Introduction •Graphs / Facts •Solution •Conclusion •Causes •Photos •Acknowledgements •About This Amazing Creatu
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kemp's Ridley Sea Turtle Headstart 08/1994 Program (NOAA Tech Memo NMFS-OPR-3) TED Regulations for Shrimp Trawls 57 FR 57348 12/04/1992 Recovery Plan - U.S
Fishing Permits Habitat Conservation Grants Fisheries Environmental Analyses Endangered Spec Search Go fish! nmlkji This si nmlkj All of NMFS Home Threatened and Endangered Species Divisions/Branches Lists What We Do Fishery Bulletins The following list of species under NMFS Fishery Quotas jurisdiction, listed as threatened or endangered, Fishery Regulations for each state and territory. Click on the state, News/Media territory or areas below to view a list of Species: National Employee 1. Southeast Region (North Carolina to Texas and Locator the Caribbean) FOIA Information 2. South Atlantic (North Carolina to Key West Public Records Florida) Request 3. Gulf of Mexico 4. Alabama 5. Florida - Atlantic Coast 6. Florida - Gulf Coast 7. Georgia 8. Louisiana 9. Mississippi 10. North Carolina 11. Puerto Rico 12. South Carolina 13. Texas 14. U.S. Virgin Islands Home · Privacy Policy · Disclaimer · About Us · Information Quality · Contact Us · Last Updated: February 2, 2010 NOAA Fisheries Office of Protected Resources OPR Home | About OPR | Species | Permits | Laws & Policies | Programs | Education | Publications Loggerhead Turtle (Caretta caretta) Species Marine Mammals Status | Taxonomy | Species Description | Habitat | Distribution | Cetaceans Population Trends | Threats | Conservation Efforts | Regulatory Overview | Pinnipeds Key Documents | More Info Marine Turtles Marine & Anadromous Fish Status Marine Invertebrates & ESA Threatened - throughout its range Plants Species of Concern Taxonomy Threatened & Endangered Kingdom: Animalia Species Phylum: Chordata Critical Habitat Maps Class: Reptilia Order: Testudines Loggerhead turtle hatchling (Caretta caretta) Family: Cheloniidae Contact OPR Photo: Mary Wozny, Broward Glossary Genus: Caretta County Florida Sea Turtle OPR Site Map Species: caretta Conservation Program Species Description Did You Know? Loggerheads were named for their relatively large heads, which support powerful jaws and enable them to feed on Search OPR hard-shelled prey, such as whelks and conch. -
Identification of Mutant Genes and Introgressed Tiger Salamander
www.nature.com/scientificreports OPEN Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Received: 13 October 2016 Accepted: 19 December 2016 Ambystoma mexicanum Published: xx xx xxxx M. Ryan Woodcock1, Jennifer Vaughn-Wolfe1, Alexandra Elias2, D. Kevin Kump1, Katharina Denise Kendall1,5, Nataliya Timoshevskaya1, Vladimir Timoshevskiy1, Dustin W. Perry3, Jeramiah J. Smith1, Jessica E. Spiewak4, David M. Parichy4,6 & S. Randal Voss1 The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning– candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyra) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyra has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyra significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl. The Mexican axolotl (Ambystoma mexicanum) is the primary salamander model in biological research. -
Present Status of Fish Biodiversity and Abundance in Shiba River, Bangladesh
Univ. J. zool. Rajshahi. Univ. Vol. 35, 2016, pp. 7-15 ISSN 1023-6104 http://journals.sfu.ca/bd/index.php/UJZRU © Rajshahi University Zoological Society Present status of fish biodiversity and abundance in Shiba river, Bangladesh D.A. Khanom, T Khatun, M.A.S. Jewel*, M.D. Hossain and M.M. Rahman Department of Fisheries, University of Rajshahi, Rajshahi 6205, Bangladesh Abstract: The study was conducted to investigate the abundance and present status of fish biodiversity in the Shiba river at Tanore Upazila of Rajshahi district, Bangladesh. The study was conducted from November, 2016 to February, 2017. A total of 30 species of fishes were recorded belonging to nine orders, 15 families and 26 genera. Cypriniformes and Siluriformes were the most diversified groups in terms of species. Among 30 species, nine species under the order Cypriniformes, nine species of Siluriformes, five species of Perciformes, two species of Channiformes, two species of Mastacembeliformes, one