture. Avoidance of competition with an initial content of organic matter of 3.8 and 47 or partitioning of resources is probably occurring in kg N ha-1 in inorganic form. the mixture (Willey and Osiru, 1981). During the development of the crop, it was recorded Some investigators have reported studies where daily the maximum and minimum temperature as well sunflower is intercropped with other species. Legumes as the rainfall, then an average (mean decennial) and a (annual) were sown with sunflower at the same time sum decennial was determined, respectively. and at growth stages V4 and V10 (4 and 10 developed leaves, respectively) of sunflower, concluding that the To estimate the total biomass, seed yield and yield legumes sown at the same time significantly reduced components of sunflower in sole crop and intercropped the production of biomass and the seed yield of the with bean, the following treatments were considered in sunflower, as a result of the competition for resources each locality: ‘Victoria’ sunflower in sole crop and the between the component species of the association. On three intercropped systems ‘Victoria’ + ‘Criollo’, the other hand, when sowing was carried out in growth ‘Victoria’ + ‘Acerado’ and ‘Victoria’ + ‘Michoacán’ stages V4 and V10, the competition for the resources bean. To estimate the LER in addition to the was lower and therefore the production of dry matter mentioned treatments, at the same time and the two and the seed yield of the sunflower did not differ localities, beans ‘Criollo’, ‘Acerado’ and ‘Michoacán’ significantly from the control (Kandel et al., 1997).
Recommended publications
  • Sustainable Intensification of Agriculture by Intercropping
    Science of the Total Environment 615 (2018) 767–772 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv The new Green Revolution: Sustainable intensification of agriculture by intercropping Marc-Olivier Martin-Guay a, Alain Paquette b,JérômeDuprasa, David Rivest a,⁎ a Département des sciences naturelles and Institut des sciences de la forêt tempérée (ISFORT), Université du Québec en Outaouais (UQO), 58 rue Principale, Ripon, QC J0V 1V0, Canada b Département des sciences biologiques, Université du Québec à Montréal, CP 8888, Succursale Centre-ville, Montréal QcH3C 3P8, Canada HIGHLIGHTS GRAPHICAL ABSTRACT • Global productivity potential of intercropping was determined using a meta-analysis. • Global land equivalent ratio of intercropping was 1.30. • Land equivalent ratio of intercropping did not vary through a water stress gra- dient. • Intercropping increases gross energy production by 38%. • Intercropping increases gross incomes by 33%. article info abstract Article history: Satisfying the nutritional needs of a growing population whilst limiting environmental repercussions will require Received 14 July 2017 sustainable intensification of agriculture. We argue that intercropping, which is the simultaneous production of Received in revised form 3 October 2017 multiple crops on the same area of land, could play an essential role in this intensification. We carried out the first Accepted 4 October 2017 global meta-analysis on the multifaceted benefits of intercropping. The objective of this study was to determine Available online xxxx the benefits of intercropping in terms of energetic, economic and land-sparing potential through the framework fi Editor: Jay Gan of the stress-gradient hypothesis. We expected more intercropping bene ts under stressful abiotic conditions.
    [Show full text]
  • Competitive Behaviour of Groundnut in Sesame/Groundnut Intercropping System Under Varying Poultry Manure Rates and Planting Arrangement
    Sustainable Agriculture Research; Vol. 2, No. 3; 2013 ISSN 1927-050X E-ISSN 1927-0518 Published by Canadian Center of Science and Education Competitive Behaviour of Groundnut in Sesame/Groundnut Intercropping System Under Varying Poultry Manure Rates and Planting Arrangement Haruna I. M.1, Aliyu L.2 & Maunde S. M.3 1 Department of Agronomy, Nasarawa State University, Keffi, Nigeria 2 Department of Agronomy, Ahmadu Bello University, Zaria, Nigeria 3 Adamawa State College of Agriculture, Ganye, Nigeria Correspondence: Haruna I. M., Department of Agronomy, Nasarawa State University, Keffi, Nigeria. Tel: 234-803-968-3552. E-mail: [email protected] Received: February 14, 2013. Accepted: March 20, 2013 Online Published: March 22, 2013 doi:10.5539/sar.v2n3p22 URL: http://dx.doi.org/10.5539/sar.v2n3p22 Abstract Field experiment was conducted during the rainy seasons of 2011 and 2012 at the Teaching and Research Farm of the Faculty of Agriculture, Nasarawa State University, Keffi-Lafia Campus to study the competitive behaviour of groundnut in Sesame-groundnut intercropping system. The experiment consisted of four rates of poultry manure (0, 3.0, 6.0 and 9.0 t ha-1) and two planting arrangement (single alternate row and double alternate row planting arrangement). The eight treatment combinations were laid out in a randomized complete block design with four replications. The results obtained in both the years showed that sesame when grown with groundnut under different rates of poultry manure and planting arrangement appeared to be a dominant crop as indicated by its higher values of Land equivalent ratio, competitive ratio, higher and positive values for aggressivity and area time equivalent ratio.
