Genomics and Epigenomics of Common Human Metabolic and Heart Disease

Total Page:16

File Type:pdf, Size:1020Kb

Genomics and Epigenomics of Common Human Metabolic and Heart Disease GENOMICS AND EPIGENOMICS OF COMMON HUMAN METABOLIC AND HEART DISEASE by Michael Lewis Multhaup A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland February, 2015 Abstract The field of epigenetics is rapidly becoming recognized as playing an essential part in explaining common human disease. Here we probe DNA methylation in diabetes mellitus and associated metabolic phenotypes and coronary heart disease. In a cohort from the Framingham Heart Study, we use epidemiological techniques to identify over 20,000 CpGs differentially methylated in coronary heart disease patients. In the other chapters, we use a functional approach to investigate the epigenetics of Type 2 Diabetes (T2D) and combine three lines of evidence – diet-induced epigenetic dysregulation in mouse, epigenetic conservation in humans, and evidence of T2D clinical risk – to identify genes implicated in T2D pathogenesis through epigenetic mechanisms related to obesity. We then replicate these results in adipose samples from lean and obese patients pre- and post-Roux-en-Y gastric bypass surgery, identifying regions where both the location and direction of methylation change is conserved. These regions overlap with 27 genomic locations with genetic T2D risk, only one of which was deemed significant by GWAS alone. Functional analysis of genes associated with these regions revealed five genes with novel roles in insulin resistance, demonstrating the potential general utility of this approach for complementing conventional human genetic studies by integrating cross-species epigenomics and clinical genetic risk. Advisor: Andrew P. Feinberg Reader: William G. Wong ii Table of Contents Acknowledgments…………………………………………………………………………………………………….………..…….4 List of Figures…………………………………………………………………………………………………………….……….….…6 List of Tables……………………………………………………………………………………………………………….….…….….7 Chapter 1: The history and current status of epigenetics……………………………………….……..………….8 Chapter 2: The epigenetics of obesity and insulin resistance…………………………………………….…….27 Chapter 3: Interaction between genomics and epigenomics of Type 2 Diabetes…………….……….41 Chapter 4: Epigenetic changes in Coronary Heart Disease in the general population………….…..74 Figures…………………………………………………………………………………………………………………………………….91 Tables……………………………………………………………………………………………………………………………………..143 Curriculum Vitae………………………………………………………………………………………………………………..……146 Appendix: Supplementary tables for genome-wide results……………………………….See Attached File iii Acknowledgements There have been many, many people who have had an impact on my graduate student career. Fellow students, friends, faculty, and family have all contributed to shape my journey through the Hopkins BCMB program. I would specifically like to thank my PI and mentor, Andy Feinberg. He has contributed to my growth both as a scientist and a mature adult. From him, I have not just learned about epigenetics, but also scholarship, thoughtfulness, critical thinking and professionalism. I could not have done this PhD without all the other members of the Feinberg Lab as well, who have contributed scientific insight and aid too numerous to mention. The members of the Epigenetic Center core facility have made this project possible, as we would have no array data without their expertise. My thesis committee has also been invaluable during this process, and I would like to thank William Wong, Natasha Zachara and Andrew Jaffe for their patience and scientific advice. This work was supported by NIH Director Pioneer Award DP1 ES022579 to Andrew Feinberg, by NIDDK R01 grant DK084171 to William Wong, by the Novo-Nordisk Foundation and Stockholm County Council to Erik Naslund and Juleen Zierath, and by the European Research Council to Juleen Zierath. We thank Arni Runarsson for technical assistance. Michael Multhaup performed all of the molecular biology experiments and the Infinium 450k regression modeling, as well as performing many of the other statistical analyses in conjunction with Andrew Jaffe. Marcus Seldin performed the dietary manipulations of mice and isolated tissues under the oversight of Guang William Wong, with the help of Mehboob Hussain and his lab. Shelley Lei performed the functional studies of glucose uptake under the oversight of Guang William Wong. Andrew Jaffe performed statistical analysis. Alexander Drong and Mark McCarthy performed MAGENTA analysis. Henriette Kirschner, Erik Naslund and Juleen Zierath provided samples from the human obesity and RYGB cohort. Andrew Feinberg was responsible for the iv design and oversight of all of the experiments and wrote papers with Michael Multhaup and considerable insight and assistance from Andrew Jaffe, Mark McCarthy, and Juleen Zierath. v List of Figures Figure 1: Diagrammatic explanation of our experimental design and results ......................................... 63 Figure 2: Genome-wide significant methylation changes related to diet-induced obesity in C57BL/6 mice............................................................................................................................................................. 64 Figure 3: Correlation of metabolic traits in diet-induced obesity mouse model ..................................... 66 Figure 4: Replication of mouse methylation changes in additional mice, and associated gene expression changes .................................................................................................................................... 