Cranial Nerves

Total Page:16

File Type:pdf, Size:1020Kb

Cranial Nerves Cranial nerves Things I’m going to cover and you’re going to understand • General informaon about cranial nerves • Systemac explanaon about cranial nerves I-IV and VI • Visual pathway • Annulous of Zinn and Cavernous Sinus • Extraocular muscles • Systemac explanaon of cranial nerves V and VII-XII • Summary of reflexes The cranial nerves I. Olfactory nerve VI. Abducens nerve II. Opc nerve VII. Facial nerve III. Oculomotor nerve VIII. Ves,bulocochlear nerve IV. Trochlear nerve IX. Glossopharyngeal nerve V. Trigeminal nerve X. Vagus nerve I. Opthalmic XI. Accessory nerve II. Maxillary I. Cranial III. Mandibular II. Spinal XII. Hypoglossal nerve Sensory, motor or both? I. Some VII. Brother II. Say VIII. Says III. Marry IX. Big IV. Money X. Brains V. But XI. Maer VI. My XII. More Olfactory nerve • Sensory • Exits via the cribriform plate • An extension of telencephalon • Clinical: • Anosmia • Ethmoidal fracture or Foster-Kennedy syndrome • Rhinorrhea • Can lead to life threatning infecon Optic nerve • Sensory nerve • Exits via the opc canal • Extension of diencephalon • Reflexes associated with CN. II: • Pupillary light reflex • Accommodaon reflex • Clinical: • Papilledema (increase in intercranial pressure) • Opc atrophy (greater wing of sphenoid fracture) • Glaucoma (Excess of fluid in anterior poron of eye) Visual Pathway • I’m going to draw, despite lacking the ability! Oculomotor, Trochlear and Abducens nerve • Motor nerves • Oculomotor has parasympathe,c fibers (sphincter pupillae and ciliary muscles) • Levator palpebra superioris • All exit via the superior orbital fissure • Reflexes associated with CN. III • Pupillary reflex • Accommodaon reflex Extraocular muscles • Superior oblique • Inferior oblique • Superior rectus • Inferior rectus • Medial rectus • Lateral rectus Lesions of CN. III, IV or VI Summary of palsies affecting the eye • Trochlear (IV) nerve palsy • Ver,cal diplopia and nystagmus • Difficulty walking down stairs and reading • Head ,lt away from damaged side • Abducens (VI) nerve palsy • Damaged eye fixed medially • Horizontal diplopia and nystagmus • Oculomotor (III) nerve palsy • Damaged eye fixed in ”down and out”-gaze • Diplopia and nystagmus • Ptosis (droopy eyelid), constant mydrasis (dilated pupil) and absence of accomodaon reflex Cavernous sinus (O TOM CAT) Annulus of Zinn aka Common tendinous ring • The common origin of the rectus muscles • Contents: • Opc nerve • Oculomotor nerve • Nasociliary nerve of V1 • Abducens nerve • Trochlear nerve does not pass! Trigeminal nerve • Both sensory and motor • Divided into three divisions • Opthalmic nerve exits skull through the superior orbital fissure • Maxillary nerve exits skull through the foramen rotundum • Mandibular nerve exits skull through the foramen ovale • SRO – Standing Room Only Opthalmic nerve • Sensory nerve that innervates • Dorsum of nose, upper eyelid, forehead, scalp • Frontal sinuses and ethmoidal sinuses • Afferent poron of the corneal reflex Branches of opthalmic nerve Communicang branch from Opthalmic Maxillary nerve nerve Pure sensory Meningeal branch Innervates meninges Frontal Nasociliary Lacrimal Lacrimal gland Long ciliary Posterior Anterior Supratrochlear Supraorbital Infratrochlear nerves ethmoidal ethmoidal Forehead Frontal sinus, scalp Dilator pupilae Ethmoidal sinus Part of nasal Upper eyelid and cornea cavity Maxillary nerve • Sensory nerve that innervates • From lower eye lid down to upper lip, nasal