    [Show full text]
  • Agroforestry Benefits and Challenges for Adoption in Europe and Beyond
    sustainability Review Agroforestry Benefits and Challenges for Adoption in Europe and Beyond Maya Sollen-Norrlin 1, Bhim Bahadur Ghaley 2 and Naomi Laura Jane Rintoul 1,* 1 School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1TE, UK; [email protected] 2 Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 2630 Taastrup, Denmark; [email protected] * Correspondence: [email protected] Received: 3 July 2020; Accepted: 18 August 2020; Published: 27 August 2020 Abstract: Soil degradation is a global concern, decreasing the soil’s ability to perform a multitude of functions. In Europe, one of the leading causes of soil degradation is unsustainable agricultural practices. Hence, there is a need to explore alternative production systems for enhanced agronomic productivity and environmental performance, such as agroforestry systems (AFS). Given this, the objective of the study is to enumerate the major benefits and challenges in the adoption of AFS. AFS can improve agronomic productivity, carbon sequestration, nutrient cycling, soil biodiversity, water retention, and pollination. Furthermore, they can reduce soil erosion and incidence of fire and provide recreational and cultural benefits. There are several challenges to the adoption and uptake of AFS in Europe, including high costs for implementation, lack of financial incentives, limited AFS product marketing, lack of education, awareness, and field demonstrations. Policies for financial incentives such as subsidies and payments for ecosystem services provided by AFS must be introduced or amended. Awareness of AFS products must be increased for consumers through appropriate marketing strategies, and landowners need more opportunities for education on how to successfully manage diverse, economically viable AFS.
    [Show full text]
  • Modeling the Potential Productivity of Urban Agriculture and Its Impacts on Soil Quality Through Experimental Research on Scale- Appropriate Systems
    University of Rhode Island DigitalCommons@URI Plant Sciences and Entomology Faculty Publications Plant Sciences and Entomology 2020 Modeling the Potential Productivity of Urban Agriculture and Its Impacts on Soil Quality Through Experimental Research on Scale- Appropriate Systems John R. Taylor Follow this and additional works at: https://digitalcommons.uri.edu/pls_facpubs ORIGINAL RESEARCH published: 07 July 2020 doi: 10.3389/fsufs.2020.00089 Modeling the Potential Productivity of Urban Agriculture and Its Impacts on Soil Quality Through Experimental Research on Scale-Appropriate Systems John R. Taylor* Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI, United States Urban agriculture could play a central role in local and regional food sovereignty in developed countries, but in many cities, a lack of space and competition with other land uses limit production. Options for meaningfully advancing food sovereignty goals include sustainable intensification of existing urban farms and gardens; (2) expansion of production into interstitial and other underutilized spaces undevelopable Edited by: for other purposes; and (3) expansion of production in protected environments. Gaston Small, Observational studies suggest that–like smallholder agriculture in the Global South–urban University of St. Thomas, United States home, community, and market gardens in the developed world can be highly Reviewed by: productive–but often are not. Research on scale-appropriate systems and outreach James David Ward, to urban
    [Show full text]
  • The Potential of Agrivoltaic Systems Harshavardhan Dinesh, Joshua Pearce
    The Potential of Agrivoltaic Systems Harshavardhan Dinesh, Joshua Pearce To cite this version: Harshavardhan Dinesh, Joshua Pearce. The Potential of Agrivoltaic Systems. Renewable and Sus- tainable Energy Reviews, Elsevier, 2016, 54, pp.299-308. 10.1016/j.rser.2015.10.024. hal-02113575 HAL Id: hal-02113575 https://hal.archives-ouvertes.fr/hal-02113575 Submitted on 29 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Preprint of: Harshavardhan Dinesh, Joshua M. Pearce, The potential of agrivoltaic systems, Renewable and Sustainable Energy Reviews, 54, 299-308 (2016). DOI:10.1016/j.rser.2015.10.024 The Potential of Agrivoltaic Systems Harshavardhan Dinesh1 and Joshua M. Pearce1,2,* 1. Department of Electrical & Computer Engineering, Michigan Technological University 2. Department of Materials Science & Engineering, Michigan Technological University * Contact author: 601 M&M Building 1400 Townsend Drive Houghton, MI 49931-1295 906-487-1466 [email protected] Abstract: In order to meet global energy demands with clean renewable energy such as with solar photovoltaic (PV) systems, large surface areas are needed because of the relatively diffuse nature of solar energy. Much of this demand can be matched with aggressive building integrated PV and rooftop PV, but the remainder can be met with land-based PV farms.
