Identification, Distribution, and Function of Gastroliths in Dinosaurs and Extant Birds with Emphasis on Ostriches (Struthio Camelus)

Total Page:16

File Type:pdf, Size:1020Kb

Identification, Distribution, and Function of Gastroliths in Dinosaurs and Extant Birds with Emphasis on Ostriches (Struthio Camelus) IDENTIFICATION, DISTRIBUTION, AND FUNCTION OF GASTROLITHS IN DINOSAURS AND EXTANT BIRDS WITH EMPHASIS ON OSTRICHES (STRUTHIO CAMELUS) Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Oliver Wings aus Sangerhausen Bonn 2004 Diplodocid sauropod accidentally ingesting gastroliths while feeding on a cycad. IDENTIFICATION, DISTRIBUTION, AND FUNCTION OF GASTROLITHS IN DINOSAURS AND EXTANT BIRDS WITH EMPHASIS ON OSTRICHES (STRUTHIO CAMELUS) Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Oliver Wings aus Sangerhausen Bonn 2004 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Referent: Privat-Dozent Dr. Martin Sander 2. Referent: Professor Dr. Jes Rust Tag der Promotion: 02.12.2004 Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni- bonn.de/diss_online elektronisch publiziert This dissertation is published electronically on the ULB Bonn server for university publications: http://hss.ulb.uni-bonn.de/diss_online Dedicated to Claudia. Thanks for everything. French proverb: “Il a un estomac d’autuche!” (literally: He has the stomach of an ostrich!) means: He can tolerate everything! Geheimnisvoll am lichten Tag Läßt sich Natur des Schleiers nicht berauben, Und was sie deinem Geist nicht offenbaren mag, Das zwingst du ihr nicht ab mit Hebeln und mit Schrauben. JOHANN WOLFGANG VON GOETHE, Faust. Erster Teil (Szene Nacht) TABLE OF CONTENTS PREFACE............................................................................................................................... 11 ABSTRACT ............................................................................................................................ 13 ZUSAMMENFASSUNG ....................................................................................................... 15 GENERAL ACKNOWLEDGEMENTS.............................................................................. 17 CHAPTER I: Gastroliths – An overview............................................................................. 19 References ............................................................................................................................ 21 CHAPTER II: A review of gastrolith function and a revised classification..................... 23 Abstract ................................................................................................................................ 23 Introduction ......................................................................................................................... 23 Terminology ......................................................................................................................... 24 Existing definitions for gastrolith....................................................................................... 24 Suggested new definition for gastrolith.............................................................................. 25 Categories of gastrolith regarding their origin ................................................................... 26 Introduction of the term “exolith” ...................................................................................... 27 Definition of geophagy and lithophagy.............................................................................. 29 Gastrolith function .............................................................................................................. 30 Trituration of ingesta .......................................................................................................... 30 Mixing of foodstuff ............................................................................................................ 31 Mineral supply.................................................................................................................... 32 Secretion of stomach juices ................................................................................................ 33 Mineral storage................................................................................................................... 33 Hydrostatic function ........................................................................................................... 34 Other ballast arguments...................................................................................................... 36 Ingestion due to pathological reasons................................................................................. 37 Nutritional diseases............................................................................................................. 37 Destruction of parasites ...................................................................................................... 37 Establishment of a normal intestinal microbial flora.......................................................... 38 Alleviation of hunger and preservation of stomach shape ................................................. 38 Accidental ingestion ........................................................................................................... 39 Stones mistaken as prey...................................................................................................... 40 Playing................................................................................................................................ 40 Nest building....................................................................................................................... 41 Thermoregulation ............................................................................................................... 41 Memorial of events............................................................................................................. 42 Admiration of semi-precious gemstones ............................................................................ 42 Conclusions .......................................................................................................................... 43 Acknowledgements.............................................................................................................. 43 References ............................................................................................................................ 44 Tables.................................................................................................................................... 50 CHAPTER III: Amounts and composition of gastroliths in farm ostriches (Struthio camelus)................................................................................................................................... 51 Abstract ................................................................................................................................ 51 Introduction ......................................................................................................................... 51 Anatomy and physiology of the digestive tract.................................................................. 52 Diet and digestion............................................................................................................... 52 Existing data about gastroliths in ratites .......................................................................... 53 Material and Methods......................................................................................................... 54 Results................................................................................................................................... 56 Ostriches from Remagen, Germany ................................................................................... 56 Rock type composition ..................................................................................................... 57 Grain size distribution and number of gastroliths............................................................. 58 Ostriches from the Klein Karoo, South Africa................................................................... 58 Discussion and Conclusions................................................................................................ 59 Occurrence of gastroliths.................................................................................................... 59 Amounts of gastroliths........................................................................................................ 59 Rock type composition ....................................................................................................... 61 Grain size composition ....................................................................................................... 61 Foreign objects ................................................................................................................... 62 Usability of the data as reference values ............................................................................ 63 Acknowledgements.............................................................................................................. 63 References ............................................................................................................................ 64 Tables...................................................................................................................................