cavity, nasopharynx, maxillary teeth, gingiva • Maxillary sinuses Branches of Maxillary nerve Maxillary nerve Meningeal branch Ganglionic branches To Pterygopalane ggl Zygomac Infraorbital Lower eye lid, upper lip Zygomacofacial Zygomacotemporal Pos sup Mid sup Ant sup Side of Cheek alveolar alveolar alveolar forehead Molars Premolars Incisors Superior dental plexus Sensory division of the Mandibular nerve • Meningeal branch, lower lip, chin, mandibular teeth and gingiva (en,re mandible) • Mucous membranes • General sensaon to anterior 2/3 of tongue (NOT TASTE) Motor division of Mandibular Nerve • Muscles of mas,caon • Temporalis (elevates mandible) • Masseter (elevates mandible and grind food) • Medial pterygoid (elevates mandible) • Lateral pterygoid (depresses mandible) • Anterior belly of digastric and mylohyoid • Tensor veli palani (tenses so palate while swallowing) • Tensor tympani (dampens noise) Facial Nerve Facial nerve Greater Bells palsy: Facial nerve palsy petrosal Parasymp Stapedial Motor Chorda tympani Parasymp and taste Petrous part (intracranial) Extracranial Posterior auricular Nerve to Sensory stylohyoid and posterior digastric Facial paralysis Motor Pes Anserius Motor to face Vestibulocochlear nerve • Pure sensory • Divided into two parts; The ves,bular and the cochlear • Enters the internal acous,c meatus and innervates the vesbules and cochlea Glossopharyngeal nerve • Both sensory, motor and parasympathe,c • Tympanic nerve • Nerve to stylopharyngeus • Pharyngeal branch • Sensory to oropharynx • Afferent part of the gag reflex • Tonsilar branch • Lingual branch • Posterior 1/3 tongue taste and sensaon • Caro,d body branch Vagus nerve • Sensory, motor and parasympathe,c • The last of the four parasympathe,c cranial nerves! • The wanderer • Innervates all muscles of larynx, pharynx (except stylopharyngeus), palate (except tensor veli palani) and palatoglossus Vagus Meningeal Pharyngeal *Damage to vagus will result in branch branches inability to cough and deviaon Pharyngeal muscles + of uvula away from damaged palatoglossus side Internal branch - Accompanied by superior laryngeal artery Auricular Superior laryngeal External branch - Accompanied by branch superior thyroid artery Sensory to parts of external ear External Internal Recurrent branch branch laryngeal Sensory to larynx below Sensory of larynx above vocal chord and motor to all Cricothyroid vocal chord laryngeal muscles except cricothyroid Accessory nerve • Pure motor nerve • Spinal accessory innervates sternocleidomastoid and trapezius • Lesion results in inability to shrug and ,lted neck • Cranial accessory joins the vagus and contributes to the pharyngeal plexus Hypoglossal nerve • Purely somac efferent that innervates all muscles of the tongue, except the palatoglossus • Lesion of the XII result in deviaon of the tongue to the affected side • Due to imbalances of the genioglossus muscles Exceptions! • Palate • Sensory: V2 • Motor: X, except tensor veli palani (V3) • Tongue • Sensory: V3, IX, VII (taste, not general sensory) • Motor: XII, except palatoglossus (X) • Pharynx • Sensory: V2, IX, X • Motor: X, except stylopharyngeus (IX) • Larynx • Sensory: Internal laryngeal nerve (X) • Motor: Recurrent laryngeal nerve, except Cricothyroid (external laryngeal nerve) Summary of reflexes • Pupillary light reflex (aII, eIII) • Corneal reflex (aV1, eVII) • Accommodaon reflex (aII, eIII) • Jaw-jerk reflex (aV3, eV3) • Gag reflex (aIX, eX) • Sneeze reflex (aV2, eX) • Cough reflex (aX, eX) • a= afferent • e=efferent .