    [Show full text]
  • Temperate Agroforestry Research: Considering Multifunctional Woody Polycultures and the Design of Long-Term field Trials
    Agroforest Syst DOI 10.1007/s10457-017-0087-4 Temperate agroforestry research: considering multifunctional woody polycultures and the design of long-term field trials Sarah Taylor Lovell . Christian Dupraz . Michael Gold . Shibu Jose . Ronald Revord . Erik Stanek . Kevin J. Wolz Received: 3 October 2016 / Accepted: 15 March 2017 Ó Springer Science+Business Media Dordrecht 2017 Abstract The many benefits of agroforestry are well- on agroforestry emphasizing tree crops. Critical aspects documented, from ecological functions such as biodi- of long-term agroforestry experiments are summarized, versity conservation and water quality improvement, to and two existing well-documented research sites are cultural functions including aesthetic value. In North presented as case studies. A new long-term agroforestry American agroforestry, however, little emphasis has trial at the University of Illinois, ‘‘Agroforestry for been placed on production capacity of the woody plants Food,’’ is introduced as an experiment designed to test themselves, taking into account their ability to trans- the performance of increasingly complex woody plant form portions of the landscape from annual monocul- combinations in an alley cropping system with produc- ture systems to diversified perennial systems capable of tive tree crops. This trial intends to address important producing fruits, nuts, and timber products. In this themes of food security, climate change, multifunc- paper, we introduce the concept of multifunctional tionality, and applied solutions. The challenges of woody polycultures (MWPs) and consider the design of establishing, maintaining, and funding long-term agro- long-term experimental trials for supporting research forestry research trials are discussed. S. T. Lovell (&) R. Revord Department of Crop Sciences, Institute for Sustainability, Department of Crop Sciences, Institute for Sustainability, Energy, and Environment, Plant Science Lab, University Energy, and Environment, University of Illinois at of Illinois at Urbana-Champaign, 1201 S.
    [Show full text]
  • Luxury Absorption of Phosphorus Exists in Maize When Intercropping with Legumes Or Oilseed Rape—Covering Different Locations and Years
    agronomy Article Luxury Absorption of Phosphorus Exists in Maize When Intercropping with Legumes or Oilseed Rape—Covering Different Locations and Years Haiyong Xia 1,2,* , Lan Wang 1,2, Nianyuan Jiao 3, Peipei Mei 4, Zhigang Wang 5, Yufeng Lan 6, Lei Chen 3, Hongbo Ding 5, Yulong Yin 5, Weilin Kong 1, Yanhui Xue 1, Xiaotong Guo 7, Xiaofeng Wang 8, Jie Song 2 and Meng Li 9 1 Crop Research Institute, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; [email protected] (L.W.); [email protected] (W.K.); [email protected] (Y.X.) 2 College of Life Sciences, Shandong Normal University, Jinan 250014, China; [email protected] 3 College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China; [email protected] (N.J.); [email protected] (L.C.) 4 College of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China; [email protected] 5 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; [email protected] (Z.W.); [email protected] (H.D.); [email protected] (Y.Y.) 6 School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; [email protected] 7 School of Agriculture, Ludong University, Yantai 264025, China; [email protected] 8 College of Geography and Environment, Shandong Normal University, Jinan 250358, China; [email protected] 9 Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California (UC) Davis, Davis, CA 95616, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-531-6665-9845; Fax: +86-531-6665-9088 Received: 5 May 2019; Accepted: 13 June 2019; Published: 14 June 2019 Abstract: Rational regulation of phosphorus (P) use in the soil–rhizosphere–plant system is challenging in the development of sustainable, intensive, and healthy agriculture.
