Clues to Chinook Salmon Nearshore Migration in Southeast Alaska from Estimates of Stock Composition in Troll Harvests William D

Total Page:16

File Type:pdf, Size:1020Kb

Clues to Chinook Salmon Nearshore Migration in Southeast Alaska from Estimates of Stock Composition in Troll Harvests William D Clues to Chinook salmon nearshore migration in Southeast Alaska from estimates of stock composition in troll harvests William D. Templin and Lisa W. Seeb Gene Conservation Laboratory, Alaska Department of Fish and Game, 333 Raspberry Road, Anchorage, Alaska 99518, USA Introduction Collections in the Coastwide Baseline The Southeast Alaska troll fishery harvests Chinook salmon originating from Alaska, British Columbia, and the Pacific Northwest. Management of the chinook salmon harvest in South- east Alaska depends, in part, on information from coded-wire tag recoveries, a marker applied only to a subset of populations (mainly hatcheries). Genetic stock identification can provide stock composition information unavailable from the tag data. This method has been used extensively to estimate the composition of mixed-stock fisheries for Chinook salmon in the Pacific Northwest and is possible because standardized baseline data for allozyme loci are available from throughout the species range. Since 1999, the Alaska Department of Fish and Game has used allozymes to provide independent estimates of the stock composition of the harvest throughout the year in Southeast Alaska troll fisheries. Legal-sized (longer than 71 cm) Chinook salmon were sampled from landings during the summer (July to September), winter (October to April) and spring (May to June) troll fisheries and from sublegal-sized Chinook incidentally caught during the summer fishery. Estimates indicate that the abun- dance of many stocks of Chinook salmon varies seasonally and by age class. Southeast Alaska Troll Fishery The troll fishery in Southeast Alaska occurs in State and Federal Exclusive Economic Zone waters east of Cape Alaska NPAFC Document 440 Yakutat 20 km Suckling and north of Dixon Entrance. Comprehensive Allozyme Database Discriminates Chinook Salmon Around the Pacific Rim. The fishery is in part managed by a D. Teel, P. Crane, C. Guthrie, A. Marshall, D. Van Doornik, W. Templin, N. Varnavskaya, and L. quota established by the Pacific Salmon Seeb. October 1999 Commission (PSC). The quota is Elfin Cove Northern dependent on the projected abundance Pelican Inside of Chinook salmon forecasted by the Chinook Technical Committee (CTC) of Northern Outside the PSC using the Chinook salmon Temporal Changes in Abundance Sitka Southern model which integrates data on catch, The contribution of major stock groups Petersburg Outside escapement, coded-wire tag recovery, to the troll fishery changes through Annual Variation in Contribution of Selected Stocks Port Alexander Number of Relative and recruitment information. Genetic time, an indication of the migration data are now being used to estimate the timing of these stocks through the salmon contribution Ketchikan 0.6 origin of Chinook salmon harvested in Craig nearshore waters of Southeast Alaska. Mid and North Oregon Mid and North Oregon Mid and North Oregon these troll fisheries to provide indepen- Southern 0.4 Inside dent estimates to compare to those - Chinook salmon from the 2000 2001 2002 0.2 derived from the CTC model. Oregon and Washington 0.0 40,000 * coasts were major contributors Upper Columbia Summer Upper Columbia Summer Upper Columbia Summer to the summer troll fisheries, Fishery Sampling 20,000 but were absent during the During the years from 1999 to 2002, Chinook salmon were collected winter and spring. from landings at processors at ports in Southeast Alaska during 0 * 0.6 Washington Coastal Washington Coastal Washington Coastal Chinook salmon retention periods in the early winter troll fishery Chinook salmon from the 0.4 (October 11-December 31), the late winter troll fishery (January 1-April - 0.2 14), the summer fishery ( July and August-September). Samples Upper Columbia River summer were stratified by management quadrant (Northern Outside, Northern and fall stocks were major 0.0 40,000 * Inside, Southern Outside, Southern Inside) and were subsampled contributors to the fishery Thompson River Thompson River Thompson River proportional to the catch in each quadrant so that estimates would not except for during the spring. be biased by location of catch. Muscle, eye, and fin tissues were 20,000 assayed for genetic variation at 26 allozyme loci. Stock composition - Chinook salmon