INTRODUCTION Evaluation Methods of Agricultural Potential in Rural

Total Page:16

File Type:pdf, Size:1020Kb

INTRODUCTION Evaluation Methods of Agricultural Potential in Rural 10.2478/v10060-008-0095-1 Annals of Warsaw University of Life Sciences – SGGW Land Reclamation No 43 (1), 2011: 87–97 (Ann. Warsaw Univ. of Life Sci. – SGGW, Land Reclam. 43 (1), 2011) Evaluation methods of agricultural potential in rural areas including environmental function RADKA VÁCHALOVÁ1, ŠTĚPÁNKA MATĚJKOVÁ2, JAN VÁCHAL1, PETRA PÁRTLOVÁ1 MIROSLAV DUMBROVSKÝ3, LUBOŠ JURÍK4 1The University of South Bohemia in České Budějovice, Czech Republic. 2Crop Research Institute, Praha, Czech Republic. 3Brno University of Technology, Czech Republic 4Slovak Agriculture University, Nitra, Slovakia Abstract: Evaluation methods of agricultural aimed at the protection of varied environmental potential in rural areas including environmental components. function. The study focuses on the environmental evaluation of land in the territory of interest by Key words: farmland, soil properties, environmen- means of assessing the non-production functions. tal functions, non-production functions, method This topic is currently becoming one of the cru- of rating. cial moments in agriculture, water management as well as nature and landscape conservation. The soil represents an important component of the INTRODUCTION environment and infl uences both the quality and the quantity of produced foodstuffs due to the fact The importance of the soil for man is em- that being an abiotic factor, the soil is a part of phasized in the international document many different natural and artifi cial ecosystems, affecting thus the hydrosphere, atmosphere and European Soil Charter (1972). Being biosphere. The soil provides nutrients for plant an essential, limited and non-renewable growth, necessary for animal as well as human source of food production and natural nutrition. It plays an important part in recycling wealth of any country, the soil has to be and detoxifi cation of organic materials and in the protected concerning both its quantity cycles of many elements. The proposed solution consists in the evaluation of the non-production and quality (Říha 1999). At present its soil functions in a particular territory according to ecological and economic evaluation is chosen, usually unchangeable, soil properties on often a hot topic of theoretical studies the basis of the proposed method of rating. The and experimental methodologies (Novák method is based on creating evaluation classes et al. 2002). In the Czech Republic, how- comprising the individual categories of soil prop- erties. The rating expressing particular categories ever, such approaches of environmental indicates the range of the non-production func- economics are being developed as well as tions within the soil-ecological units in the terri- used in the decision-making processes of tory of interest. The research was carried out in regional development. Due to increasing a territory only moderately impacted by human intensity of land use and growing inci- industrial activities. The results of the evaluation dence of confl icts between the economic of chosen soil functions can be used in the studies focused on landscape and soil protection or in the and ecological interests it is not suffi - proposals of environment-friendly management cient to evaluate the nature by means of models in accordance with the rules of agricul- traditional utilitarian approaches, where tural policy included in appropriate regulations the main factor determining the price of 88 R. Váchalová et al. soil is a direct profi t of the evaluator (Se- MATERIAL AND METHODS ják et al. 1999). A more appropriate way how to express soil value can be based The proposal of the evaluation of farm- on the evaluation of the environmental land production potential including the soil functions. evaluation of its environmental func- The soil is viewed as a decisive sur- tions was solved in the Zdíkov cadastral face unit of the landscape space, which territory, which is situated in the Šumava determines the quality of the landscape Protected Landscape between the Vim- system. The persistence and function of perk Upland and the Šumava Plains. the soil in the landsacpe is the essential This area is characterised by preserved precondition of the existence, function forest stands – mountain climax pine and persistence of the agricultural land- groves, acidophilous mountain beech scape. Thus, the conservation of soil stands, peat bogs and other interesting must be defi ned as a vital precondition and valuable communities. The territory of nature conservation, environment pro- of interest shown in Figure 1 belongs to tection as well as the economic and so- the Central-European territories where cial development in the territory. the negative impacts of human industrial Among the essential components of activities are still only moderate. land resources management are correct The local climate is determined by categorization or delimitation, optimum the submontane character of the terri- production utilization, the assessment of tory and by its broken relief with a high risk extent and degree (predisposition to proportion of woodland. The average the degradation of yield parameters) in ten-year rainfall amounts to 830 mm per particular soil types, including soil prop- year. The annual mean temperature is erties monitoring. Here the basic factor 5.9°C, the average temperature in Janu- is the harmonisation of the production ary is –3.8°C, the average temperature in and non-production functions in a par- June is 13.5°C. The average atmospheric ticular area. moisture is around 78%. The wind usu- ally has the north direction. FIGURE 1. The aerial photograph of the Zdíkov cadastral territory Evaluation methods of agricultural potential in rural areas... 