Recommended publications
  • Mesozoic—Dinos!
    MESOZOIC—DINOS! VOLUME 9, ISSUE 8, APRIL 2020 THIS MONTH DINOSAURS! • Dinosaurs ○ What is a Dinosaur? page 2 DINOSAURS! When people think paleontology, ○ Bird / Lizard Hip? page 5 they think of scientists ○ Size Activity 1 page 10 working in the hot sun of ○ Size Activity 2 page 13 Colorado National ○ Size Activity 3 page 43 Monument or the Badlands ○ Diet page 46 of South Dakota and ○ Trackways page 53 Wyoming finding enormous, ○ Colorado Fossils and fierce, and long-gone Dinosaurs page 66 dinosaurs. POWER WORDS Dinosaurs safely evoke • articulated: fossil terror. Better than any bones arranged in scary movie, these were Articulated skeleton of the Tyrannosaurus rex proper order actually living breathing • endothermic: an beasts! from the American Museum of Natural History organism produces body heat through What was the biggest dinosaur? be reviewing the information metabolism What was the smallest about dinosaurs, but there is an • metabolism: chemical dinosaur? What color were interview with him at the end of processes that occur they? Did they live in herds? this issue. Meeting him, you will within a living organism What can their skeletons tell us? know instantly that he loves his in order to maintain life What evidence is there so that job! It doesn’t matter if you we can understand more about become an electrician, auto CAREER CONNECTION how these animals lived. Are mechanic, dancer, computer • Meet Dr. Holtz, any still alive today? programmer, author, or Dinosaur paleontologist, I truly hope that Paleontologist! page 73 To help us really understand you have tremendous job more about dinosaurs, we have satisfaction, like Dr.
    [Show full text]
  • September 2019 Competitive Oil and Gas Lease Sale Monticello Field Office DOI-BLM-UT-0000-2019-0003-OTHER NEPA -Mtfo-EA
    U.S. Department of the Interior Bureau of Land Management July 2019 September 2019 Competitive Oil and Gas Lease Sale Monticello Field Office DOI-BLM-UT-0000-2019-0003-OTHER NEPA -MtFO-EA Monticello Field Office 365 North Main PO Box 7 Monticello, UT 84535 DOI-BLM-UT-0000-2019-0003_Other NEPA-MtFO-EA July 2019 Table of Contents Chapter 1 Purpose & Need .................................................................................................................... 4 1.1 Project Location and Legal Description ........................................................................................ 4 1.2 Introduction ................................................................................................................................... 4 1.3 Background ................................................................................................................................... 4 1.4 Purpose and Need ......................................................................................................................... 6 1.5 Decision to be Made ..................................................................................................................... 6 1.6 Plan Conformance Review............................................................................................................ 6 1.7 Relationship to Statutes, Regulations, Policies or Other Plans ..................................................... 9 1.8 Issues Identified .........................................................................................................................