from the 0 * 0.6 estimates for 28 stock groups were made using SPAM 3.6 (http:// Thompson River were usually Southern SE Alaska Southern SE Alaska Southern SE Alaska www.cf.adfg.state.ak.us/geninfo/research/genetics/software/ present in large numbers only 0.4 spampage.htm). during the month of July. 0.2 * 0.0 Oc Jan Jul Au Oc Jan Ma Jul Au Oc Jan Ma Jul Au - Chinook salmon from Southern t-De -Ap y 00 g-Se t-De -Ap y-Ju y 01 g-Se t-De -Ap y-Ju y 02 g-Se c 99 r 00 pt 0 c 00 r 01 n 0 pt 0 c 01 r 02 n 0 pt 0 Southeast Alaska are mainly 0 1 1 2 2 harvested in the spring. * May – June 00 missing Coastwide Baseline A coastwide allozyme baseline for Chinook salmon has been developed that is composed of allele frequency estimates for 44 loci in 254 populations from around the Pacific Rim including Distribution of Age-classes Contribution of Selected Stocks to Summer Samples major populations potentially contributing to the Southeast Alaska troll fishery (See Map Differences in the stock composition of samples from legal- and Above Right). Populations were grouped into reporting regions based on genetic similarity sublegal-sized Chinook salmon during the summer fishery indi- Relative Relative Contribution Contribution and geographic proximity. The identifiability of these reporting regions was investigated by cates that different stocks of salmon use the nearshore waters of Sublegal Legal creating simulated mixtures composed entirely of salmon from a single region. When the Southeast Alaska at different lifestages. In the nearshore waters of 1999 0.3 composition of these mixtures is estimated, the percent correctly identified to the region-of- Southeast Alaska: origin indicates how well this region can be identified. Correct allocation greater than 90% 0.2 indicates a “highly identifiable” region. Simulations of the dataset verified that 44 fine scale 0.1 - Chinook salmon from the Oregon and Washington coasts and 29 broad scale genetic aggregates could be identified in mixtures (See Below). 0.0 and Thompson River are present as larger, more mature 2000 individuals. 0.3 0.2 Central Valley California/Southern Oregon Coastal 0.1 Klamath River Basin - Chinook salmon from the Upper Columbia summer and fall Mid and North Oregon Coastal stocks are present as both immature and maturing 0.0 Willamette River 2001 Lower Columbia River individuals. 0.3 Mid & Up. Columbia Sp., Snake Sp. & Su. 0.2 Up. Columbia Su. & F., Snake F. Washington Coastal - Chinook salmon from the Lower Columbia, Willamette 0.1 Puget Sound River, Puget Sound, coastal British Columbia and South- Lower Fraser River 0.0 ern Southeast Alaska are present as smaller, less mature Thompson River 0.3 2002 Mid and Upper Fraser River individuals. Strait of Georgia 0.2 West Coast Vancouver Island Central BC Coastal 0.1 Skeena River Nass River 0.0 Alaska/BC Transboundary a e t i tt st er ast e a nd Southern Southeast Alaska o o u orgia laska C am C So King Salmon River n ll n i et son Riv Chilkat River W g of Ge SE A ego mp t th Gulf of Alaska Or wer Columb per Columbia Pu ai o p hingto ho U T Str Susitna River /N. L Central BC SouCoas id Was Kodiak Island M Alaska Peninsula Western Alaska Canadian Yukon Russia 80% 85% 90% 95% 100% Conclusions Correct Allocation Estimates indicate that the primary populations of Chinook salmon present in Southeast Alaska during the summer are from the upper Columbia River, the Oregon and Washington coasts, Thompson River, West Coast Vancouver Island, Central British Columbia, and Southern Southeast Alaska. During the early winter a similar assemblage of populations is present except for a reduction in the Washington and Oregon coastal and Point estimates and 90% bootstrap confidence intervals are given. Thompson River populations. Southeast Alaska and northern British Columbia are increasingly prevalent toward the spring. In the spring fishery, the Upper Columbia River stocks, which are a major population component at all other times of the year, are almost absent. Legal- and sublegal-sized Chinook salmon present in Southeast Alaska during the summer are from different stock groups; evidence that waters of Southeast Alaska are used by many populations of Chinook salmon during different parts of their life history. Acknowledgements Funding for this study was received from the Southeast Sustainable Fisheries Fund, Chinook Technical Committee of the Pacific Salmon Commission, and NOAA Saltonstal-Kennedy Award No. NA46FD0356. Judy Berger, Andy Barclay and Eric Lardizabal were instrumental in collecting the data for this analysis..
