Spatial Resolution of the R Aquarii Binary System

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Resolution of the R Aquarii Binary System THE ASTROPHYSICAL JOURNAL, 482 : L85–L88, 1997 June 10 q 1997. The American Astronomical Society. All rights reserved. Printed in U.S.A. SPATIAL RESOLUTION OF THE R AQUARII BINARY SYSTEM J. M. HOLLIS Space Data and Computing Division, Code 930, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 J. A. PEDELTY Biospheric Sciences Branch, Code 923, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 AND R. G. LYON University of Maryland, Center of Excellence in Space Data and Information Sciences, Code 930.5, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 Received 1997 February 26; accepted 1997 March 24 ABSTRACT We report continuum VLA observations at 7 mm that have resolved the stellar components in the R Aqr binary system. R Aqr was simultaneously probed in both a 50 MHz bandpass containing lineless continuum emission associated with the hot companion/accretion disk and a 3.125 MHz bandpass containing the spectral line v 5 1, J 5 1– 0, SiO maser emission associated with the long-period–variable (LPV) envelope. The offset between the two stars is 55 H 2 mas with a position angle of 1188 H 28 relative to the LPV, providing the first data point for a subsequent monitoring program to determine precisely the binary orbit that is suspected to be highly elliptical and have a period of 144 yr. We evaluate these first observations in the context of constraints placed on the orbital geometry of the system and obtain a geometrical distance of 1200 pc to R Aqr. We also report spectral line VLA observations at this same epoch that confirm that the SiO maser spots have a ringlike morphology, as previously reported by other investigators using the VLBA. Subject headings: astrometry — binaries: symbiotic — H II regions — masers — stars: variables: other — techniques: interferometric 1. INTRODUCTION since disappeared (Wallerstein & Greenstein 1980). In recent R Aqr is a symbiotic stellar system composed of a mass- years, the hot companion and its accretion disk have been losing 11–2 M Mira-like long-period variable (LPV) with a inferred from ultraviolet observations of strong, hot nebular J lines in the system, since no significant ultraviolet continuum 387 day period and a 11.0 MJ hot companion/accretion disk that is believed to give rise to the symmetrical jet seen at emission is present (Kafatos, Michalitsianos, & Hollis 1986). ultraviolet, optical, and radio wavelengths (e.g., see Hollis et In an attempt to resolve the binary system by detecting both al. 1991; Solf & Ulrich 1985; and Hollis et al. 1985; respec- stellar components simultaneously, Hege, Allen, & Cocke tively, and references therein). A review of various attempts to (1991) used speckle interferometry in a 1.8 nm bandpass constrain or derive an orbit for the R Aqr system is contained centered on Hal6563 on 1983 October 16. A three-compo- in Hinkle et al. (1989), who conclude that the orbit is at best nent image at 45 mas resolution was obtained. The weakest very uncertain. The geometry of the binary system has been of Ha component detected was diffuse and extended, consistent much debate, particularly since the jet was first observed in the with component C2 of the radio jet (Hollis et al. 1986) which optical circa 1977 (Wallerstein & Greenstein 1980; Herbig is 10"5 removed from the central source(s). The strongest Ha 1980), because the interaction of the system components is component detected was easily identified with the hot com- relevant to the jet formation mechanism. panion/accretion disk, consistent with the component C1, Based on an analysis of the R Aqr visible light curve from which delineates the central H II region of the radio jet (Hollis 1811 through 1979 (Mattei & Allen 1979), Willson, Garnavich, et al. 1986). The third Ha component detected had no radio & Mattei (1981) suggested that the R Aqr system undergoes counterpart and was designated C3 by Hege et al. (1991), who eclipse with a period of 144 yr; these light-curve data show speculated that this emission could arise in the LPV envelope that the LPV pulsational variations nearly ceased during the or simply be another knot in the inner jet. Hege et al. (1991) epochs 1928–1934 and 1974–1980. The jet probably under- surmised that if C3 were associated with the LPV, it would be goes episodic refueling and subsequent increased activity at the first spatial resolution of the stellar components in the periastron, and a similar period of 144 yr has also been system. obtained by proper motion analyses of discrete ejected radio The recent advent of VLA Q-band receivers permits simul- components (Lehto & Johnson 1992; Hollis & Michalitsianos taneous probes of weak H II regions and strong SiO maser 1993) and ultraviolet components (Hollis et al. 1997), which emission regions in close proximity. The bright SiO maser can comprise the strong northeast jet. Thus, a binary period of be used to self-calibrate the phase and amplitude of the 144 yr has strong circumstantial evidence, even though direct continuum emanating from the weak H II region. Thus, we observations of the hot companion in the system are problem- were motivated to resolve the R Aqr binary system because atical. For example, the hot component in the system became SiO is associated with the LPV envelope and the weak H II as bright as mv 1 8 during the interval of 1928–1934 but has region presumably surrounds the hot star/accretion disk. L85 L86 HOLLIS, PEDELTY, & LYON Vol. 482 FIG. 1.—The v 5 1, J 5 1– 0, SiO maser spectral line profile toward R Aqr on 1996 November 20. The 64 channel spectrum has spacings of 48.828 kHz (10.34 km s21). 2. OBSERVATIONS FIG. 2.—The v 5 1, J 5 1– 0, SiO spatial structure summed over all The R Aqr system was observed at 43 GHz with 13 antennas velocity channels from spectral line observations (see Fig. 1) toward R Aqr on of the NRAO1 Very Large Array on 1996 November 19–20 1996 November 20. Contour levels are 3%, 5%, 10%, and 50% of the peak contour summed flux of 215 Jy beam21 with a gray-scale background. from 2300 to 0700 UT. The antenna spacings effectively sampled the full range of the standard A configuration. total of 15 123 minute scans of R Aqr were alternated with 12 For the spectral line observations the VLA correlator was minute scans of 23482165. Absolute flux density calibration operated in the 2AC spectral line observing mode with the was performed with scans of 07131438 (assumed 0.29 Jy) and on-line Hanning smooth option set and employed a 3.125 03191415 (measured as 9.8H0.4 Jy) as a consistency check. MHz bandwidth centered on the maser rest frequency of The amplitudes and phases of the 50 MHz continuum data 43122.08 MHz, assuming the source velocity with respect to were calibrated using the strong maser emission in the BD IFs 21 the local standard of rest (Vlsr)is226.0 km s . Three 5 minute following Reid & Menten (1997). Both the narrow- (maser spectral line scans of R Aqr were performed. Contemporane- emission from the LPV) and wide-band (continuum emission ous 2 minute scans of 23482165 were made to calibrate the from the H II region) data were mapped and CLEANed on a spectral bandpass, and absolute flux calibration used the flux 512 3 512 grid with 0"01 cell spacing, and the results are density for 23482165 (1.48 Jy) determined using the contin- shown in Figure 3. The resolution obtained with uniform uum data. Standard spectral line processing techniques, in- weighting is approximately 55 3 41 mas. Using AIPS task cluding self-calibration using the “channel 0” data and IMFIT, elliptical Gaussians were fit to the two components in CLEANing of the individual channels (Clark 1981), were used Figure 3 that provide the VLA data entry with 1 s errors in to produce a cube containing the spectrally resolved