Genevista Fetal Dysmorphology: an Indispensable Tool for Synthesis Of

Total Page:16

File Type:pdf, Size:1020Kb

Genevista Fetal Dysmorphology: an Indispensable Tool for Synthesis Of GeNeViSTA Fetal Dysmorphology: An Indispensable Tool for Synthesis of Perinatal Diagnosis Shagun Aggarwal Department of Medical Genetics, Nizam’s Institute of Medical Sciences, Hyderabad & Centre for DNA Fingerprinting and Diagnostics, Hyderabad Email: [email protected] Introduction for pregnancy management as it aids in accurate prognostication and communicating the possibility of intellectual disability and other co-morbidities in Dysmorphology is the science (and art!) of studying such children, helps in decision-making regarding abnormal form, with special emphasis on subtle termination or continuation of pregnancy, facili- ndings which provide clue to an underlying diag- tates appropriate postnatal management and also nosis, mostly a genetic syndrome. It has been the provides recurrence risk estimates for subsequent prime tool of the geneticist enabling a syndromic conceptions. In the postnatal scenario, such a diag- diagnosis on basis of patient’s gestalt with ndings nosis facilitates emotional closure, recurrence risk like a white forelock, heterochromia iridis, broad counseling and early, denitive prenatal diagnosis thumb, asymmetric crying facies and many other in subsequent pregnancies. subtle features acting as decisive tools in the ge- Any morphological or growth abnormality in the netics clinic. Most individuals with dysmorphism fetal life can be an isolated abnormality of multi- are affected with genetic syndromes, which can factorial origin, the consequence of environmental be due to chromosomal abnormalities, copy num- etiologies like a teratogenic insult, intrauterine fac- ber variations or single gene defects. However, tors, maternal illness, etc. or a component of a various environmental factors can also lead to genetic syndrome. In such a scenario, it is impor- dysmorphism, many times mimicking specic ge- tant to be aware of these possibilities, and perform netic syndromes due to involvement of a common a complete dysmorphological evaluation with an biological pathway. A dysmorphological evaluation aim to distinguish between these different situa- typically involves a head to toe examination look- tions with varied prognosis and recurrence risks. ing for malformations, and minor features showing Figure 1 shows some common fetal abnormalities deviation from the expected norm as per sex, and respective etiologies. age, family background and ethnicity. This often forms the rst and most crucial step in establishing a genetic diagnosis and is subsequently followed Setting of fetal dysmorphology by relevant genetic testing for conrmation. In There are two main settings where syndromic di- the era of next generation sequencing when the agnosis in the fetus is a possibility and should be rate of gene discovery has surpassed the clini- actively looked for: cal recognition of a new genetic syndrome and reverse phenotyping has become commonplace, a. Abnormal antenatal ultrasound. dysmorphology still remains an important tool in the hands of an experienced geneticist. b. Postmortem evaluation of an unexplained fetal demise or morphologically abnormal fetus. Although as a discipline dysmorphology evolved in the paediatrics setting, it can be extended to Abnormal antenatal ultrasound: Abnormal- the fetal life to enable the diagnosis of a genetic ities• on antenatal ultrasound can be found in syndrome in the fetus. The recognition of a genetic 5-10% of pregnancies. These can vary from growth syndrome in particular, has important implications abnormalities, major or minor malformations, soft Genetic Clinics 2017 | April - June | Vol 10 | Issue 2 11 GeNeViSTA Fetal abnormality Acquired etiologies Genetic etiologies Naso-maxillary • Fetal warfarin syndrome • Brachytelephalangic hypoplasia/Binder • Vitamin K deficiency chondrodysplasia punctata facies • Keutel syndrome • Vitamin K metabolism defects Talipes- • Oligohydramnios • Chromosomal disorders: sex equinovarus • Uterine malformations chromosome aneuploidy • Multiple pregnancy • Neuromuscular disorders • Skeletal dysplasias Cleft lip • Multifactorial • Isolated Mendelian* • Fetal hydantoin syndrome • Syndromic- chromosomal disorders, copy number abnormalities or Mendelian disorders# Ventriculomegaly • Fetal infections • Isolated Mendelian* • Intracranial hemorrhage • Syndromic- Chromosomal disorders • Associated with neural • Copy number abnormalities tube defect (multifactorial) • Mendelian