Recommended publications
  • Nerves of the Orbit Optic Nerve the Optic Nerve Enters the Orbit from the Middle Cranial Fossa by Passing Through the Optic Canal
    human anatomy 2016 lecture fourteen Dr meethak ali ahmed neurosurgeon Nerves of the Orbit Optic Nerve The optic nerve enters the orbit from the middle cranial fossa by passing through the optic canal . It is accompanied by the ophthalmic artery, which lies on its lower lateral side. The nerve is surrounded by sheath of pia mater, arachnoid mater, and dura mater. It runs forward and laterally within the cone of the recti muscles and pierces the sclera at a point medial to the posterior pole of the eyeball. Here, the meninges fuse with the sclera so that the subarachnoid space with its contained cerebrospinal fluid extends forward from the middle cranial fossa, around the optic nerve, and through the optic canal, as far as the eyeball. A rise in pressure of the cerebrospinal fluid within the cranial cavity therefore is transmitted to theback of the eyeball. Lacrimal Nerve The lacrimal nerve arises from the ophthalmic division of the trigeminal nerve. It enters the orbit through the upper part of the superior orbital fissure and passes forward along the upper border of the lateral rectus muscle . It is joined by a branch of the zygomaticotemporal nerve, whi(parasympathetic secretomotor fibers). The lacrimal nerve ends by supplying the skin of the lateral part of the upper lid. Frontal Nerve The frontal nerve arises from the ophthalmic division of the trigeminal nerve. It enters the orbit through the upper part of the superior orbital fissure and passes forward on the upper surface of the levator palpebrae superioris beneath the roof of the orbit .
    [Show full text]
  • Maxillary Nerve-Mediated Postseptoplasty Nasal Allodynia: a Case Report
    E CASE REPORT Maxillary Nerve-Mediated Postseptoplasty Nasal Allodynia: A Case Report Shikha Sharma, MD, PhD,* Wilson Ly, MD, PharmD,* and Xiaobing Yu, MD*† Endoscopic nasal septoplasty is a commonly performed otolaryngology procedure, not known to cause persistent postsurgical pain or hypersensitivity. Here, we discuss a unique case of persis- tent nasal pain that developed after a primary endoscopic septoplasty, which then progressed to marked mechanical and thermal allodynia following a revision septoplasty. Pain symptoms were found to be mediated by the maxillary division of the trigeminal nerve and resolved after percuta- neous radiofrequency ablation (RFA) of bilateral maxillary nerves. To the best of our knowledge, this is the first report of maxillary nerve–mediated nasal allodynia after septoplasty. (A&A Practice. 2020;14:e01356.) GLOSSARY CT = computed tomography; FR = foramen rotundum; HIPAA = Health Insurance Portability and Accountability Act; ION = infraorbital nerve; LPP = lateral pterygoid plate; MRI = magnetic reso- nance imaging; RFA = radiofrequency ablation; SPG = sphenopalatine ganglion; US = ultrasound ndoscopic nasal septoplasty is a common otolaryn- septoplasty for chronic nasal obstruction with resection of gology procedure with rare incidence of postsurgical the cartilage inferiorly and posteriorly in 2010. Before this Ecomplications. Minor complications include epistaxis, surgery, the patient only occasionally experienced mild septal hematoma, septal perforation, cerebrospinal fluid leak, headaches. However, his postoperative course was compli- and persistent obstruction.1 Numbness or hypoesthesia of the cated by significant pain requiring high-dose opioids. After anterior palate, secondary to injury to the nasopalatine nerve, discharge, patient continued to have persistent deep, “ach- has been reported, but is usually rare and temporary, resolv- ing” nasal pain which radiated toward bilateral forehead ing over weeks to months.2 Acute postoperative pain is also and incisors.
