RESEARCH ARTICLE Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture Claire S Oldfield1†, Irene Grossrubatscher1†, Mario Cha´ vez2, Adam Hoagland3, Alex R Huth1, Elizabeth C Carroll3, Andrew Prendergast2,4,5, Tony Qu3, Jack L Gallant1,6, Claire Wyart2,4,5*, Ehud Y Isacoff1,3,7* 1Helen Wills Neuroscience Institute and Graduate Program, University of California Berkeley, Berkeley, United States; 2CNRS-UMR, Paris, France; 3Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States; 4INSERM UMRS, Paris, France; 5Institut du Cerveau et de la Moelle e´pinie`re (ICM), Hoˆpital de la Pitie´-Salpeˆtrie`re, Paris, France; 6Department of Psychology, University of California, Berkeley, Berkeley, United States; 7Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, United States Abstract Experience influences behavior, but little is known about how experience is encoded in the brain, and how changes in neural activity are implemented at a network level to improve performance. Here we investigate how differences in experience impact brain circuitry and behavior in larval zebrafish prey capture. We find that experience of live prey compared to inert food increases capture success by boosting capture initiation. In response to live prey, animals with and without prior experience of live prey show activity in visual areas (pretectum and optic tectum) and motor areas (cerebellum and hindbrain), with similar visual area retinotopic maps of prey position. However, prey-experienced animals more readily initiate capture in response to visual *For correspondence: area activity and have greater visually-evoked activity in two forebrain areas: the telencephalon and
[email protected] habenula.