disorders# Hydrops fetalis • Blood group antigen • Chromosomal disorders: Turner isoimmunisation syndrome, Down syndrome • Fetal infections esp. • Mendelian disorders#: Noonan Parvovirus syndrome, primary lymphatic • Hypothyroidism dysplasias, alpha thalassemia, • Congenital heart block, lysosomal storage disorders, others fetal arrhythmias • Cardiac defects Neural tube defect • Maternal diabetes • Isolated Mendelian* • Maternal hyperthermia • Syndromic- Chromosomal, • Folate deficiency Mendelian# eg. Meckel-Gruber syndrome, Spondylocostal dysostosis *Isolated Mendelian: Isolated defect due to mutation in single gene #Syndromic Mendelian disorder: A spectrum of multiple defects arising due to mutation in single gene Figure 1 Common fetal abnormalities and their etiologies. markers and liquor or placental abnormalities. along with relevant images to enable recognition of At least 10-30% of prenatally detected malforma- dysmorphic facies, recognize the pattern of abnor- tions are due to a genetic etiology (Beke et al., malities and elicit a detailed family history, which 2005). This gure is much higher for specic ab- would help in synthesis of a syndromic diagnosis. normalities like omphalocele, holoprosencephaly The advent of 3D ultrasound technology provides and cystic hygroma where 50-90% cases can be opportunity for facial dysmorphism recognition, attributed to genetic abnormalities involving the and can be used as an adjunct to the conventional chromosomes. In each of these scenarios, the 2D ultrasonography. antenatal ultrasonography should be performed by a fetal medicine specialist with a dysmorphol- Postmortem evaluation/ Fetal autopsy: ogy or clinical genetics knowledge. Alternatively, Post-mortem• evaluation is an important modal- a clinical geneticist consultation should be sought, ity for establishing the cause of unexplained fetal Genetic Clinics 2017 | April - June | Vol 10 | Issue 2 12 GeNeViSTA deaths as well as a medically terminated mor- opment. Maternal drug use especially antiepileptic phologically abnormal fetus. At least 15-30% of drugs, coumarin derivatives, ACE inhibitors and stillbirths are reported to be due to genetic causes some rarer drugs like retinoic acid derivatives, (fleddy et al., 2012). Besides the histopatholog- thalidomide, etc. needs to be ascertained as these ical examination of the placenta which provides are known to be potent fetal teratogens. Some evidence of acquired insults like utero-placental of these can result in fetal malformations which insufficiency and perinatal infections, dysmorpho- mimic genetic disorders involving defects in the logical evaluation by a geneticist or perinatal common biological pathway. An example is fetal pathologist with expertise in dysmorphology is es- warfarin syndrome, arising due to exposure to war- sential for syndrome recognition. Various studies farin in the rst half of pregnancy. Warfarin inhibits indicate that autopsy provides additional ndings the activity of Vitamin K, and its fetal effects are or modies the antenatal diagnosis in 20-50% cases similar to a genetic disorder brachytelephalangic (flodriguez et al., 2014). Antenatal series have also chondrodysplasia punctata which is caused by a shown that at least 50% syndromic diagnoses are mutation in the ARSE gene, important for Vitamin K possible only after an autopsy (Stoll et al., 2003). metabolism in the body. Hence, all cases with abnormal ultrasound ndings Family history: A three-generation family should undergo a post-mortem evaluation. pedigree• forms the cornerstone of the family his- tory ascertainment. This can provide important Practical approach to fetal information like consanguinity, which increases the dysmorphology risk of autosomal recessive disorders; previous fetus or child with similar or overlapping pheno- The evaluation of the fetus in-utero and/or post- type; other family members with pregnancy losses, mortem for syndrome recognition involves the infertility or abnormal offspring indicating possi- following steps (depicted in gure 2): bility of a chromosomal rearrangement or single gene etiology; and at times a parent with milder Antenatal and medical history manifestation of the same condition as the fetus. • Family history Ultrasonographic ndings: Various ultra- • Ultrasonographic ndings sonographic ndings may be a manifestation • fleports of serum aneuploidy screen • of an underlying genetic syndrome in the fetus • Postmortem evaluation and a high degree of suspicion as well as careful • Genetic testing search for associated abnormality(ies) is important • Antenatal history: The woman should be to recognise these. asked• about history of potential teratogenic ex- a. Structural/ morphological abnormality: These posure in the form of prescription drugs, high most commonly are malformations i.e. intrinsic grade fever, exposure to environmental toxins and defects in the formation of a structure, but can infection with teratogenic pathogens like rubella, also be deformations due to compressive effects cytomegalovirus, etc. History of decreased fe- on a normally formed structure e.g. varus de- tal movement perception and