    [Show full text]
  • Neurophysiological Aspects of the Trigeminal Sensory System: an Update
    Rev. Neurosci. 2018; 29(2): 115–123 Frederic Van der Cruyssen* and Constantinus Politis Neurophysiological aspects of the trigeminal sensory system: an update https://doi.org/10.1515/revneuro-2017-0044 Keywords: infraorbital; mandibular; neurophysiology; Received June 21, 2017; accepted July 20, 2017; previously published ophthalmic nerve; oral somatosensory functioning; online November 8, 2017 trigeminal sensory system. Abstract: The trigeminal system is one of the most complex cranial nerve systems of the human body. Research on it has vastly grown in recent years and concentrated more and more on molecular mechanisms and pathophysiology, Introduction but thorough reviews on this topic are lacking, certainly Knowledge about physiological aspects of the trigeminal on the normal physiology of the trigeminal sensory system. system today is largely based on animal models (Akerman Here we review the current literature on neurophysiology and Goadsby, 2015; Herta et al., 2017), cadaver studies of the trigeminal nerve from peripheral receptors up to its (Ezure et al., 2001; Williams et al., 2003) or extrapola- central projections toward the somatosensory cortex. We tions from peripheral nerve functioning. Human studies focus on the most recent scientific discoveries and describe are frequently limited to pathophysiology and lack proper historical relevant research to substantiate further. One study designs (Tanaka and Zhao, 2016; Goadsby et al., chapter on new insights of the pathophysiology of pain 2017). Neurophysiological research in this area is difficult at the level of the trigeminal system is added. A database due to the invasive character of most neurophysiological search of Medline, Embase and Cochrane was conducted tests, the small caliber of fibers, high density of receptors, with the search terms ‘animal study’, ‘neurophysiology’, cross-connections between different cranial nerves, dif- ‘trigeminal’, ‘oral’ and ‘sensory’.
    [Show full text]
  • Simple Ways to Dissect Ciliary Ganglion for Orbital Anatomical Education
    OkajimasDetection Folia Anat. of ciliary Jpn., ganglion94(3): 119–124, for orbit November, anatomy 2017119 Simple ways to dissect ciliary ganglion for orbital anatomical education By Ming ZHOU, Ryoji SUZUKI, Hideo AKASHI, Akimitsu ISHIZAWA, Yoshinori KANATSU, Kodai FUNAKOSHI, Hiroshi ABE Department of Anatomy, Akita University Graduate School of Medicine, Akita, 010-8543 Japan –Received for Publication, September 21, 2017– Key Words: ciliary ganglion, orbit, human anatomy, anatomical education Summary: In the case of anatomical dissection as part of medical education, it is difficult for medical students to find the ciliary ganglion (CG) since it is small and located deeply in the orbit between the optic nerve and the lateral rectus muscle and embedded in the orbital fat. Here, we would like to introduce simple ways to find the CG by 1): tracing the sensory and parasympathetic roots to find the CG from the superior direction above the orbit, 2): transecting and retracting the lateral rectus muscle to visualize the CG from the lateral direction of the orbit, and 3): taking out whole orbital structures first and dissecting to observe the CG. The advantages and disadvantages of these methods are discussed from the standpoint of decreased laboratory time and students as beginners at orbital anatomy. Introduction dissection course for the first time and with limited time. In addition, there are few clear pictures in anatomical The ciliary ganglion (CG) is one of the four para- textbooks showing the morphology of the CG. There are sympathetic ganglia in the head and neck region located some scientific articles concerning how to visualize the behind the eyeball between the optic nerve and the lateral CG, but they are mostly based on the clinical approaches rectus muscle in the apex of the orbit (Siessere et al., rather than based on the anatomical procedure for medical 2008).