Recommended publications
  • Olive Clubtail (Stylurus Olivaceus) in Canada, Prepared Under Contract with Environment Canada
    COSEWIC Assessment and Status Report on the Olive Clubtail Stylurus olivaceus in Canada ENDANGERED 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Olive Clubtail Stylurus olivaceus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 58 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge Robert A. Cannings, Sydney G. Cannings, Leah R. Ramsay and Richard J. Cannings for writing the status report on Olive Clubtail (Stylurus olivaceus) in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Paul Catling, Co-chair of the COSEWIC Arthropods Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le gomphe olive (Stylurus olivaceus) au Canada. Cover illustration/photo: Olive Clubtail — Photo by Jim Johnson. Permission granted for reproduction. ©Her Majesty the Queen in Right of Canada, 2011. Catalogue No. CW69-14/637-2011E-PDF ISBN 978-1-100-18707-5 Recycled paper COSEWIC Assessment Summary Assessment Summary – May 2011 Common name Olive Clubtail Scientific name Stylurus olivaceus Status Endangered Reason for designation This highly rare, stream-dwelling dragonfly with striking blue eyes is known from only 5 locations within three separate regions of British Columbia.
    [Show full text]
  • Ecosystem Status and Trends Report for the Strait of Georgia Ecozone
    C S A S S C C S Canadian Science Advisory Secretariat Secrétariat canadien de consultation scientifique Research Document 2010/010 Document de recherche 2010/010 Ecosystem Status and Trends Report Rapport de l’état des écosystèmes et for the Strait of Georgia Ecozone des tendances pour l’écozone du détroit de Georgie Sophia C. Johannessen and Bruce McCarter Fisheries and Oceans Canada, Institute of Ocean Sciences 9860 W. Saanich Rd. P.O. Box 6000, Sidney, B.C. V8L 4B2 This series documents the scientific basis for the La présente série documente les fondements evaluation of aquatic resources and ecosystems scientifiques des évaluations des ressources et in Canada. As such, it addresses the issues of des écosystèmes aquatiques du Canada. Elle the day in the time frames required and the traite des problèmes courants selon les documents it contains are not intended as échéanciers dictés. Les documents qu’elle definitive statements on the subjects addressed contient ne doivent pas être considérés comme but rather as progress reports on ongoing des énoncés définitifs sur les sujets traités, mais investigations. plutôt comme des rapports d’étape sur les études en cours. Research documents are produced in the official Les documents de recherche sont publiés dans language in which they are provided to the la langue officielle utilisée dans le manuscrit Secretariat. envoyé au Secrétariat. This document is available on the Internet at: Ce document est disponible sur l’Internet à: http://www.dfo-mpo.gc.ca/csas/ ISSN 1499-3848 (Printed / Imprimé) ISSN 1919-5044 (Online / En ligne) © Her Majesty the Queen in Right of Canada, 2010 © Sa Majesté la Reine du Chef du Canada, 2010 TABLE OF CONTENTS Highlights 1 Drivers of change 2 Status and trends indicators 2 1.