67 Figure 5: Correlation of methylation and gene expression in mouse and human adipose tissue .......... 69 Figure 6: Significance of methylation change overlap between mouse and human tissues ................... 71 Figure 7: Consistent mouse-human methylation changes ........................................................................ 72 Figure 8: Overlapping methylation changes in human and mouse adipose tissue .................................. 73 Figure 9: Diagrammatic representation of the interactions between epigenetically conserved and genetically-associated genes implicated in this study .............................................................................. 74 Figure 10: Enrichment of connections between genes implicated by methylation and genome-wide significant GWAS genes .............................................................................................................................. 76 Figure 11: Overexpression and shRNA-mediated knock down of selected genes in 3T3-L1 adipocytes 77 vi List of Tables Table 1: Genome-wide significant mouse DMRs ....................................................................................... 79 Table 2: Mouse comprehensive high-throughput array-based relative methylation (CHARM) results (results in attached Appendix 1) ................................................................................................................ 81 Table 3: Adipocyte DMRs with genes in common between adipocyte and pancreatic islet analyses .... 82 Table 4: Gene ontology for genes near DMRs ........................................................................................... 83 Table 5: Mouse pyrosequencing replication results ................................................................................. 84 Table 6: Results of qPCR assay to test adipose tissue purification ........................................................... 90 Table 7: Conserved mouse/human adipose tissue DMRs ......................................................................... 91 Table 8: Enrichment of cross-species DMRs over DIAGRAM GWAS loci ................................................ 103 Table 9: Conserved mouse-human DMRs with genetic T2D risk loci association .................................. 104 Table 10: Cross-species, directionally consistent pancreatic islet DMRs that overlap with DIAGRAM T2D GWAS loci .......................................................................................................................................... 108 Table 11: Overlap of conserved and directionally consistent adipose DMRs and adipose enhancers . 110 Table 12: Human Subject Information ..................................................................................................... 115 Table 13: Pyrosequencing Primers ........................................................................................................... 118 Table 14: Quantitative PCR primers ......................................................................................................... 122 Table 15: Univariate statistics for Framingham Heart Study coronary heart disease cohort ............... 123 Table 16: Bivariate statistics for Framingham Heart Study coronary heart disease cohort .................. 124 Table 17: Top results for Framingham Heart Study coronary heart disease EWAS ............................... 125 vii Chapter 1 The history and current status of epigenetics Epigenetics is typically defined as maintenance or reproduction of information through cellular division that occurs without changes in the primary DNA sequence. Originally coined by Conrad Waddington in 1942, the term “epigenetics” was originally used to mean the forces that shaped genotype into phenotype according to his “canalization” theory where the almost infinite potential chaos of the human genome was channeled into a much smaller number of recognizable phenotypes (Waddington, 1942). Many years later, Robin Holliday, contemplating his studies
Recommended publications
  • Two Locus Inheritance of Non-Syndromic Midline Craniosynostosis Via Rare SMAD6 and 4 Common BMP2 Alleles 5 6 Andrew T
    1 2 3 Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and 4 common BMP2 alleles 5 6 Andrew T. Timberlake1-3, Jungmin Choi1,2, Samir Zaidi1,2, Qiongshi Lu4, Carol Nelson- 7 Williams1,2, Eric D. Brooks3, Kaya Bilguvar1,5, Irina Tikhonova5, Shrikant Mane1,5, Jenny F. 8 Yang3, Rajendra Sawh-Martinez3, Sarah Persing3, Elizabeth G. Zellner3, Erin Loring1,2,5, Carolyn 9 Chuang3, Amy Galm6, Peter W. Hashim3, Derek M. Steinbacher3, Michael L. DiLuna7, Charles 10 C. Duncan7, Kevin A. Pelphrey8, Hongyu Zhao4, John A. Persing3, Richard P. Lifton1,2,5,9 11 12 1Department of Genetics, Yale University School of Medicine, New Haven, CT, USA 13 2Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA 14 3Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA 15 4Department of Biostatistics, Yale University School of Medicine, New Haven, CT, USA 16 5Yale Center for Genome Analysis, New Haven, CT, USA 17 6Craniosynostosis and Positional Plagiocephaly Support, New York, NY, USA 18 7Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA 19 8Child Study Center, Yale University School of Medicine, New Haven, CT, USA 20 9The Rockefeller University, New York, NY, USA 21 22 ABSTRACT 23 Premature fusion of the cranial sutures (craniosynostosis), affecting 1 in 2,000 24 newborns, is treated surgically in infancy to prevent adverse neurologic outcomes. To 25 identify mutations contributing to common non-syndromic midline (sagittal and metopic) 26 craniosynostosis, we performed exome sequencing of 132 parent-offspring trios and 59 27 additional probands.