    [Show full text]
  • Andaman and Nicobar Common Name Scientific Name
    Andaman and Nicobar Common name Scientific name ANSERIFORMES: Anatidae Lesser Whistling-Duck Dendrocygna javanica Knob-billed Duck Sarkidiornis melanotos Ruddy Shelduck Tadorna ferruginea Cotton Pygmy-Goose Nettapus coromandelianus Mandarin Duck Aix galericulata Garganey Spatula querquedula Northern Shoveler Spatula clypeata Eurasian Wigeon Mareca penelope Indian Spot-billed Duck Anas poecilorhyncha Mallard Anas platyrhynchos Northern Pintail Anas acuta Green-winged Teal Anas crecca Andaman Teal Anas albogularis Red-crested Pochard Netta rufina Ferruginous Duck Aythya nyroca Tufted Duck Aythya fuligula GALLIFORMES: Megapodiidae Nicobar Scrubfowl Megapodius nicobariensis GALLIFORMES: Phasianidae Indian Peafowl Pavo cristatus Blue-breasted Quail Synoicus chinensis Common Quail Coturnix coturnix Jungle Bush-Quail Perdicula asiatica Painted Bush-Quail Perdicula erythrorhyncha Chinese Francolin Francolinus pintadeanus Gray Francolin Francolinus pondicerianus PODICIPEDIFORMES: Podicipedidae Little Grebe Tachybaptus ruficollis Andaman and Nicobar COLUMBIFORMES: Columbidae Rock Pigeon Columba livia Andaman Wood-Pigeon Columba palumboides Eurasian Collared-Dove Streptopelia decaocto Red Collared-Dove Streptopelia tranquebarica Spotted Dove Streptopelia chinensis Laughing Dove Streptopelia senegalensis Andaman Cuckoo-Dove Macropygia rufipennis Asian Emerald Dove Chalcophaps indica Nicobar Pigeon Caloenas nicobarica Andaman Green-Pigeon Treron chloropterus Green Imperial-Pigeon Ducula aenea Nicobar Imperial-Pigeon Ducula nicobarica Pied Imperial-Pigeon
    [Show full text]
  • Avian Crop Function–A Review
    Ann. Anim. Sci., Vol. 16, No. 3 (2016) 653–678 DOI: 10.1515/aoas-2016-0032 AVIAN CROP function – A REVIEW* * Bartosz Kierończyk1, Mateusz Rawski1, Jakub Długosz1, Sylwester Świątkiewicz2, Damian Józefiak1♦ 1Department of Animal Nutrition and Feed Management, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland 2Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland ♦Corresponding author: [email protected] Abstract The aim of this review is to present and discuss the anatomy and physiology of crop in different avian species. The avian crop (ingluvies) present in most omnivorous and herbivorous bird spe- cies, plays a major role in feed storage and moistening, as well as functional barrier for pathogens through decreasing pH value by microbial fermentation. Moreover, recent data suggest that this gastrointestinal tract segment may play an important role in the regulation of the innate immune system of birds. In some avian species ingluvies secretes “crop milk” which provides high nutri- ents and energy content for nestlings growth. The crop has a crucial role in enhancing exogenous enzymes efficiency (for instance phytase and microbial amylase,β -glucanase), as well as the activ- ity of bacteriocins. Thus, ingluvies may have a significant impact on bird performance and health status during all stages of rearing. Efficient use of the crop in case of digesta retention time is es- sential for birds’ growth performance. Thus, a functionality of the crop is dependent on a number of factors, including age, dietary factors, infections as well as flock management.