    [Show full text]
  • Chapter 14. Northern Shelf Region
    Chapter 14. Northern Shelf Region Queen Charlotte Sound, Hecate Strait, and Dixon canoes were almost as long as the ships of the early Spanish, Entrance form a continuous coastal seaway over the conti- and British explorers. The Haida also were gifted carvers nental shelfofthe Canadian west coast (Fig. 14.1). Except and produced a volume of art work which, like that of the for the broad lowlands along the northwest side ofHecate mainland tribes of the Kwaluutl and Tsimshian, is only Strait, the region is typified by a highly broken shoreline now becoming appreciated by the general public. of islands, isolated shoals, and countless embayments The first Europeans to sail the west coast of British which, during the last ice age, were covered by glaciers Columbia were Spaniards. Under the command of Juan that spread seaward from the mountainous terrain of the Perez they reached the vicinity of the Queen Charlotte mainland coast and the Queen Charlotte Islands. The Islands in 1774 before returning to a landfall at Nootka irregular countenance of the seaway is mirrored by its Sound on Vancouver Island. Quadra followed in 1775, bathymetry as re-entrant troughs cut landward between but it was not until after Cook’s voyage of 1778 with the shallow banks and broad shoals and extend into Hecate Resolution and Discovery that the white man, or “Yets- Strait from northern Graham Island. From an haida” (iron men) as the Haida called them, began to oceanographic point of view it is a hybrid region, similar explore in earnest the northern coastal waters. During his in many respects to the offshore waters but considerably sojourn at Nootka that year Cook had received a number modified by estuarine processes characteristic of the of soft, luxuriant sea otter furs which, after his death in protected inland coastal waters.
    [Show full text]
  • Prehistoric Mobile Art from the Mid-Fraser and Thompson River Areas ARNOUDSTRYD
    CHAPTER9 Prehistoric Mobile Art from the Mid-Fraser and Thompson River Areas ARNOUDSTRYD he study of ethnographic and archaeological art the majority of archaeological work in the Plateau but from interior British Columbia has never received also appear to be the "heartland" of Plateau art develop­ Tthe attention which has been lavished on the art of ment as predicted by Duff (1956). Special attention will be the British Columbia coast. This was inevitable given the focused on the previously undescribed carvings recovered impressive nature of coastal art and the relative paucity in recent excavations by the author along the Fraser River of its counterpart. Nevertheless, some understanding of near the town of Lillooet. the scope and significance of this art has been attained, Reports and collections from seventy-one archaeologi­ largely due to the turn of the century work by members cal sites were checked for mobile art. They represent all of the Jesup North Pacific Expedition (Teit 1900, 1906, the prehistoric sites excavated and reported as of Spring 1909; Boas, 1900; Smith, 1899, 1900) and the more recent 1976, although some unintentional omissions may have studies by Duff (1956, 1975). Further, archaeological occurred. The historic components of continually oc­ excavations over the last fifteen years (e.g., Sanger 1968a, cupied sites were deleted and sites with assemblages of 1968b, 1970; Stryd 1972, 1973) have shown that prehistoric less than ten artifacts were also omitted. The most notable Plateau art was more extensive than previously thought, exclusions from this study are most of Smith's (1899) and that ethnographic carving represented a degeneration Lytton excavation data which are not quantified or listed from a late prehistoric developmental climax.