total Table 1; these results were confirmed within the formal fit intensity (Stokes I) SiO maser emission. Figure 1 shows the errors of IMFIT by means of task MAXFIT, which fits a spatially average maser profile produced using the Astronom- quadratic function for position determination of an emission ical Image Processing System (AIPS) task POSSM. Interactive peak. visual inspection of the cube clearly shows that the peak of the maser emission moves clockwise in an approximate circular 3. DISCUSSION ring as velocity decreases. The diameter of this ring is compa- Table 1 VLA data provide the first in a series of apparent rable to the nominal resolution of 61 3 42 mas, but, given the orbit data that will permit an unambiguous determination of high flux densities of the maser emission, we used CLEAN to the true orbit for the R Aqr binary system. However, by using superresolve the system. Figure 2 shows the sum of the the constraint that this first set of data affords and some CLEANed maps for channels 7–50 after they were restored further assumptions, we can already make a preliminary with circular Gaussian beams having 10 mas FWHM. This (albeit crude) estimate of the true orbit for R Aqr. image confirms the ringlike morphology of the R Aqr maser Foremost, there is no set of spectroscopic data on the R Aqr spots as observed with the Very Long Base Array (VLBA) system through one or more cycles of the orbital phase that (Boboltz, Diamond, & Kemball 1996). would unambiguously determine the period, P. Even if there Continuum observations were made with the intermediate were, the situation is complicated by the fact that only the LPV frequencies (AC IFs) set to 43164.9 MHz with a 50 MHz is spectroscopically observable, and the small-velocity semiam- bandwidth while the BD IFs were tuned to 43121.7 MHz with plitude is contaminated by the pulsations of the LPV (Hinkle a 3.125 MHz bandwidth to observe the SiO maser (43122.08 et al.
Recommended publications
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • Dust and Molecular Shells in Asymptotic Giant Branch Stars⋆⋆⋆⋆⋆⋆
    A&A 545, A56 (2012) Astronomy DOI: 10.1051/0004-6361/201118150 & c ESO 2012 Astrophysics Dust and molecular shells in asymptotic giant branch stars,, Mid-infrared interferometric observations of R Aquilae, R Aquarii, R Hydrae, W Hydrae, and V Hydrae R. Zhao-Geisler1,2,†, A. Quirrenbach1, R. Köhler1,3, and B. Lopez4 1 Zentrum für Astronomie der Universität Heidelberg (ZAH), Landessternwarte, Königstuhl 12, 69120 Heidelberg, Germany e-mail: [email protected] 2 National Taiwan Normal University, Department of Earth Sciences, 88 Sec. 4, Ting-Chou Rd, Wenshan District, Taipei, 11677 Taiwan, ROC 3 Max-Planck-Institut für Astronomie, Königstuhl 17, 69120 Heidelberg, Germany 4 Laboratoire J.-L. Lagrange, Université de Nice Sophia-Antipolis et Observatoire de la Cˆote d’Azur, BP 4229, 06304 Nice Cedex 4, France Received 26 September 2011 / Accepted 21 June 2012 ABSTRACT Context. Asymptotic giant branch (AGB) stars are one of the largest distributors of dust into the interstellar medium. However, the wind formation mechanism and dust condensation sequence leading to the observed high mass-loss rates have not yet been constrained well observationally, in particular for oxygen-rich AGB stars. Aims. The immediate objective in this work is to identify molecules and dust species which are present in the layers above the photosphere, and which have emission and absorption features in the mid-infrared (IR), causing the diameter to vary across the N-band, and are potentially relevant for the wind formation. Methods. Mid-IR (8–13 μm) interferometric data of four oxygen-rich AGB stars (R Aql, R Aqr, R Hya, and W Hya) and one carbon- rich AGB star (V Hya) were obtained with MIDI/VLTI between April 2007 and September 2009.
    [Show full text]
  • GEORGE HERBIG and Early Stellar Evolution
    GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.