species of Beloniformes, one species of Clupeiformes, one species of Osteoglossiformes and one species of Decapoda, Crustacea were found. Machrobrachium lamarrei of the family Palaemonidae under Decapoda order was the most dominant species contributing 26.29% of the total catch. In the Shiba river only 6.65% threatened fish species were found, and among them 1.57% were endangered and 4.96% were vulnerable. The mean values of Shannon-Weaver diversity (H), Margalef’s richness (D) and Pielou’s (e) evenness were found as 1.86, 2.22 and 0.74, respectively. Relationship between Shannon-Weaver diversity index (H) and pollution indicates the river as light to moderate polluted. -
Docket No. FWS–R2–ES–2020–0048; FF09E21000 FXES11110900000 201]
This document is scheduled to be published in the Federal Register on 09/15/2020 and available online at federalregister.gov/d/2020-17921, and on govinfo.gov Billing Code 4333–15 DEPARTMENT OF THE INTERIOR Fish and Wildlife Service 50 CFR Part 17 [Docket No. FWS–R2–ES–2020–0048; FF09E21000 FXES11110900000 201] RIN 1018–BE78 Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Georgetown and Salado Salamanders AGENCY: Fish and Wildlife Service, Interior. ACTION: Proposed rule; revisions and reopening of comment period. SUMMARY: We, the U.S. Fish and Wildlife Service (Service), are revising our proposed designation of critical habitat for the Georgetown salamander (Eurycea naufragia) and Salado salamander (Eurycea chisholmensis) in Bell and Williamson Counties, Texas. Based on published genetic analyses, we are revising the distribution of the Georgetown and Salado salamanders and are adjusting previously proposed critical habitat units accordingly. We also propose changes to our description of the physical or biological features essential to the conservation of the species. We propose a total of approximately 1,519 acres (ac) (622 hectares (ha)) of critical habitat for the species in Bell and Williamson Counties, Texas. The total amount of critical habitat we are proposing for both salamanders has increased by approximately 116 ac (47 ha). The reasons for this increase are the addition of a new occupied site for the Salado salamander and refined mapping of previously proposed critical habitat units based on more precise spring locations. We also announce the availability of a draft economic analysis (DEA) of the revised proposed designation of critical habitat for the Georgetown and Salado salamanders. -
Western Tiger Salamander,Ambystoma Mavortium
COSEWIC Assessment and Status Report on the Western Tiger Salamander Ambystoma mavortium Southern Mountain population Prairie / Boreal population in Canada Southern Mountain population – ENDANGERED Prairie / Boreal population – SPECIAL CONCERN 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Western Tiger Salamander Ambystoma mavortium in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xv + 63 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 33 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Schock, D.M. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada, in COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-33 pp. Production note: COSEWIC would like to acknowledge Arthur Whiting for writing the status report on the Western Tiger Salamander, Ambystoma mavortium, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Kristiina Ovaska, Co-chair of the COSEWIC Amphibians and Reptiles Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Salamandre tigrée de l’Ouest (Ambystoma mavortium) au Canada. -
The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae. -
La Marginación Y Exclusión Como Posibles Factores Socioeconómicos De La Violencia Urbana En El Estado De México