Recommended publications
  • Genevista Microdeletion and Microduplication Syndromes
    GeNeViSTA Microdeletion and Microduplication Syndromes: An Update Priya Ranganath, Prajnya Ranganath Department of Medical Genetics, Nizam’s Institute of Medical Sciences, Hyderabad, India Correspondence to: Dr Prajnya Ranganath Email: [email protected] Abstract containing dosage sensitive genes responsible for the phenotype is generally involved (Goldenberg, Microdeletion and microduplication syndromes 2018). Theoretically, for every microdeletion (MMS) also known as ‘contiguous gene syndrome there should be a reciprocal syndromes’ are a group of disorders caused microduplication syndrome, but microdeletions by sub-microscopic chromosomal deletions or are more common. Microduplications appear to duplications. Most of these conditions are typically result in a milder or no clinical phenotype. associated with developmental delay, autism, multiple congenital anomalies, and characteristic Molecular Etiopathology phenotypic features. These chromosomal abnormalities cannot be detected by conventional Copy number variation (CNV) is defined as the gain cytogenetic techniques like karyotyping and or loss of a stretch of DNA when compared with require higher resolution ‘molecular cytogenetic’ the reference human genome and may range in techniques. The advent of high throughput tests size from a kilobase to several megabases or even such as chromosomal microarray in the past one an entire chromosome. The CNVs associated with or two decades has led to a continuously growing MMS constitute only a small fraction of the total list of microdeletions and microduplication number of possible copy-number variants. There syndromes along with identification of the ‘critical are two major classes of CNVs: recurrent and region’ responsible for the main phenotypic non-recurrent. Recurrent CNVs generally result features associated with these syndromes. This from Non-Allelic Homologous Recombination review discusses the etiopathogenic mechanisms (NAHR) during meiosis.
    [Show full text]
  • Prevalence and Incidence of Rare Diseases: Bibliographic Data
    Number 1 | January 2019 Prevalence and incidence of rare diseases: Bibliographic data Prevalence, incidence or number of published cases listed by diseases (in alphabetical order) www.orpha.net www.orphadata.org If a range of national data is available, the average is Methodology calculated to estimate the worldwide or European prevalence or incidence. When a range of data sources is available, the most Orphanet carries out a systematic survey of literature in recent data source that meets a certain number of quality order to estimate the prevalence and incidence of rare criteria is favoured (registries, meta-analyses, diseases. This study aims to collect new data regarding population-based studies, large cohorts studies). point prevalence, birth prevalence and incidence, and to update already published data according to new For congenital diseases, the prevalence is estimated, so scientific studies or other available data. that: Prevalence = birth prevalence x (patient life This data is presented in the following reports published expectancy/general population life expectancy). biannually: When only incidence data is documented, the prevalence is estimated when possible, so that : • Prevalence, incidence or number of published cases listed by diseases (in alphabetical order); Prevalence = incidence x disease mean duration. • Diseases listed by decreasing prevalence, incidence When neither prevalence nor incidence data is available, or number of published cases; which is the case for very rare diseases, the number of cases or families documented in the medical literature is Data collection provided. A number of different sources are used : Limitations of the study • Registries (RARECARE, EUROCAT, etc) ; The prevalence and incidence data presented in this report are only estimations and cannot be considered to • National/international health institutes and agencies be absolutely correct.