    [Show full text]
  • Ultraviolet Temporal Variability of the Peculiar Star R Aquarii S
    Chapman University Chapman University Digital Commons Mathematics, Physics, and Computer Science Science and Technology Faculty Articles and Faculty Articles and Research Research 1995 Ultraviolet Temporal Variability of the Peculiar Star R Aquarii S. R. Meier USN, Research Laboratory Menas Kafatos Chapman University, [email protected] Follow this and additional works at: http://digitalcommons.chapman.edu/scs_articles Part of the Instrumentation Commons, and the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Meier, S.R., Kafatos, M. (1995) Ultraviolet Temporal Variability of the Peculiar Star R Aquarii, Astrophysical Journal, 451: 359-371. doi: 10.1086/176225 This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital Commons. It has been accepted for inclusion in Mathematics, Physics, and Computer Science Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact [email protected]. Ultraviolet Temporal Variability of the Peculiar Star R Aquarii Comments This article was originally published in Astrophysical Journal, volume 451, in 1995. DOI: 10.1086/176225 Copyright IOP Publishing This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/scs_articles/139 THE AsTROPHYSICAL JOURNAL, 451:359-371, 1995 September 20 © 1995. The American Astronomical Society. All rights reserved. Printed in U.S.A. 1995ApJ...451..359M
    [Show full text]
  • Arxiv:1709.07265V1 [Astro-Ph.SR] 21 Sep 2017 an Der Sternwarte 16, 14482 Potsdam, Germany E-Mail: [email protected] 2 Smitha Subramanian Et Al
    Noname manuscript No. (will be inserted by the editor) Young and Intermediate-age Distance Indicators Smitha Subramanian · Massimo Marengo · Anupam Bhardwaj · Yang Huang · Laura Inno · Akiharu Nakagawa · Jesper Storm Received: date / Accepted: date Abstract Distance measurements beyond geometrical and semi-geometrical meth- ods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly de- S. Subramanian Kavli Institute for Astronomy and Astrophysics Peking University, Beijing, China E-mail: [email protected] M. Marengo Iowa State University Department of Physics and Astronomy, Ames, IA, USA E-mail: [email protected] A. Bhardwaj European Southern Observatory 85748, Garching, Germany E-mail: [email protected] Yang Huang Department of Astronomy, Kavli Institute for Astronomy & Astrophysics, Peking University, Beijing, China E-mail: [email protected] L. Inno Max-Planck-Institut f¨urAstronomy 69117, Heidelberg, Germany E-mail: [email protected] A. Nakagawa Kagoshima University, Faculty of Science Korimoto 1-1-35, Kagoshima 890-0065, Japan E-mail: [email protected] J. Storm Leibniz-Institut f¨urAstrophysik Potsdam (AIP) arXiv:1709.07265v1 [astro-ph.SR] 21 Sep 2017 An der Sternwarte 16, 14482 Potsdam, Germany E-mail: [email protected] 2 Smitha Subramanian et al. pends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on differ- ent sample of standard candles.
    [Show full text]
  • R Aquarii: Understanding the Mystery of Its Jets by Model Comparison Michelle Marie Risse Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2009 R Aquarii: Understanding the mystery of its jets by model comparison Michelle Marie Risse Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Physics Commons Recommended Citation Risse, Michelle Marie, "R Aquarii: Understanding the mystery of its jets by model comparison" (2009). Graduate Theses and Dissertations. 10565. https://lib.dr.iastate.edu/etd/10565 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. R Aquarii: Understanding the mystery of its jets by model comparison by Michelle Marie Risse A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Astrophysics Program of Study Committee: Lee Anne Willson, Major Professor Steven D. Kawaler Craig A. Ogilvie David B. Wilson Iowa State University Ames, Iowa 2009 Copyright c Michelle Marie Risse, 2009. All rights reserved. ii TABLE OF CONTENTS LISTOFTABLES ................................... iv LISTOFFIGURES .................................. v CHAPTER1. Intent ................................. 1 CHAPTER2. Introduction ............................. 2 2.1
    [Show full text]
  • The Optical Jet of R Aquarii H
    Counter (2-6 keV) ranges. Fig. 4 displays the X-ray flux 1.0 , variations in the 0.15-4.5 keV energy band. The smooth solid VI +t line illustrates the best representation of the data. Obviously, 0.8 ~ + the general trend of the flux variations follows the orbital c: + 15 0.6 + revolution. The count rates have been binned in 10-minute LJ +-f '+-++ + intervals. LJ 0.4 Integration in shorter time steps of 100 second length shows ~ the presence of rapid X-ray flickering with an amplitude of 0.2 I about 0~8. These variations exceed the optical fluctuations by llq,= 0.0 0.5 1.0 a factor of 2 to 3, but occur on a comparable time scale of a few 0.0 hund red seconds. This suggests that the optical and X-ray 0.30 0.35 0.40 0.45 0.50 JO.2444673.00 + flickering are an outcome of the same mechanism for the generation of the radiation, and that the optical emission may at i9 6 . 4: The X-ray lightcurve of V603 Aql, measured in the least partly emerge from reprocessing of the X-rays. t5 4 5 b·. - . keV range. The dots represent count rates which have been The X-ray source is almost certainly connected with the Inned In tO-minute intervals. The abscissa is scaled in Julian days, transfer of matter which is lost by the Roche lobe filling and relative phase units L1 cf) are indicated, which have been computed wlth the optical spectroscopic period.