    [Show full text]
  • The Mandibular Nerve - Vc Or VIII by Prof
    The Mandibular Nerve - Vc or VIII by Prof. Dr. Imran Qureshi The Mandibular nerve is the third and largest division of the trigeminal nerve. It is a mixed nerve. Its sensory root emerges from the posterior region of the semilunar ganglion and is joined by the motor root of the trigeminal nerve. These two nerve bundles leave the cranial cavity through the foramen ovale and unite immediately to form the trunk of the mixed mandibular nerve that passes into the infratemporal fossa. Here, it runs anterior to the middle meningeal artery and is sandwiched between the superior head of the lateral pterygoid and tensor veli palatini muscles. After a short course during which a meningeal branch to the dura mater, and the nerve to part of the medial pterygoid muscle (and the tensor tympani and tensor veli palatini muscles) are given off, the mandibular trunk divides into a smaller anterior and a larger posterior division. The anterior division receives most of the fibres from the motor root and distributes them to the other muscles of mastication i.e. the lateral pterygoid, medial pterygoid, temporalis and masseter muscles. The nerve to masseter and two deep temporal nerves (anterior and posterior) pass laterally above the medial pterygoid. The nerve to the masseter continues outward through the mandibular notch, while the deep temporal nerves turn upward deep to temporalis for its supply. The sensory fibres that it receives are distributed as the buccal nerve. The 1 | P a g e buccal nerve passes between the medial and lateral pterygoids and passes downward and forward to emerge from under cover of the masseter with the buccal artery.
    [Show full text]
  • Morphometry and Morphology of Foramen Petrosum in Indian Population
    Basic Sciences of Medicine 2020, 9(1): 8-9 DOI: 10.5923/j.medicine.20200901.02 Morphometry and Morphology of Foramen Petrosum in Indian Population Rajani Singh1,*, Nand Kishore Gupta1, Raj Kumar2 1Department of Anatomy, Uttar Pradesh University of Medical Sciences Saifai 206130 Etawah UP India 2Department of Neurosugery Uttar Pradesh University of Medical Sciences Saifai 206130 Etawah UP India Abstract Greater wing of sphenoid contains three constant foramina, Foramen ovale, foramen rotundum and foramen spinosum. The presence of foramen Vesalius and foramen petrosum are inconsistent. Normally foramen ovale transmits mandibular nerve, accessory meningeal artery, lesser petrosal nerve and emissary vein. When foramen petrosum is present, lesser petrosal nerve passes through petrosal foramen instead of foramen ovale. Lesser petrosal nerve distribute postganglionic fibers from otic ganglion to parotid gland. In absence of knowledge of petrosal foramen transmitting lesser petrosal nerve, the clinician may damage the nerve during skull base surgery creating complications like hyperemia of face and profuse salivation from the parotid gland (following atropine administration), lacrimation (crocodile tears syndrome) and mucus nasal secretion. Considering clinical implications associated with petrosal foramen, the study was carried out. The aim of the study is to determine the prevalence of petrosal foramen in Indian Population and to bring out associated clinical significance. The study was conducted in the department of Anatomy UPUMS Saifai Etawah Indian. 30 half skulls were observed for the presence of petrosal foramina and morphometry was also done. Literature search was carried out, our findings were compared with previous work and associated clinical implications were bought out. Keywords Petrosal foramen, Lesser petrosal nerve, Foramen ovale patients.
    [Show full text]
  • Cranial Neuralgias
    CRANIAL NEURALGIAS Presented by: Neha Sharma M.D. Date: September 27th, 2019 TYPES OF NEURALGIAS ❖ TRIGEMINAL NEURALGIA ❖ GLOSSOPHARYNGEAL NEURALGIA ❖ NASOCILIARY NEURALGIA ❖ SUPERIOR LARYNGEAL NEURALGIA ❖ SUPRAORBITAL NEURALGIA ❖ OCCIPITAL NEURALGIA ❖ SPHENOPALATINE NEURALGIA ❖ GREAT AURICULAR NEURALGIA ❖ NERVUS INTERMEDIUS NEURALGIA ❖ TROCHLEAR NEURALGIA WHAT IS CRANIAL NEURALGIA? ❖ Paroxysmal pain of head, face and/or neck ❖ Unilateral sensory nerve distribution ❖ Pain is described as sharp, shooting, lancinating ❖ Primary or Secondary causes ❖ Multiple triggers TRIGEMINAL (CN V) NEURALGIA TRIGEMINAL NEURALGIA ❖ Also called Tic Douloureux ❖ Sudden, unilateral, electrical, shock-like, shooting, sharp pain. Presents affecting Cranial Nerve V; primarily V2 and V3 branches ❖ F>M; 3:1 TRIGEMINAL NEURALGIA ❖ Anatomy of Trigeminal Nerve ❖ Cranial Nerve V ❖ Three Branches: Ophthalmic, Maxillary and Mandibular ❖ Sensory supply to forehead/supraorbital, cheeks and jaw https://www.nf2is.org/cn5.php TRIGEMINAL NEURALGIA – TRIGGERS ❖ Mastication (73%) ❖ Eating (59%) ❖ Touch (69%) ❖ Talking (58%) ❖ Brushing Teeth (66%) ❖ Cold wind (50%) TYPES OF TRIGEMINAL NEURALGIA ❖ Primary/Classic/Idiopathic ❖ Vascular compression of the nerve – superior cerebellar artery ❖ Secondary/Symptomatic ❖ Caused by intracranial lesions ❖ Tumors, Strokes, Multiple Sclerosis (4%) ❖ Typical vs. Atypical ❖ Paroxysmal (79%) vs. Continuous (21%) IASP/IHS & CLASSIFICATIONS OF TRIGEMINAL NEURALGIA ❖ IASP – International Association ❖ Classifications for the Study of Pain ❖ I