89 The vegetation period with the daily Most soils, formed on the paragneiss mean temperature of above 5°C starts at substrate in Liz and Albrechtec water- the beginning of May. Full vegetation sheds, are oligotrophic to oligo-mes- period with the daily mean temperature otrophic brown soils. Along the streams of above 10°C starts at the beginning of there are mostly gleyed brown soils to June. From the 5th October it is possible brown gleys. In higher elevations there to expect the end of vegetation period are signs of podsolization and in detritus with the daily mean temperature below sites appeared rankers. 5°C. Considering the fl uctuations of the Corg (organic carbon) signifi cantly de- temperature curve, a rise in temperature creases with the depth as well as cationic can be noticed after the 15th January. exchange capacity and acidity, pH (H2O) This rise stops between February 14– and pH (KCl) increase. The acidity of up- –15, which is the period of winter mon- per organic horizons is dominated by the soon. The next rise of temperature by presence of organic acids derived from 0.2–0.3°C per day appears after the 21st humifi cation processes of surface hori- March. A following decrease in tempera- zons. The reserve of exchangeable cati- ture comes between May 10–11. Then the ons (Ca, K, Mg) in the soil is low. The temperature rises till the 8th June, with a main buffering systems include above all subsequent stabilization or even a drop. the dissolution of Al secondary minerals. The next increase in temperature comes The role of H+ exchange for Ca, Mg and between June 15–25. The onset of the an- K is only minor in the soils where pH is nual peak appears between the 15th July below 5. and the 5th August when the temperature The indication and quantifi cation of reaches the annual peak of about 14°C. farm soils production potential, includ- Then there is a slow decline which ends ing the environmental functions evalua- with a temporary daily increase by about tion, was carried out in the form of con- 0.4°C during November 26–28. This rise sequent steps, whose system is shown in fi nishes on the 1st December and after Figure 2. this date the temperature falls until the 15th January (Chábera et al. 1985). Choice of evaluation system Choice of soil functions Choice of soil properties System of rating FIGURE 2. The system of soil functions rating 90 R. Váchalová et al. Choice of the evaluation system nently under the infl uence of watercourse The precondition of a qualifi ed choice level, strongly acidic to podsolized. Con- is thorough knowledge of complex soil- sidering the role of the soil in nourish- ecological units including standardized ing the plants for biomass production, its quality assessment (BPEJ) and their resistance to soil degradation, its impor- precise categorization within particular tance for organic substances transforma- aggregation groups (or varieties). The tion and precipitation soaking, then the categorization comprises the following most signifi cant environmental functions criteria: climatic characteristics of the obviously become the production func- region, soil type, grain size (texture), tion and three non-production functions soil depth, erosion, skeletal type, as- – the buffer function, the transformation pect, moisture conditions, site location, function and the water-retention func- site shape and situation. On this basis it tion. is possible to classify the soils or their Choice of soil properties for soil main soil units (HPJ) from the follow- functions evaluation ing viewpoints: • Specifi cation of cultures falling into To accomplish the assessment of the pro- agricultural land register; duction function and the non-production • Blocking of the sites on the basis of soil functions we chose measurable soil soil-ecological survey; properties relating to soil functions. • Classifi cation of the soils due to the On the basis of two requirements for degree of hydromorphism; the evaluation of the production function • Classifi cation of the soils according we chose the yielding capacity, whose to the predisposition to soil structure values were assigned to the units of the and texture degradation – compac- quality assessment system by Němec tion; (2001), and which are listed in the sup- • Assessment of the predisposition to plement of the Government Regulation erosion; of the Ministry of Agriculture, CR.