    [Show full text]
  • Duchenne Muscular Dystrophy (DMD)
    Pediatric Residents Review Session A bit of a hodge podge to keep you guessing December 20, 2018 Natarie Liu, FRCPC, Pediatric Neurology Email me for resources (OSCE handbook, etc) Thanks to Dr. K. Smyth and Dr. K Murias for inspiration for some of the slides Case 3mo girl with hypotonia, hypotonic facies, 1+ symmetric DTR. What is the most likely diagnosis? a. Congenital muscular dystrophy b. Myotonic dystrophy c. SMA1 d. Nemaline rod Stem not giving this picture OR this picture What is this? Dystrophinopathies Duchenne Muscular Dystrophy Becker Muscular Dystrophy Dystrophinopathies By convention, if boy stops walking before age 12, this is Duchenne Muscular Dystrophy (DMD) If they remain ambulatory after their 16th birthday, are typically considered to have Becker Muscular Dystrophy (BMD) Anything in between is an intermediate phenotype Some centres transition to using Dystrophinopathies as the term Dystrophinopathies are X-linked disorders Dystrophinopathies: Epidemiology Duchenne Muscular Dystrophy 1:3500 live male births but newborn screening places the incidence closer to 1:5000 live male births Mean lifespan 19 years traditionally, now greater than 25 years (with multidisciplinary team management and corticosteroid use) Becker Muscular Dystrophy Incidence 1/10th-1/5th of DMD Prevalence 60-90% more than DMD DMD: Clinical Features Boys often present between 3-5 years of age Delayed motor milestones and falls, difficulty running and jumping Gain motor milestones through 6-7 years of age, progressive weakness after Wheelchair before age 12, historically Examination Calf hypertrophy Mild lordotic posture Waddling of gait Poor hip excursion during running Head lag when pulled from sitting from supine Partial Gower maneuver when rising from floor.
    [Show full text]
  • Orphanet Report Series Rare Diseases Collection
    Marche des Maladies Rares – Alliance Maladies Rares Orphanet Report Series Rare Diseases collection DecemberOctober 2013 2009 List of rare diseases and synonyms Listed in alphabetical order www.orpha.net 20102206 Rare diseases listed in alphabetical order ORPHA ORPHA ORPHA Disease name Disease name Disease name Number Number Number 289157 1-alpha-hydroxylase deficiency 309127 3-hydroxyacyl-CoA dehydrogenase 228384 5q14.3 microdeletion syndrome deficiency 293948 1p21.3 microdeletion syndrome 314655 5q31.3 microdeletion syndrome 939 3-hydroxyisobutyric aciduria 1606 1p36 deletion syndrome 228415 5q35 microduplication syndrome 2616 3M syndrome 250989 1q21.1 microdeletion syndrome 96125 6p subtelomeric deletion syndrome 2616 3-M syndrome 250994 1q21.1 microduplication syndrome 251046 6p22 microdeletion syndrome 293843 3MC syndrome 250999 1q41q42 microdeletion syndrome 96125 6p25 microdeletion syndrome 6 3-methylcrotonylglycinuria 250999 1q41-q42 microdeletion syndrome 99135 6-phosphogluconate dehydrogenase 67046 3-methylglutaconic aciduria type 1 deficiency 238769 1q44 microdeletion syndrome 111 3-methylglutaconic aciduria type 2 13 6-pyruvoyl-tetrahydropterin synthase 976 2,8 dihydroxyadenine urolithiasis deficiency 67047 3-methylglutaconic aciduria type 3 869 2A syndrome 75857 6q terminal deletion 67048 3-methylglutaconic aciduria type 4 79154 2-aminoadipic 2-oxoadipic aciduria 171829 6q16 deletion syndrome 66634 3-methylglutaconic aciduria type 5 19 2-hydroxyglutaric acidemia 251056 6q25 microdeletion syndrome 352328 3-methylglutaconic
    [Show full text]
  • Mackenzie's Mission Gene & Condition List
    Mackenzie’s Mission Gene & Condition List What conditions are being screened for in Mackenzie’s Mission? Genetic carrier screening offered through this research study has been carefully developed. It is focused on providing people with information about their chance of having children with a severe genetic condition occurring in childhood. The screening is designed to provide genetic information that is relevant and useful, and to minimise uncertain and unclear information. How the conditions and genes are selected The Mackenzie’s Mission reproductive genetic carrier screen currently includes approximately 1300 genes which are associated with about 750 conditions. The reason there are fewer conditions than genes is that some genetic conditions can be caused by changes in more than one gene. The gene list is reviewed regularly. To select the conditions and genes to be screened, a committee comprised of experts in genetics and screening was established including: clinical geneticists, genetic scientists, a genetic pathologist, genetic counsellors, an ethicist and a parent of a child with a genetic condition. The following criteria were developed and are used to select the genes to be included: • Screening the gene is technically possible using currently available technology • The gene is known to cause a genetic condition • The condition affects people in childhood • The condition has a serious impact on a person’s quality of life and/or is life-limiting o For many of the conditions there is no treatment or the treatment is very burdensome for the child and their family. For some conditions very early diagnosis and treatment can make a difference for the child.