Papeles de Población ISSN: 1405-7425 [email protected] Universidad Autónoma del Estado de México México La marginación y exclusión como posibles factores socioeconómicos de la violencia urbana en el Estado de México López-Santiago, Marco Andrés; Hernández-Juárez, Martín; León-Merino, Aurelio La marginación y exclusión como posibles factores socioeconómicos de la violencia urbana en el Estado de México Papeles de Población, vol. 23, núm. 91, 2017 Universidad Autónoma del Estado de México, México Disponible en: https://www.redalyc.org/articulo.oa?id=11250327013 DOI: https://doi.org/10.22185/24487147.2017.91.008 PDF generado a partir de XML-JATS4R por Redalyc Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Marco Andrés López-Santiago, et al. La marginación y exclusión como posibles factores socioeconómi... La marginación y exclusión como posibles factores socioeconómicos de la violencia urbana en el Estado de México Marginalization and exclusion as possible socio-economical factors of urban violence: e Valle de Chalco Solidaridad, State of México case Marco Andrés López-Santiago DOI: https://doi.org/10.22185/24487147.2017.91.008 Universidad Autónoma de Chapingo, México Redalyc: https://www.redalyc.org/articulo.oa? [email protected] id=11250327013 Martín Hernández-Juárez Colegio de Postgraduados, México [email protected] Aurelio León-Merino Colegio de Postgraduados, México [email protected] Recepción: 03 Julio 2014 Aprobación: 20 Junio 2016 Resumen: En este artículo se muestran los resultados de la investigación relacionada con los factores socioeconómicos que influyen en la generación de las violencias en el municipio de Valle de Chalco Solidaridad, Estado de México. -
Axolotl Care Compiled by Dayna Willems, DVM
Axolotl Care Compiled by Dayna Willems, DVM Brief Description Axolotls (Ambystoma mexicanum) are a Mexican species of aquatic salamander that has rapidly come into the pet trade due to their hardy nature and unusual appearance. Axolotls are amphibians meaning that they do go through several stages of metamorphosis before reaching their adult form. Axolotls are unusual in that their adult/reproductive stage is the same as the juvenile aquatic stage. This is called neoteny and is often considered a “backward” step in evolution. Axolotls are closely related to Tiger Salamanders which do eventually morph into a terrestrial form. It should be noted that under extreme stress, an axolotl may morph into a terrestrial form, but their life is significantly shortened. Being amphibians, axolotls do not tolerate handling well and must stay in the water to breathe. They have sensitive skin and can absorb toxins from the water or your skin. Should you need to transport your axolotl or move it for tank maintenance, do not use a net. Nets can cause abrasions in your axolotl’s sensitive skin or damage the gills. Instead use a plastic cup to scoop your axolotl out of the enclosure. Lifespan Providing the correct care to your axolotl will ensure a long life. Average life expectancy is around 10 years, but reports have been found of axolotls living into their 20’s. Their adult size is around 10 to 12 inches; which they typically reach within the first year of their life. Sexing Axolotls reach sexual maturity when they are around 6-8 inches long. -
A Checklist and Annotated Bibliography of the Subterranean Aquatic Fauna of Texas
A CHECKLIST AND ANNOTATED BIBLIOGRAPHY OF THE SUBTERRANEAN AQUATIC FAUNA OF TEXAS JAMES R. REDDELL and ROBERT W. MITCHELL Texas Technological College WATER RESOURCES \ CENTER Lubbock, Texas WRC 69-6 INTERNATIONAL CENTER for ARID and August 1969 SEMI-ARID LAND STUDIES A CHECKLIST AND ANNOTATED BIBLIOGRAPHY OF THE SUBTERRANEAN AQUATIC FAUNA OF TEXAS James R. Reddell and Robert W. Mitchell Department of Biology Texas Tech University Lubbock, Texas INTRODUCTION In view of the ever-increasing interest in all studies relating to the water resources of Texas, we have found it timely to prepare this guide to the fauna and biological literature of our subterranean waters. The value of such a guide has already been demonstrated by Clark (1966) in his "Publications, Personnel, and Government Organizations Related to the Limnology, Aquatic Biology and Ichthyology of the Inland Waters of Texas". This publication dea ls primarily with inland surface waters, however, barely touching upon the now rather extensive literature which has accumulated on the biology of our subterranean waters. To state a n obvious fact, it is imperative that our underground waters receive the attention due them. They are one of our most important resources. Those subterranean waters for which biological data exi st are very un equally distributed in the state. The best known are those which are acces sible to collection and study via the entrances of caves. Even in cavernous regions there exist inaccessible deep aquifers which have yielded little in formation as yet. Biological data from the underground waters of non-cave rn ous areas are virtually non-existant. -