Recommended publications
  • Poster Presentation Schedule
    20WCSS_Poster Schedule(vol.6) Abstract Date Time Code-N Session Name Country Affiliation Final Type Abstract Title No Folk Soil Knowledge for Soil Myriel Milicevic and June 9(Mon) All day Art Poster Taxonomy and Assessment-art Ruttikorn Vuttikorn Folk Soil Knowledge for Soil Autonomous University of CHARACTERIZATION AND CLASSIFICATION OF SOILS IN MEXICALI June 9(Mon) 15:30~16:20 P1-1 AF2388 Monica Aviles Mexico Poster Taxonomy and Assessment Baja California VALLEY, BAJA CALIFORNIA, MEXICO Folk Soil Knowledge for Soil UNIVERSITY OF CUIABA - Relationship between phytophysiognomy and classes of wetland soil June 9(Mon) 15:30~16:20 P1-2 AF2892 Leo Adriano Chig Brazil Poster Taxonomy and Assessment UNIC/INAU - NATIONAL of northern Pantanal Mato Grosso - Brazil Folk Soil Knowledge for Soil Luiz Felipe Moreira USE OF SIG TOOLS IN THE TREATMENT OF DATA AND STUDY OF June 9(Mon) 15:30~16:20 P1-3 AF2934 Brazil Universidade de Brasilia Poster Taxonomy and Assessment Cassol THE RELATIONSHIP BETWEEN SOIL, GEOLOGY AND Folk Soil Knowledge for Soil Universidad Michoacana de FARMER'S KNOWLEDGE OF LAND AND CLASSES OF CORN OF June 9(Mon) 15:30~16:20 P1-4 AF2977 Maria Alcala Mexico Poster Taxonomy and Assessment San Nicolas de Hidalgo MICHOACAN, MEXICO Folk Soil Knowledge for Soil Technological Educational June 9(Mon) 15:30~16:20 P1-5 AF2979 Pantelis E. Barouchas Greece Poster Soil mass balance for an Alfisol in Greece Taxonomy and Assessment Institute of Western Greece Critical Issues of Radionuclide Center for Land Use June 9(Mon) All day Art Poster Behavior
    [Show full text]
  • Pedometric Mapping of Key Topsoil and Subsoil Attributes Using Proximal and Remote Sensing in Midwest Brazil
    UNIVERSIDADE DE BRASÍLIA FACULDADE DE AGRONOMIA E MEDICINA VETERINÁRIA PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA PEDOMETRIC MAPPING OF KEY TOPSOIL AND SUBSOIL ATTRIBUTES USING PROXIMAL AND REMOTE SENSING IN MIDWEST BRAZIL RAÚL ROBERTO POPPIEL TESE DE DOUTORADO EM AGRONOMIA BRASÍLIA/DF MARÇO/2020 UNIVERSIDADE DE BRASÍLIA FACULDADE DE AGRONOMIA E MEDICINA VETERINÁRIA PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA PEDOMETRIC MAPPING OF KEY TOPSOIL AND SUBSOIL ATTRIBUTES USING PROXIMAL AND REMOTE SENSING IN MIDWEST BRAZIL RAÚL ROBERTO POPPIEL ORIENTADOR: Profa. Dra. MARILUSA PINTO COELHO LACERDA CO-ORIENTADOR: Prof. Titular JOSÉ ALEXANDRE MELO DEMATTÊ TESE DE DOUTORADO EM AGRONOMIA BRASÍLIA/DF MARÇO/2020 ii iii REFERÊNCIA BIBLIOGRÁFICA POPPIEL, R. R. Pedometric mapping of key topsoil and subsoil attributes using proximal and remote sensing in Midwest Brazil. Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília- Brasília, 2019; 105p. (Tese de Doutorado em Agronomia). CESSÃO DE DIREITOS NOME DO AUTOR: Raúl Roberto Poppiel TÍTULO DA TESE DE DOUTORADO: Pedometric mapping of key topsoil and subsoil attributes using proximal and remote sensing in Midwest Brazil. GRAU: Doutor ANO: 2020 É concedida à Universidade de Brasília permissão para reproduzir cópias desta tese de doutorado e para emprestar e vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta tese de doutorado pode ser reproduzida sem autorização do autor. ________________________________________________ Raúl Roberto Poppiel CPF: 703.559.901-05 Email: [email protected] Poppiel, Raúl Roberto Pedometric mapping of key topsoil and subsoil attributes using proximal and remote sensing in Midwest Brazil/ Raúl Roberto Poppiel. -- Brasília, 2020.