    [Show full text]
  • Tracheobronchial Stenosis in Keutel Syndrome
    C O R R E S P O N D E N C E Tracheobronchial Stenosis in Keutel Syndrome Keutel syndrome is characterized by brachytelephalangism, abnormal cartilage calcification, peripheral pulmonary stenoses, and midfacial hypoplasia. We report the first case from East Asia in an 8-month-old boy who had the typical craniofacial appearance characterized by midfacial hypoplasia with a broad depressed nasal bridge (Fig. 1). The distal phalanges of fingers were thickened. Auscultation FIG.1 Midface hypoplasia is present with a depressed nasal revealed a grade 2-3/6 systolic murmur over heart, bridge and small nose. pronounced in the second and third intercostal space, and an inspiratory and expiratory stridor and wheezing over both lungs. Chest radiograph and computed tomography alternative to surgical resection. Endoscopy has been showed tracheobronchial cartilage calcification and suggested as the first choice for simple stenosis, and tracheobronchial stenosis, confirmed on bronchoscopy. success rate of 96% has been reported. So far, this Echocardiography revealed peripheral pulmonary approach has rarely been used in children. Our patient stenosis. accepted bronchoscopic cryotherapy and balloon dilatation four times, and the diameter of the subglottic Keutel syndrome is a rare autosomal recessive laryngeal stenosis was expanded from 3 mm to 4.5 mm. disease, with 27 reported cases from 19 families in The clinical symptoms improved after endoscopy, but he several countries; mostly from the Middle East. All of died of lung reinfection three weeks after discharge from them showed tracheobronchial calcification, and five of our hospital. them had stenosis of the tracheobronchial tree [1,2]. Our LI-FENG SUN AND XING CHEN, patient is the fifth patient with tracheobronchial stenosis, Department of Pediatrics, Provincial Hospital Affiliated to which should be emphasized as another remarkable Shandong University, Jinan, 250021, China.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub
    US 2010O2.10567A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub. Date: Aug. 19, 2010 (54) USE OF ATUFTSINASATHERAPEUTIC Publication Classification AGENT (51) Int. Cl. A638/07 (2006.01) (76) Inventor: Dorian Bevec, Germering (DE) C07K 5/103 (2006.01) A6IP35/00 (2006.01) Correspondence Address: A6IPL/I6 (2006.01) WINSTEAD PC A6IP3L/20 (2006.01) i. 2O1 US (52) U.S. Cl. ........................................... 514/18: 530/330 9 (US) (57) ABSTRACT (21) Appl. No.: 12/677,311 The present invention is directed to the use of the peptide compound Thr-Lys-Pro-Arg-OH as a therapeutic agent for (22) PCT Filed: Sep. 9, 2008 the prophylaxis and/or treatment of cancer, autoimmune dis eases, fibrotic diseases, inflammatory diseases, neurodegen (86). PCT No.: PCT/EP2008/007470 erative diseases, infectious diseases, lung diseases, heart and vascular diseases and metabolic diseases. Moreover the S371 (c)(1), present invention relates to pharmaceutical compositions (2), (4) Date: Mar. 10, 2010 preferably inform of a lyophilisate or liquid buffersolution or artificial mother milk formulation or mother milk substitute (30) Foreign Application Priority Data containing the peptide Thr-Lys-Pro-Arg-OH optionally together with at least one pharmaceutically acceptable car Sep. 11, 2007 (EP) .................................. O7017754.8 rier, cryoprotectant, lyoprotectant, excipient and/or diluent. US 2010/0210567 A1 Aug. 19, 2010 USE OF ATUFTSNASATHERAPEUTIC ment of Hepatitis BVirus infection, diseases caused by Hepa AGENT titis B Virus infection, acute hepatitis, chronic hepatitis, full minant liver failure, liver cirrhosis, cancer associated with Hepatitis B Virus infection. 0001. The present invention is directed to the use of the Cancer, Tumors, Proliferative Diseases, Malignancies and peptide compound Thr-Lys-Pro-Arg-OH (Tuftsin) as a thera their Metastases peutic agent for the prophylaxis and/or treatment of cancer, 0008.