COPYRIGHTED MATERIAL NOT for DISTRIBUTION Figure 0.3
Contents Acknowledgments ix A Brief Note on Usage xiii Introduction: History and Tlaxilacalli 3 Chapter 1: The Rise of Tlaxilacalli, ca. 1272–1454 40 Chapter 2: Acolhua Imperialisms, ca. 1420s–1583 75 Chapter 3: Community and Change in Cuauhtepoztlan Tlaxilacalli, ca. 1544–1575 97 Chapter 4: Tlaxilacalli Religions, 1537–1587 123 COPYRIGHTED MATERIAL Chapter 5: TlaxilacalliNOT FOR Ascendant, DISTRIBUTION 1562–1613 151 Chapter 6: Communities Reborn, 1581–1692 174 Conclusion: Tlaxilacalli and Barrio 203 List of Acronyms Used Frequently in This Book 208 Bibliography 209 Index 247 vii introduction History and Tlaxilacalli This is the story of how poor, everyday central Mexicans built and rebuilt autono- mous communities over the course of four centuries and two empires. It is also the story of how these self-same commoners constructed the unequal bonds of compul- sion and difference that anchored these vigorous and often beloved communities. It is a story about certain face-to-face human networks, called tlaxilacalli in both singular and plural,1 and about how such networks molded the shape of both the Aztec and Spanish rule.2 Despite this influence, however, tlaxilacalli remain ignored, subordinated as they often were to wider political configurations and most often appearing unmarked—that is, noted by proper name only—in the sources. With care, however, COPYRIGHTEDthe deeper stories of tlaxilacalli canMATERIAL be uncovered. This, in turn, lays bare a root-level history of autonomy and colonialism in central Mexico, told through the powerfulNOT and transformative FOR DISTRIBUTION tlaxilacalli. The robustness of tlaxilacalli over thelongue durée casts new and surprising light on the structures of empire in central Mexico, revealing a counterpoint of weakness and fragmentation in the canonical histories of centralizing power in the region. -
Salado Residents Want Better Science on Salamander
Shopping Map of Salado on pages 4B-5B Salado illageillage oiceoice VOL. XXXV, NUMBER 9V TVHUrsDAY, JUNE 21, 2012 254/947-5321 FAX 254/947-9479 V V WWW.SALADOVILLAGEVOICE.COM 50¢ Residents want better science on salamander BY TIM FLEISCHER of the Salado Creek water- line the approach to the EDITOR-IN-CHIEF shed and the water quality $60,000 year-long study and water quantity of the and to introduce the prin- As traffic on Highway habitat of the Salado sala- cipal scientists who will be 45 in Round Rock roared mander. gathering data in the com- overhead, Congressman Neither of these efforts ing months. John Carter announced are likely to impact the Meanwhile, the U.S. at a June 18 press confer- pending decision by the Fish and Wildlife Service ence his plans to attach an U.S. Fish and Wildlife Ser- (FWS) is slated to an- amendment to the Interior vice to add the Salado sala- nounce whether the four and Environment Appro- mander as an Endangered species of salamanders in priations Bill that would species. Bell, Williamson and Tra- strip any funding “to ad- While Rep. Carter said vis counties will be listed vance or pursue adding any he will propose the House as endangered. The dead- of the population of blind bill amendment within a line for FWS to propose salamanders of Salado, week, the Appropriations those species for listing is Jollyville Plateau, George- bill has many hurdles to Sept. 30. The schedule for town or Austin, Texas, to pass. First, it has to get out listing the salamander spe- the list of endangered spe- of Appropriations com- cies is part of a settlement cies or as a threatened spe- mittee (with the amend- between USFWS and the cies under the Endangered ment in place) and to the Center for Biological Di- Species Act of 1973.” House floor. -
Copyright Warning & Restrictions
Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty. ABSTRACT THESE FISH WERE MADE FOR WALKING: MORPHOLOGY AND WALKING KINEMATICS IN BALITORID LOACHES by Callie Hendricks Crawford Terrestrial excursions have been observed in multiple lineages of marine and freshwater fishes. These ventures into the terrestrial environment may be used when fish are searching out new habitat during drought, escaping predation, laying eggs, or seeking food sources.