    [Show full text]
  • Impact of Heathland Restoration and Re-Creation Techniques on Soil Characteristics and the Historical Environment
    Natural England Research Report NERR010 Impact of heathland restoration and re-creation techniques on soil characteristics and the historical environment www.naturalengland.org.uk Natural England Research Report NERR010 Impact of heathland restoration and re-creation techniques on soil characteristics and the historical environment Hawley, G.1, Anderson, P. 1, Gash, M. 1, Smith, P. 1, Higham, N. 2, Alonso, I. 3, Ede, J.3 & Holloway, J.3 1 Independent consultant, 2 University of Manchester and 3 Natural England Published on 28 March 2008 The views in this report are those of the authors and do not necessarily represent those of Natural England. You may reproduce as many individual copies of this report as you like, provided such copies stipulate that copyright remains with Natural England, 1 East Parade, Sheffield, S1 2ET ISSN 1754-1956 © Copyright Natural England 2008 Project details This report results from research commissioned by Natural England in order to provide information on the impact of heathland restoration and re-creation activities on the soils and archaeology. The work was undertaken under Natural England contract FST20-84-010 by the following team: Penny Anderson (Managing Director Penny Anderson Associates Ltd (PAA); Gerard Hawley (Senior Soil Scientist, PAA); Mark Gash (Ecologist, PAA); Phil Smith (Senior Ecologist, PAA) and Nick Higham (Professor of Early Medieval and Landscape History, University of Manchester). Isabel Alonso (Heathland Ecologist, Natural England), Joy Ede (Historic Environment Advisor, Natural England) and Julie Holloway (Senior Soil Specialist, Natural England) provided contacts, information, references and edited the report. A summary of the findings covered by this report, as well as Natural England's views on this research, can be found within Natural England Research Information Note RIN010: Impact of heathland restoration and re-creation techniques on soil characteristics and the historical environment.
    [Show full text]
  • Economic Valuation of Soil Functions: Phase 1
    Economic Valuation of Soil Functions Phase 1: Literature Review and Method Development Prepared for: Defra Prepared by: David Harris, ADAS Boxworth, Battlegate Road, Boxworth, Cambridge, CB3 8NN Dr. Bob Crabtree, CJC Consulting, Oxford John King, ADAS Boxworth Paul Newell-Price, ADAS Gleadthorpe Date: July 2006 Copyright The proposed approach and methodology is protected by copyright and no part of this document may be copied or disclosed to any third party, either before or after the contract is awarded, without the written consent of ADAS. 0936648 Economic Valuation of Soil Functions Phase 1: Literature Review and Method Development Glossary of Terms ALC Agricultural Land Classification AONB Area of Outstanding Natural Beauty BMP Best Management Practice generally defined by being within the Codes of Good Agricultural Practice for Air, Water and Soil, COGAP (Defra) Brickfield series An imperfectly drained soil with a fine loamy texture CAP Common Agricultural Policy Clifton series An imperfectly drained, medium to coarse-textured soil with a perched water table Cu Copper CV Contingent valuation DE Direct energy used in fuel for field operations Defra Department for Environment, Food and Rural Affairs DoE Department of the Environment (now part of Defra and distinct from the Environment Agency) Dunkeswick series A poorly drained soil with a fine loamy topsoil, and a clay subsoil beginning at between 40 and 80 cm depth ELS Entry Level Scheme of Environmental Stewardship Scheme ESA Environmentally Sensitive Area FIOs Faecal indicator organisms
    [Show full text]
  • Introduction to Soils and Pedology