    [Show full text]
  • Ostrich Production Systems Part I: a Review
    11111111111,- 1SSN 0254-6019 Ostrich production systems Food and Agriculture Organization of 111160mmi the United Natiorp str. ro ucti s ct1rns Part A review by Dr M.M. ,,hanawany International Consultant Part II Case studies by Dr John Dingle FAO Visiting Scientist Food and , Agriculture Organization of the ' United , Nations Ot,i1 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-21 ISBN 92-5-104300-0 Reproduction of this publication for educational or other non-commercial purposes is authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Information Division, Food and Agriculture Organization of the United Nations, Viale dells Terme di Caracalla, 00100 Rome, Italy. C) FAO 1999 Contents PART I - PRODUCTION SYSTEMS INTRODUCTION Chapter 1 ORIGIN AND EVOLUTION OF THE OSTRICH 5 Classification of the ostrich in the animal kingdom 5 Geographical distribution of ratites 8 Ostrich subspecies 10 The North
    [Show full text]
  • (2004): Identification, Distribution, and Function of Gastroliths in Dinosaurs
    IDENTIFICATION, DISTRIBUTION, AND FUNCTION OF GASTROLITHS IN DINOSAURS AND EXTANT BIRDS WITH EMPHASIS ON OSTRICHES (STRUTHIO CAMELUS) Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Oliver Wings aus Sangerhausen Bonn 2004 Diplodocid sauropod accidentally ingesting gastroliths while feeding on a cycad. IDENTIFICATION, DISTRIBUTION, AND FUNCTION OF GASTROLITHS IN DINOSAURS AND EXTANT BIRDS WITH EMPHASIS ON OSTRICHES (STRUTHIO CAMELUS) Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Oliver Wings aus Sangerhausen Bonn 2004 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Referent: Privat-Dozent Dr. Martin Sander 2. Referent: Professor Dr. Jes Rust Tag der Promotion: 02.12.2004 Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni- bonn.de/diss_online elektronisch publiziert This dissertation is published electronically on the ULB Bonn server for university publications: http://hss.ulb.uni-bonn.de/diss_online Dedicated to Claudia. Thanks for everything. French proverb: “Il a un estomac d’autuche!” (literally: He has the stomach of an ostrich!) means: He can tolerate everything! Geheimnisvoll am lichten Tag Läßt sich Natur des Schleiers nicht berauben, Und was sie deinem Geist
    [Show full text]
  • A Disease Syndrome in Young Chickens 2-To 8-Weeks - Old Characterized by Erosion and Ulceration of the Gizzard Epithelial Linmg and Black Vomit Has Been Reported
    Arch. Insh. Razi, 1981,32, 101-103 A CONDITION OF EROSION AND ULCERATION OF YOUNG CHICKEN'S GIZZARD IN IRAN By: M. Farshian SUMMARY: A disease syndrome in young chickens 2-to 8-weeks - old characterized by erosion and ulceration of the gizzard epithelial linmg and black vomit has been reported. The presence of a dark brown - co!oured fluid in the crop, proventri­ cul us, gizzard and small intestine was oftenly observed. Tue syndrome caused considerable mortaility losses and reduced weight gain in broilers. INTRODUCTION A few reports from the U.S.A. and Latin Amtrican countries have described a disease syndrome in young chickens known to poultrymen in latter terri tories as « Vomito Negro» or black vomit ( Cover and Paredes, 1971; Johnson and Pinedo; 1971). In Iran a condition very similar to the above mentioned syndrome, coming into being occasionally noticed in the past year or 50, has increased in incidence during the past six months, beginning September 1980. The following is an account of the clinical and gross pathological findings of the syndrome. Clinical signs : Affected chickens, 2-to 8 - weeks - old appeared depressed, lost their appetite and usually had pale combs and wattles. Birds were frequently Wlable to stand and sorne had their necks stretched on the groWld. A dark - coloured diarrhea was not uncommon. Death usually occurred within few hours from the onset of the symptoms. 101 The morbidity rate vearried from 5 % to 25 % and daily mortality ranged from 0.1 % to 1% The disease took a 2-to 3 - week course after which time it appeared that the birds developed sorne sort of resistance to the condition.