    [Show full text]
  • Spring Bloom in the Central Strait of Georgia: Interactions of River Discharge, Winds and Grazing
    MARINE ECOLOGY PROGRESS SERIES Vol. 138: 255-263, 1996 Published July 25 Mar Ecol Prog Ser I l Spring bloom in the central Strait of Georgia: interactions of river discharge, winds and grazing Kedong yinl,*,Paul J. Harrisonl, Robert H. Goldblattl, Richard J. Beamish2 'Department of Oceanography, University of British Columbia, Vancouver, British Columbia, Canada V6T 124 'pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, British Columbia, Canada V9R 5K6 ABSTRACT: A 3 wk cruise was conducted to investigate how the dynamics of nutrients and plankton biomass and production are coupled with the Fraser River discharge and a wind event in the Strait of Georgia estuary (B.C.,Canada). The spring bloom was underway in late March and early Apnl, 1991. in the Strait of Georgia estuary. The magnitude of the bloom was greater near the river mouth, indicat- ing an earher onset of the spring bloom there. A week-long wind event (wind speed >4 m S-') occurred during April 3-10 The spring bloom was interrupted, with phytoplankton biomass and production being reduced and No3 in the surface mixing layer increasing at the end of the wind event. Five days after the lvind event (on April 15),NO3 concentrations were lower than they had been at the end of the wind event, Indicating a utilization of NO3 during April 10-14. However, the utilized NO3 did not show up in phytoplankton blomass and production, which were lower than they had been at the end (April 9) of the wind event. During the next 4 d, April 15-18, phytoplankton biomass and production gradu- ally increased, and No3 concentrations in the water column decreased slowly, indicating a slow re- covery of the spring bloom Zooplankton data indicated that grazing pressure had prevented rapid accumulation of phytoplankton biomass and rapid utilization of NO3 after the wind event and during these 4 d.
    [Show full text]
  • Examining Controls on Peak Annual Streamflow And
    Hydrol. Earth Syst. Sci., 22, 2285–2309, 2018 https://doi.org/10.5194/hess-22-2285-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Examining controls on peak annual streamflow and floods in the Fraser River Basin of British Columbia Charles L. Curry1,2 and Francis W. Zwiers1 1Pacific Climate Impacts Consortium, University of Victoria, Victoria, V8N 5L3, Canada 2School of Earth and Ocean Sciences, University of Victoria, Victoria, V8N 5L3, Canada Correspondence: Charles L. Curry ([email protected]) Received: 26 August 2017 – Discussion started: 8 September 2017 Revised: 19 February 2018 – Accepted: 14 March 2018 – Published: 16 April 2018 Abstract. The Fraser River Basin (FRB) of British Columbia with APF of ρO D 0.64; 0.70 (observations; VIC simulation)), is one of the largest and most important watersheds in west- the snowmelt rate (ρO D 0.43 in VIC), the ENSO and PDO ern North America, and home to a rich diversity of biologi- indices (ρO D −0.40; −0.41) and (ρO D −0.35; −0.38), respec- cal species and economic assets that depend implicitly upon tively, and rate of warming subsequent to the date of SWEmax its extensive riverine habitats. The hydrology of the FRB is (ρO D 0.26; 0.38), are the most influential predictors of APF dominated by snow accumulation and melt processes, lead- magnitude in the FRB and its subbasins. The identification ing to a prominent annual peak streamflow invariably oc- of these controls on annual peak flows in the region may be curring in May–July.
    [Show full text]
  • Results of Nass River Biological Surveys for The
    RESULTS OF NASS RIVER BIOLOGICAL SURVEYS FOR THE YEARS 1956 AND 1957, I NCLUDING A PRELIMI NARY ASSESSMENT OF THE POSSIBLE EFFECTS OF THE PROPOSED HYDRO- ELECTRIC PROJECT Department of Fish eries, Canada Vancouver, B. C. June, 1958 SH349 Canada. DePa rtment of Fisheri A2 Results of Nass Rive r biolosic 58-02 a l surve~s for the ~ea ~s 1956 a nd 1957, includins a Prelimina r c l s assessment of t h e Possible ef f ect s of the P roposed h ~ dro -e l ~ TABLE OF CONTENTS MAR 2 0 tH89 LJl3F?Af~Y p J\(:: f Fi:~·: F~, ,~,l '')~~~ y '"" 111.. C"TA"i"Vl")l\.'il Page ·~~· .. ~--"•·-· .. "-·- ... \~,,,.f.... -.L .. ~.:1 .. Ail... l"tll 1. r:~ i ~:~; ~ -i ~.·~·: ~-·: ~, 2: ;.-.! r... ;.- -. -~ .. ;·: /\ j\. 1~; · DESCRIP~~ION OF SUHVEYS NJ\r--.:,.:.,i;-.,10, C~:-.:;T·i:..::;J COL\JMBIA: 3 CAN/\[)/\ v~,;r~ l:H(6 l. 1956 - Prel~ninary survey of the Upper Nase wate:r·~b.ed :tn con.junction with the Meziadin operation.it:! 3 2. 1957 = Crnrmie:t•cial i'ishery 9 f'i. sh-whee 1 oper•at:lons ~ spawning gr,cmnd survey~ 3 t~ 1956 = Survey results 4 5 Do DISCUSSION 13 lo The Effect of the Power Development on the Upstirei.\tm M.igrt:i.tion of' Salmon and Trout 13 2-0 Ef:tect on Spawning and R::iax•ing Areas 14 (a) Main Dam. {b) Meziadj.n Storage Dam (c) Bell-Irving Storage Dam 3o The Anticipated Effect of Flooding on Lake P:i:~oduotiv·:tty (a) Mez:iadin Iiake ( b) Bowse.r L1:1ke lto The gffect on Downstr•eam M:tgra.t:ton 16 (a.) Res:tdi..uRl:tsm (b) Predation Eo CONCLUSION 18 '.