    Introduction to Soils and Pedology • Coined in mid 19th Century by French scientist • DidDerived from Gree k: pedon=ground, log ia = discour se • “The study, in situ, of the biogeochemical processes that form and dbdistribute soil”ls” • An observational, vs. an experimental, science - nature is the laboratory • Origins attributed to two centers: Russia (Dokuchaev) and Berkeley (Hilgard) Definition of Soils • Many definitions •Soil is part of a continuum of materials at earth’ surface –Soil vs. non-soil at bottom and top –Different soils laterally •Need to divide continuum into systems, or discrete seggyments, for study •Hans Jenny (1930’s) conceptualized soils as physical systems amenable and susceptible to physical variables (STATE FACTORS) ElEcological functions of soil • Supports plant growth • Recycles nutrients and waste • Controls the flow and purity of water • Provid es habit a t for soil organisms • Functions as a building material/base Role of Pedology in Scientific and Societal Problems •Carbon and nitrogen cycles •Are soils part of an unidentified sink for CO2? •What is the effect of agricultural on soil C (and atm CO2)? •Will soils store excess N from human activity? •Chemi st ry of natural waters •How do soils release elements with time and space? •Earth history •‘Paleosols’ and evolution of land plants, atmospheric CO2 records, human evolution •Soils and archaeology •Biodiversity •Is soil diversity analogous to, and complementary to, biodiversity •Microorganisms in soil represent unknown biodiversity resources Soils as a
    [Show full text]
  • Soils As Pacemakers and Limiters of Global Silicate Weathering
    Originally published as: Dixon, J. L., von Blanckenburg, F. (2012): Soils as pacemakers and limiters of global silicate weathering. ‐ Comptes Rendus Geoscience, 344, 11 ‐ 12, 597‐609 DOI: 10.1016/j.crte.2012.10.012 Soils as pacemakers and limiters of global silicate weathering Jean L. Dixon1,2 and Friedhelm von Blanckenburg1 1 Helmholtz Centre Potsdam, GFZ German Centre for Geosciences, Telegraphenberg, 14473 Potsdam, Germany 2 Department of Geography, University of California, Santa Barbara, CA 93106, USA Keywords: chemical weathering, soil production, speed limits, erosion, regolith, river fluxes Comptes rendus – Geosciences 344, 597-609, 2012 Abstract The weathering and erosion processes that produce and destroy regolith are widely recognized to be positively correlated across diverse landscapes. However, conceptual and numerical models predict some limits to this relationship that remain largely untested. Using new global data compilations of soil production and weathering rates from cosmogenic nuclides and silicate weathering fluxes from global rivers, we show that the weathering- erosion relationship is capped by certain ‘speed limits’. We estimate a soil production speed limit of between 320 to 450 t km-2 y-1 and the associated weathering rate speed limit of roughly 150 t km-2 y-1. These limits appear to be valid for a range of lithologies, and also extend to mountain belts, where soil cover is not continuous and erosion rates outpace soil production. We argue that the presence of soil and regolith is a requirement for high weathering fluxes from a landscape, and that rapidly eroding, active mountain belts are not the most efficient sites for weathering.
    [Show full text]
  • Table of Contents
    Table of Contents ............................................................................................................................................................ 1 1. 1.2. Geographic interpretation of the concept of the environment ........................................ 7 1.1. 1.3. The system-based approach of the geographical environment .......................... 9 1.2. 1.4. The assessment of landscape and environment ................................................ 11 1.3. 2.1. Ecosystem models ........................................................................................... 13 1.4. 2.2. Dividing the landscape into subsystems .......................................................... 15 1.5. 2.3. The landscape ecosystem and its sub-systems ................................................. 20 1.5.1. 4.1.1. Biological ecology ........................................................................... 26 1.5.2. 4.1.2. Geoecology and landscape ecology ................................................. 32 1.6. 4.2. Ecosystem research in biology ........................................................................ 33 1.7. 5.1. Lithological conditions .................................................................................... 36 1.8. 5.2. Relief as a landscape forming factor ................................................................ 42 1.9. 5.3 Soil as a landscape forming factor .................................................................... 54 1.10. 5.4. Water as a landscape factor ..........................................................................