    [Show full text]
  • Gastroliths in an Ornithopod Dinosaur
    Brief report Acta Palaeontologica Polonica 53 (2): 351–355, 2008 Gastroliths in an ornithopod dinosaur IGNACIO A. CERDA Gastroliths (stomach stones) are known from many extant Institutional abbreviations.—MCSPv, Vertebrate paleontology and extinct vertebrates, including dinosaurs. Reported here collection of the Museo de Cinco Saltos, Río Negro Province, is the first unambiguous record of gastroliths in an ornitho− Argentina; MUCPv, Vertebrate paleontology collection of the pod dinosaur. Clusters of small stones found in the abdomi− Museo de la Universidad Nacional del Comahue, Neuquén nal region of three articulated skeletons of Gasparinisaura Province, Argentina. cincosaltensis were identified as gastroliths on the basis of taphonomic and sedimentologic evidence. The large number Material and geologic setting of stones found in each individual, their size, and the fact that Gasparinisaura cincosaltensis was herbivorous, all sug− Three specimens of Gasparinisaura cincosaltensis, MUCPv 213, gest that they were ingested as a result of lithophagy rather MCSPv 111, and MCSPv 112, were collected near the city of than accidental swallowing. Cinco Saltos (Río Negro Province, Patagonia, Argentina) (Fig. 1), in mudstones and sandstones of the early Campanian Anacleto Introduction Formation, in the uppermost portion of the Neuquén Group (Ramos 1981; Dingus et al. 2000). MUCPv 213 (Fig. 2A) consists Gastroliths or geo−gastroliths sensu Wings (2007) are known in of a partial skeleton that includes cranial and postcranial elements many taxa of extant and fossil vertebrates (Whittle and Everhart (see Salgado et al. 1997 for a detailed anatomical description). A 2000). Gastroliths have been occasionally reported in non−avian portion of the preserved elements (both incomplete humeri articu− dinosaurs (Wings 2004) but only few cases can withstand rigorous lated with both radii and ulnae, several posterior dorsal ribs from testing.
    [Show full text]
  • Federal Register/Vol. 85, No. 74/Thursday, April 16, 2020/Notices
    21262 Federal Register / Vol. 85, No. 74 / Thursday, April 16, 2020 / Notices acquisition were not included in the 5275 Leesburg Pike, Falls Church, VA Comment (1): We received one calculation for TDC, the TDC limit would not 22041–3803; (703) 358–2376. comment from the Western Energy have exceeded amongst other items. SUPPLEMENTARY INFORMATION: Alliance, which requested that we Contact: Robert E. Mulderig, Deputy include European starling (Sturnus Assistant Secretary, Office of Public Housing What is the purpose of this notice? vulgaris) and house sparrow (Passer Investments, Office of Public and Indian Housing, Department of Housing and Urban The purpose of this notice is to domesticus) on the list of bird species Development, 451 Seventh Street SW, Room provide the public an updated list of not protected by the MBTA. 4130, Washington, DC 20410, telephone (202) ‘‘all nonnative, human-introduced bird Response: The draft list of nonnative, 402–4780. species to which the Migratory Bird human-introduced species was [FR Doc. 2020–08052 Filed 4–15–20; 8:45 am]‘ Treaty Act (16 U.S.C. 703 et seq.) does restricted to species belonging to biological families of migratory birds BILLING CODE 4210–67–P not apply,’’ as described in the MBTRA of 2004 (Division E, Title I, Sec. 143 of covered under any of the migratory bird the Consolidated Appropriations Act, treaties with Great Britain (for Canada), Mexico, Russia, or Japan. We excluded DEPARTMENT OF THE INTERIOR 2005; Pub. L. 108–447). The MBTRA states that ‘‘[a]s necessary, the Secretary species not occurring in biological Fish and Wildlife Service may update and publish the list of families included in the treaties from species exempted from protection of the the draft list.
    [Show full text]
  • Late Jurassic Dinosaurs on the Move, Gastroliths and Long-Distance Migration" (2019)
    Augustana College Augustana Digital Commons Geography: Student Scholarship & Creative Works Geography Winter 12-8-2019 Late Jurassic Dinosaurs on the Move, Gastroliths and Long- Distance Migration Josh Malone Augustana College, Rock Island Illinois Follow this and additional works at: https://digitalcommons.augustana.edu/geogstudent Part of the Geology Commons, Physical and Environmental Geography Commons, Sedimentology Commons, and the Spatial Science Commons Augustana Digital Commons Citation Malone, Josh. "Late Jurassic Dinosaurs on the Move, Gastroliths and Long-Distance Migration" (2019). Geography: Student Scholarship & Creative Works. https://digitalcommons.augustana.edu/geogstudent/8 This Student Paper is brought to you for free and open access by the Geography at Augustana Digital Commons. It has been accepted for inclusion in Geography: Student Scholarship & Creative Works by an authorized administrator of Augustana Digital Commons. For more information, please contact [email protected]. LATE JURASSIC DINOSAURS ON THE MOVE, GASTROLITHS AND LONG- DISTANCE MIGRATION a senior thesis written by Joshua Malone in partial fulfillment of the graduation requirements for the major in Geography Augustana College Rock Island, Illinois 61201 1 Table of Contents 1. Abstract ................................................................................................................................................ 4 2. Introduction ........................................................................................................................................