    [Show full text]
  • Independent Review of the Science and Management of Thompson River Steelhead
    Independent Review of the Science and Management of Thompson River Steelhead Prepared for: Thompson Steelhead Technical Subcommittee c/o Cooks Ferry Indian Band PO Box 130, Spence's Bridge, BC Canada V0K 2L0 March, 2014 Independent Review of the Science and Management of Thompson River Steelhead David A. Levy and Eric Parkinson Levy Research Services Ltd. 315 Lonsdale Ave. North Vancouver, B.C. Canada V7M 2G3 March 2014 ______________________ Recommended citation for this report: Levy, D.A. and E. Parkinson. 2014. Independent review of the science and management of Thompson River steelhead. Prepared for Thompson Steelhead Technical Subcommittee c/o Cook's Ferry Indian Band, Spences Bridge, BC. 104p. Executive Summary In response to the decline in steelhead productivity that has been occurring since the early 1990's, the Thompson Steelhead Technical Subcommittee commissioned the present report to evaluate steelhead status, causes for the decline, effectiveness of management tools and prospects for recovery. The work was motivated by a strong desire among Thompson River First Nations to develop a sound conservation strategy that ensures long-term sustainability and a recovery of the traditional food, social and ceremonial fishery. Thompson River steelhead support a world-class recreational fishery which is managed by the Province of BC. DFO is intimately involved in the management process by developing salmon harvest regulations to mitigate commercial by-catch mortality. First Nations are largely outside of the management process and meaningful consultations have been absent to date. Science and management tools included harvest analysis, juvenile assessment, forecasting procedures, spawner enumeration and enhancement. Conservation thresholds place steelhead numbers in the conservation concern zone in most years.