    [Show full text]
  • ASHS Is Inviting/Encouraging Poster Presenters to Up- Posters: Load a PDF of Their Poster
    vt- •• ��t E�. Gallo Winery � BalL American Funding Generations of Floral Progress Through Research Image Analysis for Plant Science Endowment and Scholarships 1 of 262 General Information Conference Facilities: Speaker Ready Room: All Conference activities will take place at the Tropicana Oral, Workshop, Special Sessions, and Keynote speakers Las Vegas. are requested to check in at the Speaker Ready Room located in Churchill. Please note, even if you have Registration hours: uploaded in advance, you are still asked to check in at the Speaker Ready room at least 24 hours in advance of Sunday, July 21. .3:00 PM – 6:00 PM your presentation to confirm that your media and Pow- erPoint presentations were successfully uploaded and Monday, July 22 .............7:30 AM – 6:00 PM running properly. Updates and modifications can only Tuesday, July 23. 7:30 AM – 6:00 PM be made up to 24 hours in advance of your presentation. Wednesday, July 24. .7:30 AM – 5:00 PM Thursday, July 25 ............7:30 AM – 2:00 PM Poster Presenters and E-Posters: ASHS is inviting/encouraging poster presenters to up- Posters: load a PDF of their poster. You may also upload mp4 video or audio files to go along with the poster. Posters are located in Cohiba 5-12. As part of enhancing the ASHS online conference proceedings, you have the option to make your poster Poster Set Up: into an interactive electronic version (E-Poster). If you would like to explore this option, a link will appear once Monday, July 22 .............2:00 PM – 5:00 PM you have uploaded your PDF file with instructions on how to create your E-Poster.
    [Show full text]
  • Productivity and Land Equivalent Ratio of Intercropping Cotton with Some Winter Crops in Egypt
    American Journal of Experimental Agriculture 14(1): 1-15, 2016, Article no.AJEA.27523 ISSN: 2231-0606 SCIENCEDOMAIN international www.sciencedomain.org Productivity and Land Equivalent Ratio of Intercropping Cotton with Some Winter Crops in Egypt A. A. Metwally1*, A. A. Abuldahab1, M. N. Shereif2 and M. M. Awad2 1Department of Agronomy, Faculty of Agriculture, Cairo University, Giza, Egypt. 2Department of Crop Intensification Research, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt. Authors’ contributions This work was carried out in collaboration between all authors. Author AAM designed the study, wrote the protocol and wrote the first draft of the manuscript. Authors AAA and MNS reviewed the experimental design and all drafts of the manuscript and managed the analyses of the study. Author MMA carried out the field experiment and performed the statistical analysis. All authors read and approved the final manuscript. Article Information DOI: 10.9734/AJEA/2016/27523 Editor(s): (1) Peter A. Roussos, Lab. Pomology, Agricultural University of Athens, Greece. Reviewers: (1) Halil Demir, Akdeniz University, Turkey. (2) Joyce J Lelei Ndemo, Egerton University Kenya, Kenya. (3) Addam Kiari Saidou, INRAN, Niamey, Niger. (4) Mrityunjoy Biswas, Sylhet Agricultural University, Bangladesh. Complete Peer review History: http://www.sciencedomain.org/review-history/16322 Received 6th June 2016 Accepted 30th August 2016 Original Research Article Published 24th September 2016 ABSTRACT Two field experiments were carried out at Research Station, El-Sharkia Governorate, ARC, Egypt during 2009/2010 and 2010/2011 seasons to investigate the effect of relay intercropping cotton with some winter crops as compared with sequential solid plantings of these crops on the productivity, land equivalent ratio and net returns from these systems.