    [Show full text]
  • Nicobar Pigeon Caloenas Nicobarica
    Nicobar Pigeon Caloenas nicobarica Class: Aves Order: Columbiformes Family: Columbidae Characteristics: Also known as the hackled pigeon, vulturine pigeon and white-tailed pigeon, the nicobar pigeon is medium-sized pigeon with a grey chest and head, metallic back and wings and a white tail. Its long feathers trailing down from the neck give it its distinct look (Lincoln Park Zoo). Behavior: Nicobar pigeons are nomadic, commuting between islands around New Guinea is flocks of up to 85 birds. They will only roost and breed on islands with no humans (Who Zoo). Reproduction: Nicobar pigeon males may spend days courting a female but, if she accepts him in the end, it pays off as they mate for life. The male chooses the nest site and brings twigs and other plant material to the female who builds the Range & Habitat: nest. One egg is produced per clutch and they usually clutch twice per Forests on uninhabited islands year. Both parents incubate the egg which hatches after about 30 days. The chicks stays in the nest for about a month (Rosamond Gifford Zoo). Diet: Wild: Hard seeds, fruit, insects, corn Zoo: Fruits, vegetables, greens, pheasant grains Conservation: Lifespan: up to 15 years in Nicobar pigeon numbers are declining. They fall victim to the pet trade, captivity, 8-12 years in the wild. logging on islands, and are trapped for food. Special Adaptations: Have a very FYI: muscular gizzard that allows them Unique to pigeons, they drink by sticking their beak in the water but don’t to eat nuts with very hard shells.
    [Show full text]
  • An Important Health and Welfare Issue of Growing Ostriches
    DOI: 10.2478/ats-2020-0016 AGRICULTURA TROPICA ET SUBTROPICA, 53/4, 161–173, 2020 Review Article Gastric impaction: an important health and welfare issue of growing ostriches Muhammad Irfan1, Nasir Mukhtar2, Tanveer Ahmad3, Muhammad Tanveer Munir4 1College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea 2Department of Poultry Sciences (Station for Ostrich research & Development), Faculty of Veterinary and Animal Sciences, PMAS‑Arid Agriculture University, Rawalpindi, Pakistan 3Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan 4LIMBHA, Ecole Supérieur du Bois, 44306 Nantes, France Correspondence to: M. T. Munir, LIMBHA, Ecole Supérieur du Bois, 7 Rue Christian Pauc, 44306 Nantes, France. E‑mail: [email protected] Abstract Ostrich farming serves as a source for meat, feathers, skin, eggs, and oil. In general, ostriches are hardy birds that can resist a wide range of climatic harshness and some diseases. However, musculoskeletal and digestive complications, including the gastric impaction, remain the major cause of mortality. The gastrointestinal impaction alone is responsible for 30 – 46% of spontaneous deaths in growing ostriches. The literature review of 21 publications on this subject has shown that 90% of these incidents happen during first six months of life. The aetiology of this problem is mostly stress and behaviour‑related gorging of feed and picking on non‑feeding materials such as stone, sand, wood pieces, plastic, glass, and metallic objects. Conservative therapy or surgical approaches show good results with almost 70 to 100% recovery depending upon the clinical presentation and timely diagnosis. Overall, this literature review describes impaction in farmed ostriches, along with diagnosis, treatment, and control and preventive measures.
    [Show full text]