    [Show full text]
  • THE SPECTRUM of RW HYDRAE This Object Offers a Striking
    458 ASTRONOMY: SWINGS A ND STR UVE PROC. N. A. S. it is present in the nucleus. [O III] is strong in HD 167362, and very weak in Campbell's star. The striking association in HD 167362 and BD + 300 3639 of a carbon nucleus with a nitrogen envelope suggests that a comparison with NGC 6543 would be interesting, despite the higher excitation prevailing in the nuclear and nebular parts of NGC 6543.11 This object also shows strong nebular lines of [N II], but its nucleus exhibits both N IV and C IV with similar intensities. 1 Astronomy and Astrophysics, 13, 461 (1894). 2 Several excellent spectrograms of Campbell's star (BD + 300 3639) have recently been secured at the McDonald Observatory and agree closely with the description of the spectrum by Wright (Lick Obs. Pub., 13, 220 (1918)); there is no trace of N II, N III, N IV or N V in the nucleus, which is a typical carbon star. 8 Ap. Jour., 2, 354 (1895). 4 Harvard Ann., 76, 31 (1916). 6 Harvard Circ., No. 224 (1921). Henry Draper Catalogue. 7 Harvard Bull., No. 892, 20 (1933). ' Ap. Jour., 61, 389 (1925); 76, 156 (1932). 9"Variable Stars," Harvard Obs. Monograph, No. 5, 311 (1938). 10 Beals has chosen the numbering from WC6 to WC8 so as td allow a certain latitude for new discoveries at either end of the sequence. See Trans. I. A. U., 6, 248 (1938). P. Swings, Ap. Jour. (in press). THE SPECTRUM OF RW HYDRAE By P. SWINGS AND 0. STRUVE MCDONALD OBSERVATORY, UNIVERSITY OF TEXAS, AND YERKES OBSERVATORY, UNIVERSITY OF CHICAGO Communicated June 10, 1940 RW Hydrael is an abnormal long-period variable having an unusually small range, of about one magnitude; the maximum photographic magni- tude is 9.7 to 9.9 and the minimum 10.8 to 10.9.
    [Show full text]
  • The Messenger
    THE MESSENGER ( , New Meteorite Finds At Imilac No. 47 - March 1987 H. PEDERSEN, ESO, and F. GARe/A, elo ESO Introduction hand, depend more on the preserving some 7,500 meteorites were recovered Stones falling from the sky have been conditions of the terrain, and the extent by Japanese and American expeditions. collected since prehistoric times. They to which it allows meteorites to be spot­ They come from a smaller, but yet un­ were, until recently, the only source of ted. Most meteorites are found by known number of independent falls. The extraterrestrial material available for chance. Active searching is, in general, meteorites appear where glaciers are laboratory studies and they remain, too time consuming to be of interest. pressed up towards a mountain range, even in our space age, a valuable However, the blue-ice fields of Antarctis allowing the ice to evaporate. Some source for investigation of the solar sys­ have proven to be a happy hunting have been Iying in the ice for as much as tem's early history. ground. During the last two decades 700,000 years. It is estimated that, on the average, each square kilometre of the Earth's surface is hit once every million years by a meteorite heavier than 500 grammes. Most are lost in the oceans, or fall in sparsely populated regions. As a result, museums around the world receive as few as about 6 meteorites annually from witnessed falls. Others are due to acci­ dental finds. These have most often fallen in prehistoric times. Each of the two groups, 'falls' and 'finds', consists of material from about one thousand catalogued, individual meteorites.