    [Show full text]
  • Clinical Anatomy of the Trigeminal Nerve
    Clinical Anatomy of Trigeminal through the superior orbital fissure Nerve and courses within the lateral wall of the cavernous sinus on its way The trigeminal nerve is the fifth of to the trigeminal ganglion. the twelve cranial nerves. Often Ophthalmic Nerve is formed by the referred to as "the great sensory union of the frontal nerve, nerve of the head and neck", it is nasociliary nerve, and lacrimal named for its three major sensory nerve. Branches of the ophthalmic branches. The ophthalmic nerve nerve convey sensory information (V1), maxillary nerve (V2), and from the skin of the forehead, mandibular nerve (V3) are literally upper eyelids, and lateral aspects "three twins" carrying information of the nose. about light touch, temperature, • The maxillary nerve (V2) pain, and proprioception from the enters the middle cranial fossa face and scalp to the brainstem. through foramen rotundum and may or may not pass through the • The three branches converge on cavernous sinus en route to the the trigeminal ganglion (also called trigeminal ganglion. Branches of the semilunar ganglion or the maxillary nerve convey sensory gasserian ganglion), which contains information from the lower eyelids, the cell bodies of incoming sensory zygomae, and upper lip. It is nerve fibers. The trigeminal formed by the union of the ganglion is analogous to the dorsal zygomatic nerve and infraorbital root ganglia of the spinal cord, nerve. which contain the cell bodies of • The mandibular nerve (V3) incoming sensory fibers from the enters the middle cranial fossa rest of the body. through foramen ovale, coursing • From the trigeminal ganglion, a directly into the trigeminal single large sensory root enters the ganglion.
    [Show full text]
  • Atlas of the Facial Nerve and Related Structures
    Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries.
    [Show full text]
  • Anatomy of the Periorbital Region Review Article Anatomia Da Região Periorbital
    RevSurgicalV5N3Inglês_RevistaSurgical&CosmeticDermatol 21/01/14 17:54 Página 245 245 Anatomy of the periorbital region Review article Anatomia da região periorbital Authors: Eliandre Costa Palermo1 ABSTRACT A careful study of the anatomy of the orbit is very important for dermatologists, even for those who do not perform major surgical procedures. This is due to the high complexity of the structures involved in the dermatological procedures performed in this region. A 1 Dermatologist Physician, Lato sensu post- detailed knowledge of facial anatomy is what differentiates a qualified professional— graduate diploma in Dermatologic Surgery from the Faculdade de Medician whether in performing minimally invasive procedures (such as botulinum toxin and der- do ABC - Santo André (SP), Brazil mal fillings) or in conducting excisions of skin lesions—thereby avoiding complications and ensuring the best results, both aesthetically and correctively. The present review article focuses on the anatomy of the orbit and palpebral region and on the important structures related to the execution of dermatological procedures. Keywords: eyelids; anatomy; skin. RESU MO Um estudo cuidadoso da anatomia da órbita é muito importante para os dermatologistas, mesmo para os que não realizam grandes procedimentos cirúrgicos, devido à elevada complexidade de estruturas envolvidas nos procedimentos dermatológicos realizados nesta região. O conhecimento detalhado da anatomia facial é o que diferencia o profissional qualificado, seja na realização de procedimentos mini- mamente invasivos, como toxina botulínica e preenchimentos, seja nas exéreses de lesões dermatoló- Correspondence: Dr. Eliandre Costa Palermo gicas, evitando complicações e assegurando os melhores resultados, tanto estéticos quanto corretivos. Av. São Gualter, 615 Trataremos neste artigo da revisão da anatomia da região órbito-palpebral e das estruturas importan- Cep: 05455 000 Alto de Pinheiros—São tes correlacionadas à realização dos procedimentos dermatológicos.