    [Show full text]
  • Dissertation
    Spatial Patterns of Soil Characteristics and Soil Formation in the transitional landscape zone, central part of Bogowonto Catchment, Java, Indonesia DISSERTATION zur Erlangung des Akademischen Grades einer Doktorin der Naturwissenschaften am Institut für Geographie der Fakultät für Geo-und Atmosphärenwissenschaften der Leopold Franzens-Universität, Innsbruck eingereicht von Nur Ainun Harlin Pulungan Betreuung: Univ. Prof. Johann Stötter (Institut für Geographie, Innsbruck) Assoz. Prof. Clemens Geitner (Institut für Geographie, Innsbruck) Prof. Junun Sartohadi (Fakultät für Geographie, UGM, Yogyakarta) Innsbruck, 2016 Leopold-Franzens-Universität Innsbruck Eidesstattliche Erklärung Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder inhaltlich den angegebenen Quellen entnommen wurden, sind als solche kenntlich gemacht. Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht als Magister- /Master-/Diplomarbeit/Dissertation eingereicht. 28.10.2016 Datum Unterschrift ACKNOWLEDGEMENTS I would like to thank to all those who supported the study and made this dissertation possible. Without their excellent guidance, encouragement, caring, patience, and effort, this study could have been never accomplished. To all persons who are mentioned or cannot be mentioned by name in this page, I am greatly indebted. First of all, I express my sincere gratitude to my first supervisor, Professor Johann Stötter for his valuable guidance, taught, and ideas to my scientific work, also for providing me with very kind atmosphere for doing research from the beginning until the end of this study. I also would like to thank to Assoc.Professor Clemens Geitner for his valuable comments, enormous advises that improve the quality of this work a lot, and particularly for supporting me doing laboratory research.
    [Show full text]
  • Mapping at 30 M Resolution of Soil Attributes at Multiple Depths in Midwest Brazil
    remote sensing Article Mapping at 30 m Resolution of Soil Attributes at Multiple Depths in Midwest Brazil Raúl R. Poppiel 1 , Marilusa P. C. Lacerda 1, José L. Safanelli 2 , Rodnei Rizzo 2, Manuel P. Oliveira Jr. 1 , Jean J. Novais 1 and José A. M. Demattê 2,* 1 Faculty of Agronomy and Veterinary Medicine, Darcy Ribeiro University Campus, University of Brasília; ICC Sul, Asa Norte, Postal Box 4508, Brasília 70910-960, Brazil; [email protected] (R.R.P.); [email protected] (M.P.C.L.); [email protected] (M.P.O.J.); [email protected] (J.J.N.) 2 Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo; Pádua Dias Av., 11, Piracicaba, Postal Box 09, São Paulo 13416-900, Brazil; [email protected] (J.L.S.); [email protected] (R.R.) * Correspondence: [email protected]; Tel.: +55(19)997670227 Received: 18 October 2019; Accepted: 3 December 2019; Published: 5 December 2019 Abstract: The Midwest region in Brazil has the largest and most recent agricultural frontier in the country where there is no currently detailed soil information to support the agricultural intensification. Producing large-extent digital soil maps demands a huge volume of data and high computing capacity. This paper proposed mapping surface and subsurface key soil attributes with 30 m-resolution in a large area of Midwest Brazil. These soil maps at multiple depth increments will provide adequate information to guide land use throughout the region. The study area comprises about 851,000 km2 in the Cerrado biome (savannah) in the Brazilian Midwest.