    [Show full text]
  • API Publications 2016-2019
    2016 King, A. and Muldrew, S. I., Black hole winds II: Hyper-Eddington winds and feedback, 2016, MNRAS, 455, 1211 Carbone, D., Exploring the transient sky: from surveys to simulations, 2016, AAS, 227, 421.03 van den Heuvel, E., The Amazing Unity of the Universe, 2016 (book), Springer Ellerbroek, L. E. ., Planet Hunters: the Search for Extraterrestrial Life, 2016 (book), Reak- tion Books Lef`evre, C., Pagani, L., Min, M., Poteet, C., and Whittet, D., On the importance of scattering at 8 µm: Brighter than you think, 2016, A&A, 585, L4 Min, M., Rab, C., Woitke, P., Dominik, C., and M´enard, F., Multiwavelength optical prop- erties of compact dust aggregates in protoplanetary disks, 2016, A&A, 585, A13 Babak, S., Petiteau, A., Sesana, A., Brem, P., Rosado, P. A., Taylor, S. R., Lassus, A., Hes- sels, J. W. T., Bassa, C. G., Burgay, M., and 26 colleagues, European Pulsar Timing Array limits on continuous gravitational waves from individual supermassive black hole binaries, 2016, MNRAS, 455, 1665 Sclocco, A., van Leeuwen, J., Bal, H. E., and van Nieuwpoort, R. V., Real-time dedispersion for fast radio transient surveys, using auto tuning on many-core accelerators, 2016, A&C, 14, 1 Tramper, F., Sana, H., Fitzsimons, N. E., de Koter, A., Kaper, L., Mahy, L., and Moffat, A., The mass of the very massive binary WR21a, 2016, MNRAS, 455, 1275 Pinilla, P., Klarmann, L., Birnstiel, T., Benisty, M., Dominik, C., and Dullemond, C. P., A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap, 2016, A&A, 585, A35 van den Heuvel, E., Neutron Stars, 2016, ASCO Conference, 20 Van Den Eijnden, J., Ingram, A., and Uttley, P., The energy dependence of quasi periodic oscillations in GRS 1915+105, 2016, AAS, 227, 411.07 Calzetti, D., Johnson, K.