    [Show full text]
  • Assessing the Land Equivalent Ratio (Ler) of Two Corn [Zea Mays
    ORIGINAL PAPER ASSESSING THE LAND EQUIVALENT RATIO (LER) OF TWO CORN [ZEA MAYS L.] VARIETIES INTERCROPPING AT VARIOUS NITROGEN LEVELS IN KARAJ, IRAN Mazaheri Dariush, Madani Ahad, Oveysi Meysam College of Agriculture of Tehran University Islamic Azad University of Ramhormoz, Khosestan, Iran Manuscript received: December 22, 2005; Reviewed: May 7, 2006; Accepted for publication: August 13, 2006 ABSTRACT The experiment was carried out to study effect of two corn varieties intercropping combinations (75%SC704:25%SC604, 50%SC704:50%SC604, 25%SC704:75%SC604) on land use efficiency at various nitrogen levels (150, 200, and 250 kg ha-1) using the Land Equivalent Ratio (LER). Intercropping combinations had significant (p<0.01) effect on LER for grain and biological yield. Maximum LERs of 1.066 and 1.039 for grain and biological yield were attained by 50%SC704:50%SC604 intercropping combination indicates that the area planted to monocultures would need to be 6.6% and 3.9% greater than the area planted to the intercrop for the two to produce the same combined grain and biological yield, respectively. At all of nitrogen levels, 50%SC704:50%SC604 combination showed yield advantage (Total LER > 1.0) compared monoculture in equal land area. Nitrogen levels had no significant effect on LER for grain and biological yield. How ever, maximum LERs of 1.032% and 1.022% for grain and biological yield were attained by middle (200 kg ha-1) nitrogen level. Keywords: Land equivalent Ratio, LER, Corn, Nitrogen, Yield Volume 7 (2006) No. 2 (359-364) 359 Mazaheri Dariush, Madani Ahad, Oveysi Meysam INTRODUCTION interference going on in the cropping system [12, 6].
    [Show full text]
  • Urban Agroecology: Designing Biodiverse, Productive and Resilient City Farms
    Altieri & Nicholls / Agro Sur 46(2): 49-60, 2018 DOI:10.4206/agrosur.2018.v46n2-07 Urban Agroecology: designing biodiverse, productive and resilient city farms Agroecología urbana: diseño de granjas urbanas ricas en biodiversidad, productivas y resilientes Altieri, M. A.a*, Nicholls, C. I.b a Department of Environmental Science, Policy and Management, University of California, Berkeley. b Global Studies, University of California, Berkeley. A R T I C L E I N F O A B S T R A C T Keywords: Urban agriculture (UA) has been bolstered as a major sustainable alternative to enhance food Agroecology security on an urbanized planet. Although it has been estimated that UA can provide 15–20% Urban agriculture Soil quality Biological control of global food, it is questionable weather UA can significantly contribute the level of food self- productive,sufficiency ofand cities, resilient due tourban low yieldsfarms. reachedHerein we in mostdescribe existing the principles urban farms. and Agroecology practices used can in help the Original Research Article, redesignenhance theof urban productive agriculture potential featuring: of UA (a)by increasingproviding keysoil principlesquality via forenhancement the design ofof soildiversified, organic Special Issue: Agroecology and Sustainable Agricultural Systems soil nutrients and water and (b) enhancement of plant health through biological control and plant *Corresponding author: productivitymatter content via and optimal biological planning activity of crop that sequences lead to protection and combinations against pathogens. and efficient use of Miguel A. Altieri E-mail address: [email protected] RESUMEN La agricultura urbana (AU) ha surgido como una importante alternativa sostenible para mejorar la seguridad alimentaria en un planeta urbanizado.
    [Show full text]
  • Intercropping—Evaluating the Advantages to Broadacre Systems
    agriculture Review Intercropping—Evaluating the Advantages to Broadacre Systems Uttam Khanal 1,* , Kerry J. Stott 2 , Roger Armstrong 1,3, James G. Nuttall 1,3, Frank Henry 4, Brendan P. Christy 5 , Meredith Mitchell 5 , Penny A. Riffkin 4, Ashley J. Wallace 1, Malcolm McCaskill 4, Thabo Thayalakumaran 2 and Garry J. O’Leary 1,3 1 Agriculture Victoria, 110 Natimuk Road, Horsham, VIC 3400, Australia; [email protected] (R.A.); [email protected] (J.G.N.); [email protected] (A.J.W.); [email protected] (G.J.O.) 2 Agriculture Victoria, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; [email protected] (K.J.S.); [email protected] (T.T.) 3 Centre for Agricultural Innovation, The University of Melbourne, Parkville, VIC 3010, Australia 4 Agriculture Victoria, 915 Mt Napier Road, Hamilton, VIC 3300, Australia; [email protected] (F.H.); [email protected] (P.A.R.); [email protected] (M.M.) 5 Agriculture Victoria, 124 Chiltern Valley Road, Rutherglen, VIC 3685, Australia; [email protected] (B.P.C.); [email protected] (M.M.) * Correspondence: [email protected] Abstract: Intercropping is considered by its advocates to be a sustainable, environmentally sound, and economically advantageous cropping system. Intercropping systems are complex, with non- uniform competition between the component species within the cropping cycle, typically leading to Citation: Khanal, U.; Stott, K.J.; unequal relative yields making evaluation difficult.
    [Show full text]