    [Show full text]
  • A Review of the Mandibular and Maxillary Nerve Supplies and Their Clinical Relevance
    AOB-2674; No. of Pages 12 a r c h i v e s o f o r a l b i o l o g y x x x ( 2 0 1 1 ) x x x – x x x Available online at www.sciencedirect.com journal homepage: http://www.elsevier.com/locate/aob Review A review of the mandibular and maxillary nerve supplies and their clinical relevance L.F. Rodella *, B. Buffoli, M. Labanca, R. Rezzani Division of Human Anatomy, Department of Biomedical Sciences and Biotechnologies, University of Brescia, V.le Europa 11, 25123 Brescia, Italy a r t i c l e i n f o a b s t r a c t Article history: Mandibular and maxillary nerve supplies are described in most anatomy textbooks. Accepted 20 September 2011 Nevertheless, several anatomical variations can be found and some of them are clinically relevant. Keywords: Several studies have described the anatomical variations of the branching pattern of the trigeminal nerve in great detail. The aim of this review is to collect data from the literature Mandibular nerve and gives a detailed description of the innervation of the mandible and maxilla. Maxillary nerve We carried out a search of studies published in PubMed up to 2011, including clinical, Anatomical variations anatomical and radiological studies. This paper gives an overview of the main anatomical variations of the maxillary and mandibular nerve supplies, describing the anatomical variations that should be considered by the clinicians to understand pathological situations better and to avoid complications associated with anaesthesia and surgical procedures. # 2011 Elsevier Ltd.
    [Show full text]
  • 05 Trigeminal System 2013.Pdf
    Dental Neuroanatomy Thursday February 7th, 2013 David A. Morton, Ph.D. 5. THE TRIGEMINAL SYSTEM Somatic Sensation of the Face and Head Objectives 1. Outline the two pathways for facial sensation from the head. 2. Contrast facial sensation from the head and somatic sensation from the body. In what ways are they similar? Different? Try drawing this on the Haines atlas diagram at the end of the lecture. 3. Diagram the corneal reflex: the afferent and efferent limbs as well as nuclei involved in the brainstem. 4. If a person does not blink, how would you determine if the problem were in the sensory (afferent) limb, motor (efferent) limb, or brainstem interconnections for the corneal reflex? 5. Explain how a single, small medullary vascular lesion could abolish pain and temperature from the face on the right side and pain and temperature from the body on the left side. What vessel is most likely occluded? Introduction – The trigeminal system for the face and oral cavity is organized in a manner similar to the spinal cord. It has the equivalent of both the DCML pathway and the ALS pathway. The two trigeminal pathways will converge in the thalamus. The most confusing thing is that one of them descends before crossing and the other crosses immediately. Peripheral Receptors and Sensation Structures served by trigeminal system. 1. Cornea 2. Mucocutaneous tissues around mouth and nostrils. 3. Oral and nasal mucosae 4. Paranasal sinuses 5. Tongue (anterior two thirds) 6. Teeth and gums 7. Dura of anterior and middle cranial fossae 8. Skin of face to the vertex except angle of jaw 9.
    [Show full text]