    [Show full text]
  • Astronomický Ústav SAV Správa O
    Astronomický ústav SAV Správa o činnosti organizácie SAV za rok 2018 Tatranská Lomnica január 2019 Obsah osnovy Správy o činnosti organizácie SAV za rok 2018 1. Základné údaje o organizácii 2. Vedecká činnosť 3. Doktorandské štúdium, iná pedagogická činnosť a budovanie ľudských zdrojov pre vedu a techniku 4. Medzinárodná vedecká spolupráca 5. Vedná politika 6. Spolupráca s VŠ a inými subjektmi v oblasti vedy a techniky 7. Spolupráca s aplikačnou a hospodárskou sférou 8. Aktivity pre Národnú radu SR, vládu SR, ústredné orgány štátnej správy SR a iné organizácie 9. Vedecko-organizačné a popularizačné aktivity 10. Činnosť knižnično-informačného pracoviska 11. Aktivity v orgánoch SAV 12. Hospodárenie organizácie 13. Nadácie a fondy pri organizácii SAV 14. Iné významné činnosti organizácie SAV 15. Vyznamenania, ocenenia a ceny udelené organizácii a pracovníkom organizácie SAV 16. Poskytovanie informácií v súlade so zákonom o slobodnom prístupe k informáciám 17. Problémy a podnety pre činnosť SAV PRÍLOHY A Zoznam zamestnancov a doktorandov organizácie k 31.12.2018 B Projekty riešené v organizácii C Publikačná činnosť organizácie D Údaje o pedagogickej činnosti organizácie E Medzinárodná mobilita organizácie F Vedecko-popularizačná činnosť pracovníkov organizácie SAV Správa o činnosti organizácie SAV 1. Základné údaje o organizácii 1.1. Kontaktné údaje Názov: Astronomický ústav SAV Riaditeľ: Mgr. Martin Vaňko, PhD. Zástupca riaditeľa: Mgr. Peter Gömöry, PhD. Vedecký tajomník: Mgr. Marián Jakubík, PhD. Predseda vedeckej rady: RNDr. Luboš Neslušan, CSc. Člen snemu SAV: Mgr. Marián Jakubík, PhD. Adresa: Astronomický ústav SAV, 059 60 Tatranská Lomnica https://www.ta3.sk Tel.: neuvedený Fax: neuvedený E-mail: neuvedený Názvy a adresy detašovaných pracovísk: Astronomický ústav - Oddelenie medziplanetárnej hmoty Dúbravská cesta 9, 845 04 Bratislava Vedúci detašovaných pracovísk: Astronomický ústav - Oddelenie medziplanetárnej hmoty prof.
    [Show full text]
  • Annexe I : Description Des Services D’Observations Labellisés Liés À La Planétologie
    Annexe I : description des services d’observations labellisés liés à la planétologie Consultation BDD Service des éphémérides Type AA-ANO1 Coordination Intitulé OSU Directeur de l'OSU Responsable du SNO Email du responsable du SNO IMCCE Jacques LASKAR Jacques LASKAR [email protected] Partenaires Intitulé OSU Directeur de l'OSU Resp. du SNO dans l'OSU Email du resp. du SNO dans l'OSU Obs. Paris Claude CATALA OCA Thierry LANZ Agnès FIENGA [email protected] Description L'IMCCE a la responsabilité, sous l'égide du Bureau des longitudes, de produire et de diffuser les calendriers et éphémérides au niveau national. Cette fonction est assurée l'institut par son Service des éphémérides. Aussi celui-ci a) produit les publications et éditions annuelles tout comme les éphémérides en ligne, b) diffuse les éphémérides de divers corps du système solaire - naturels et artificiels, et de phénomènes célestes, c) assure la maintenance et la mise jour des bases de données, d) procure une expertise juridique aux tribunaux, e) procure des éphémérides et données la demande pour les services similaires (USA, Japon), les agences, les chercheurs, les laboratoires et les observatoires. Consultation BDD Gaia Type AA-ANO1, AA-ANO4 Coordination Intitulé OSU Directeur de l'OSU Responsable du SNO Email du responsable du SNO OCA Thierry LANZ François MIGNARD [email protected] Partenaires Intitulé OSU Directeur de l'OSU Resp. du SNO dans l'OSU Email du resp. du SNO dans l'OSU Obs. Paris Claude CATALA Frédéric ARENOU [email protected] IMCCE Jacques LASKAR Daniel HESTROFFER [email protected] OASU Marie Lise DUBERNET-TUCKEY Caroline SOUBIRAN [email protected] THETA Philippe ROUSSELOT Annie ROBIN [email protected] IAP Francis BERNARDEAU Brigitte ROCCA VOLMERANGE [email protected] ObAS Pierre-Alain DUC Jean-Louis HALBWACHS [email protected] Description Participation aux activités du Consortium DPAC (Data Processing and Analysis Consortium) pour la mission Gaia.
    [Show full text]