    [Show full text]
  • Discover Dysplasias Gene Panel
    Discover Dysplasias Gene Panel Discover Dysplasias tests 109 genes associated with skeletal dysplasias. This list is gathered from various sources, is not designed to be comprehensive, and is provided for reference only. This list is not medical advice and should not be used to make any diagnosis. Refer to lab reports in connection with potential diagnoses. Some genes below may also be associated with non-skeletal dysplasia disorders; those non-skeletal dysplasia disorders are not included on this list. Skeletal Disorders Tested Gene Condition(s) Inheritance ACP5 Spondyloenchondrodysplasia with immune dysregulation (SED) AR ADAMTS10 Weill-Marchesani syndrome (WMS) AR AGPS Rhizomelic chondrodysplasia punctata type 3 (RCDP) AR ALPL Hypophosphatasia AD/AR ANKH Craniometaphyseal dysplasia (CMD) AD Mucopolysaccharidosis type VI (MPS VI), also known as Maroteaux-Lamy ARSB syndrome AR ARSE Chondrodysplasia punctata XLR Spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMDJL1) B3GALT6 Ehlers-Danlos syndrome progeroid type 2 (EDSP2) AR Multiple joint dislocations, short stature and craniofacial dysmorphism with B3GAT3 or without congenital heart defects (JDSCD) AR Spondyloepimetaphyseal dysplasia (SEMD) Thoracic aortic aneurysm and dissection (TADD), with or without additional BGN features, also known as Meester-Loeys syndrome XL Short stature, facial dysmorphism, and skeletal anomalies with or without BMP2 cardiac anomalies AD Acromesomelic dysplasia AR Brachydactyly type A2 AD BMPR1B Brachydactyly type A1 AD Desbuquois dysplasia CANT1 Multiple epiphyseal dysplasia (MED) AR CDC45 Meier-Gorlin syndrome AR This list is gathered from various sources, is not designed to be comprehensive, and is provided for reference only. This list is not medical advice and should not be used to make any diagnosis.
    [Show full text]
  • Psykisk Utviklingshemming
    Psykisk utviklingshemming Genpanel, versjon v01 Tabellen er sortert på gennavn (HGNC gensymbol) Navn på gen er iht. HGNC Kolonnen >x10 viser andel av genet som vi forventer blir lest med tilfredstillende kvalitet flere enn 10 ganger under sekvensering Gen Transkript >10x Fenotype AAAS NM_015665.5 100% Achalasia-addisonianism-alacrimia syndrome OMIM AASS NM_005763.3 100% Hyperlysinemia OMIM Saccharopinuria OMIM ABCC9 NM_005691.3 100% Hypertrichotic osteochondrodysplasia OMIM ABCD1 NM_000033.3 76% Adrenoleukodystrophy OMIM ABCD4 NM_005050.3 100% Methylmalonic aciduria and homocystinuria, cblJ type OMIM ABHD5 NM_016006.4 100% Chanarin-Dorfman syndrome OMIM ACAD9 NM_014049.4 100% Mitochondrial complex I deficiency due to ACAD9 deficiency OMIM ACADM NM_000016.5 100% Acyl-CoA dehydrogenase, medium chain, deficiency of OMIM ACADS NM_000017.3 100% Acyl-CoA dehydrogenase, short-chain, deficiency of OMIM ACADVL NM_000018.3 100% VLCAD deficiency OMIM ACAT1 NM_000019.3 100% Alpha-methylacetoacetic aciduria OMIM ACO2 NM_001098.2 97% Infantile cerebellar-retinal degeneration OMIM ACOX1 NM_004035.6 100% Peroxisomal acyl-CoA oxidase deficiency OMIM ACSL4 NM_004458.2 99% Mental retardation, X-linked 63 OMIM ACTA2 NM_001613.2 100% Moyamoya disease 5 OMIM Multisystemic smooth muscle dysfunction syndrome OMIM Gen Transkript >10x Fenotype ACTB NM_001101.3 100% ?Dystonia, juvenile-onset OMIM Baraitser-Winter syndrome 1 OMIM ACTG1 NM_001614.3 100% Baraitser-Winter syndrome 2 OMIM Deafness, autosomal dominant 20/26 OMIM ACVR1 NM_001105.4 100% Fibrodysplasia ossificans
    [Show full text]
  • Digeorge Syndrome