    [Show full text]
  • Late Prehistoric Cultural Horizons on the Canadian Plateau
    LATE PREHISTORIC CULTURAL HORIZONS ON THE CANADIAN PLATEAU Department of Archaeology Thomas H. Richards Simon Fraser University Michael K. Rousseau Publication Number 16 1987 Archaeology Press Simon Fraser University Burnaby, B.C. PUBLICATIONS COMMITTEE Roy L. Carlson (Chairman) Knut R. Fladmark Brian Hayden Philip M. Hobler Jack D. Nance Erie Nelson All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publisher. ISBN 0-86491-077-0 PRINTED IN CANADA The Department of Archaeology publishes papers and monographs which relate to its teaching and research interests. Communications concerning publications should be directed to the Chairman of the Publications Committee. © Copyright 1987 Department of Archaeology Simon Fraser University Late Prehistoric Cultural Horizons on the Canadian Plateau by Thomas H. Richards and Michael K. Rousseau Department of Archaeology Simon Fraser University Publication Number 16 1987 Burnaby, British Columbia We respectfully dedicate this volume to the memory of CHARLES E. BORDEN (1905-1978) the father of British Columbia archaeology. 11 TABLE OF CONTENTS Page Acknowledgements.................................................................................................................................vii List of Figures.....................................................................................................................................iv
    [Show full text]
  • Columbia River Crossing I-5 Immersed Tunnel I-5 Immersed Tunnel Advantages Immersed Tunnel
    6 Sections 500 feet long x 170 feet wide 3,000 ft. Columbia River Crossing I-5 Immersed Tunnel I-5 Immersed Tunnel Advantages Immersed Tunnel Navigation clearances Aviation clearances No freeway noise on river front No mile-long elevated bridge ramps dividing Vancouver Aberdeen Casting Basin 165 x 910 feet Baltimore's Fort McHenry Tunnel Completed 1985 1.4 miles 8 lanes – 4 tubes 115,000 vehicles/day I-95 Immersed Tunnel saved Baltimore’s Inner Harbor 1985 1959 freeway plan Vancouver’s Massey Tunnel under Fraser River October 14, 2019 Vancouver’s Fraser River Bridge replaced by Tunnel 10 lanes April 1, 2020 Vancouver’s Columbia River Bridge replaced by Tunnel Øresund Bridge 20 sections x 577ft = 2.2miles & Tunnel 1999 138ft wide Øresund Tunnel Section 20 sections x 577ft =2.2miles 138ft wide Columbia River Tunnel Section 6 sections x 500ft = 0.6miles 170ft wide Immersed Tunnels About six 500 foot immersed tunnel sections could be a simple, elegant, and cost effective solution to the I-5 Columbia River Crossing. The Aberdeen Casting Basin used to build the SR 520 bridge pontoons would be well suited to casting tunnel sections. https://www.wsdot.wa.gov/sites/default/files/2014/11/12/SR520-Factsheet-Pontoons- February2017.pdf In 1985 Baltimore completed the Fort McHenry Immersed Tunnel and saved its famous Inner Harbor from encirclement by I-95 concrete bridge. https://www.baltimorebrew.com/2011/04/29/the-senator-and-the-highway/ Vancouver, Canada rejected a ten lane bridge over the Fraser in favor of an immersed tunnel. https://www.enr.com/blogs/15-evergreen/post/47724-vancouvers-george-massey- tunnel-replacement-may-now-be-a-tunnel-instead-of-a-bridge The 1999 Oresund Bridge & Immersed Tunnel connects Sweden to Denmark.
    [Show full text]
  • Biogeochemical Contributions to the Water Quality of the Skeena River
    Biogeochemical Contributions to the Water Quality of the Skeena River by Solomon Henson INTRODUCTION The Skeena River watershed is about 54,000km2 and extends from central British Columbia to the western coast (figure 1). The river is known for producing tremendous salmon fisheries. Slaymaker (1972) reported that the chemical quality of the Skeena River was high which provides an excellent environment for salmon populations to flourish despite heavy fishing pressures. The Skeena is a diverse watershed that receives water from glacial ablation, snow melt, and precipitation as rain. These hydrologic inputs transport ion species and sediment from the landscape to the river and determine what the overall water quality of the Skeena will be. Figure 1. Skeena River basin showing location of settlements and major tributaries (Bhangu and Whitfield 1997). Page 1 of 13 S. Henson June 14, 2004 There are three distinct types of tributaries on the Skeena that result from these hydrologic inputs. Those of glacial origin, those that flow clear and are derived from spring water, and those that are tea colored due to high levels of dissolved organic carbon and other organic material. Although the tributaries of the Skeena River have not been extensively studied, this paper will attempt to lay out the possible contributions of these waters to the overall water quality of the main stem. Furthermore, possible mechanisms for these contributions will be considered that include the effects of weathering, temperature, vegetation and soil type on water quality. In 1977 Gibbs laid out three major mechanisms controlling worldwide water chemistry. Atmospheric precipitation dominates in tropical regions where nutrient and organic leaching are high, such that precipitation contains higher solute concentrations than the soil.
    [Show full text]
  • Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
    Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust.
    [Show full text]