    [Show full text]
  • INTRODUCTION the 4-H Soil Activity Guide Has Been Designed with Two
    INTRODUCTION The 4-H Soil Activity Guide has been designed with two age groups in mind: Junior: 8 to 10 years of age Intermediate: 11 to 14 years of age Each activity has been designed for both age groups. These activities are meant for members to have an opportunity to learn, evaluate, make decisions, communicate and develop confidence. Each activity has the following format: Title Topic Learning Outcomes Time Materials/Resources Instructions Suggestions Discussion/Comments Processing Prompts Each activity in the 4-H Soil Activity Project has learning outcomes identified at the beginning of the activity, and processing prompts at the end. To gain a better understanding of why these were added to every activity, we have included the following section about experiential learning. Experiential Learning Experiential learning is a model that, simply put, consists of action and reflection. Research show that learning is often best achieved when it is fun, active, interesting and easy to understand. Participating in fun activities creates a sense of togetherness within a group, helping members relate to one another as well as allowing the group to relax, feel safe and at ease. Through guided reflection and discussion, activities with meaning often help individuals understand concepts and skills more than if the same meaning was presented in a lecture format. A leader can help 4-H members and groups learn by leading activities with meaning. These activities can then be processed to help the group find the meaning. These lessons can then be applied to other areas of the members’ lives – helping them to transfer the meaning from the activity to the real world and every day life.
    [Show full text]
  • “Soil Wallet”? Do We Think of the Soil on Our Farm As a Valuable Asset?
    What’s in your “Soil Wallet”? Do we think of the soil on our farm as a valuable asset? The amount of “green” in our “soil wallet” can be variable! Identifying soil factors begins the process of determining its potential value. Soil formation is based on the following soil factors: parent material, climate, topography, biological affects and length of development. Differences in soil formation dictates differences in potential soil account values. Management decisions determine a high or low performing soil account. Monitoring the value in our “soil account” is vital to the success of our farm now and in the future. To better understand the true value of our soil, let’s compare a soil account to an investment account. Start by identifying the balance of one of your investment accounts. The goal is to gain interest or “value” through the invested money. Decisions we make affect whether the account will gain, maintain or lose value. Losing value in the account is really painful and maintaining value is rather pointless, so we position our account to gain value! What about your farm’s soil account? Are you gaining, maintaining or losing value in it? Changes in available technology and the collection of research based outcomes, gives us new tools to better manage our soil. Can you afford to only maintain the value of your soil account? What about lose value in your soil account? To become resilient and able to withstand a wide range of weather extremes, pest pressure and economic stressors, soil accounts must consistently gain value! Avoiding direct loss to a soil account has been the work of soil conservation practices for years.
    [Show full text]
  • Valuing Soil's Economic Worth
    Valuing Soil’s Economic Worth Matthew Oliver Ralp Loria Dimal VALUING SOIL’S ECONOMIC WORTH DISSERTATION to obtain the degree of doctor at the University of Twente, on the authority of the rector magnificus, prof.dr. T.T.M. Palstra, on account of the decision of the Doctorate Board, to be publicly defended on Wednesday 6 February 2019 at 12.45 hrs by Matthew Oliver Ralp Loria Dimal born on 9 April 1984 in Manila, Philippines This thesis has been approved by Prof.dr. V.G. Jetten, supervisor ITC dissertation number 342 ITC, P.O. Box 217, 7500 AE Enschede, The Netherlands ISBN 978-90-365-4723-9 DOI 10.3990/1.9789036547239 Cover designed by Job Duim Printed by ITC Printing Department Copyright © 2019 by M.O.R.L. Dimal Graduation committee: Chairman/Secretary Prof.dr.ir. A. Veldkamp Supervisor Prof.dr. V.G. Jetten University of Twente Member(s) Prof.dr. P.Y. Georgiadou University of Twente Prof.dr. T. Filatova University of Twente Prof.dr. C.J. Ritsema Wageningen University Dr.ir. L. Fleskens Wageningen University “The soil is the great connector of lives, the source and destination of all. It is the healer and restorer and resurrector, by which disease passes into health, age into youth, death into life. Without proper care for it we can have no community, because without proper care for it we can have no life.” Wendell Berry (1977) Acknowledgements I would like to express my deepest gratitude to my promoter and supervisor, Prof. Victor Jetten, for the guidance, the support and the willingness of helping me find clarity on my work.
    [Show full text]