    [Downloaded free from http://www.jpgmonline.com on Thursday, October 22, 2015, IP: 120.62.21.80] Grand Round Case “FISHed” out the diagnosis: A case of DiGeorge syndrome Bajaj S, Thombare TS, Tullu MS, Agrawal M Department of Pediatrics, ABSTRACT Seth Gordhandas Our patient presented with congenital heart disease (CHD: Tetralogy of Fallot), hypocalcemia, hypoparathyroidism, Sunderdas Medical College and King Edward and facial dysmorphisms. Suspecting DiGeorge syndrome (DGS), a fluorescence in situ hybridization (FISH) Memorial Hospital, analysis for 22q11.2 deletion was made. The child had a hemizygous deletion in the 22q11.2 region, diagnostic Mumbai, Maharashtra, of DGS. Unfortunately, the patient succumbed to the heart disease. DGS is the most common microdeletion India syndrome, and probably underrecognized due to the varied manifestations. This case stresses the importance of a detailed physical examination and a high index of suspicion for diagnosing this genetic condition. Timely Address for correspondence: diagnosis can help manage and monitor these patients better and also offer prenatal diagnosis in the next Dr. Milind S Tullu, pregnancy. E-mail: milindtullu@ yahoo.com Received : 18-05-2015 Review completed : 19-06-2015 KEY WORDS: Child, congenital heart disease (CHD), DiGeorge syndrome (DGS), dysmorphism, genetic Accepted : 05-10-2015 counseling, microdeletion Case Details were below the third percentile for his age (weight 3.5 kg, length 61 cm, head circumference 37 cm). A closer look, ur patient was an 8-month-old male child of Indian however, revealed some alerting dysmorphic features in Oorigin and the first issue of a nonconsanguineous the child. He had narrow and upslanting palpebral fissures, marriage.
    [Show full text]
  • Download CGT Exome V2.0
    CGT Exome version 2.
    [Show full text]
  • Clinical Findings in 32 Patients with 22Qll.2 Microdeletion Attended in the City of Córdoba, Argentina
    Brief report Arch Argent Pediatr 2013;111(5):423-427 / 423 Clinical findings in 32 patients with 22qll.2 microdeletion attended in the city of Córdoba, Argentina Cecilia del Carmen Montes, M.D.a,b, Alicia Sturich, Biologista,b,Alejandra Chaves, B.S.a, Ernesto Juaneda, M.D.c, Julio Orellana, M.D.d, Roberto De Rossi, M.D.e, Blanca Pereyra, B.S.a, Luis Alday, M.D.c, and Norma Teresa Rossi, M.D.a,b ABSTRACT INTRODUCTION The 22q11.2 microdeletion is the most common deletion The 22q11.2 microdeletion is the most syndrome, with a prevalence of 1/4000-1/6000 among newborn infants and a wide phenotypic variability. The diagnosis of common cause of microdeletion in human beings the 22q11.2 microdeletion is made through cytogenetics or and has a prevalence of 1/4000-1/6000 among fluorescence in situ hybridization (FISH). The objectives of this live newborn infants. Approximately 95% of article were to describe the clinical features of 32 patients with the cases are diagnosed when a loss of genetic 22q11.2 microdeletion and the findings of other chromosomal abnormalities and genetic syndromes in phenotypically similar material is observed through the fluorescence in patients. This series was made up of 268 patients with clinical situ hybridization (FISH) technique. Tobías, et al. criteria supporting the diagnostic suspicion attended at the recommend the use of the FISH technique for the Hospital de Niños and Hospital Privado, of Córdoba, between 22q11.2 microdeletion in patients with conotruncal March 1st, 2004 and August 31st, 2011. The following parameters were analyzed: age at the time of the diagnosis, sex, clinical heart defects, or in the parents of patients with manifestations, and mortality.
    [Show full text]