    [Show full text]
  • Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Diseases
    Supplemental Material can be found at: /content/suppl/2018/06/05/70.3.446.DC1.html 1521-0081/70/3/446–474$35.00 https://doi.org/10.1124/pr.117.015354 PHARMACOLOGICAL REVIEWS Pharmacol Rev 70:446–474, July 2018 Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: ALAN V. SMRCKA Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Diseases Katherine E. Squires, Carolina Montañez-Miranda, Rushika R. Pandya, Matthew P. Torres, and John R. Hepler Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.) Abstract. ....................................................................................446 I. Introduction. ..............................................................................447 A. G Protein Signaling......................................................................447 B. A (Very) Brief History of Regulators of G Protein Signaling...............................447 C. RGS Protein Rare Human Variants in Complex Diseases . ...............................448 II. RGS Proteins in Physiology and Human Disease . ..........................................449 A. The R4 Family . ........................................................................449 Downloaded from 1. R4 Family Overview..................................................................449
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Attractor Molecular Signatures and Their Applications for Prognostic Biomarkers Wei-Yi Cheng
    Attractor Molecular Signatures and Their Applications for Prognostic Biomarkers Wei-Yi Cheng Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of the Graduate School of Arts and Science COLUMBIA UNIVERSITY 2014 c 2013 Wei-Yi Cheng All rights reserved ABSTRACT Attractor Molecular Signatures and Their Applications for Prognostic Biomarkers Wei-Yi Cheng This dissertation presents a novel data mining algorithm identifying molecular sig- natures, called attractor metagenes, from large biological data sets. It also presents a computational model for combining such signatures to create prognostic biomarkers. Us- ing the algorithm on multiple cancer data sets, we identified three such gene co-expression signatures that are present in nearly identical form in different tumor types represent- ing biomolecular events in cancer, namely mitotic chromosomal instability, mesenchymal transition, and lymphocyte infiltration. A comprehensive experimental investigation us- ing mouse xenograft models on the mesenchymal transition attractor metagene showed that the signature was expressed in the human cancer cells, but not in the mouse stroma. The attractor metagenes were used to build the winning model of a breast cancer prog- nosis challenge. When applied on larger data sets from 12 different cancer types from The Cancer Genome Atlas \Pan-Cancer" project, the algorithm identified additional pan-cancer molecular signatures, some of which involve methylation sites, microRNA expression, and protein activity. Contents List of Figures iv List of Tables vi 1 Introduction 1 1.1 Background . 1 1.2 Previous Work on Identifying Cancer-Related Gene Signatures . 3 1.3 Contributions of the Thesis . 9 2 Attractor Metagenes 11 2.1 Derivation of an Attractor Metagene .
    [Show full text]
  • Genomic Anatomy of the Tyrp1 (Brown) Deletion Complex
    Genomic anatomy of the Tyrp1 (brown) deletion complex Ian M. Smyth*, Laurens Wilming†, Angela W. Lee*, Martin S. Taylor*, Phillipe Gautier*, Karen Barlow†, Justine Wallis†, Sancha Martin†, Rebecca Glithero†, Ben Phillimore†, Sarah Pelan†, Rob Andrew†, Karen Holt†, Ruth Taylor†, Stuart McLaren†, John Burton†, Jonathon Bailey†, Sarah Sims†, Jan Squares†, Bob Plumb†, Ann Joy†, Richard Gibson†, James Gilbert†, Elizabeth Hart†, Gavin Laird†, Jane Loveland†, Jonathan Mudge†, Charlie Steward†, David Swarbreck†, Jennifer Harrow†, Philip North‡, Nicholas Leaves‡, John Greystrong‡, Maria Coppola‡, Shilpa Manjunath‡, Mark Campbell‡, Mark Smith‡, Gregory Strachan‡, Calli Tofts‡, Esther Boal‡, Victoria Cobley‡, Giselle Hunter‡, Christopher Kimberley‡, Daniel Thomas‡, Lee Cave-Berry‡, Paul Weston‡, Marc R. M. Botcherby‡, Sharon White*, Ruth Edgar*, Sally H. Cross*, Marjan Irvani¶, Holger Hummerich¶, Eleanor H. Simpson*, Dabney Johnson§, Patricia R. Hunsicker§, Peter F. R. Little¶, Tim Hubbard†, R. Duncan Campbell‡, Jane Rogers†, and Ian J. Jackson*ʈ *Medical Research Council Human Genetics Unit, Edinburgh EH4 2XU, United Kingdom; †Wellcome Trust Sanger Institute, and ‡Medical Research Council Rosalind Franklin Centre for Genome Research, Hinxton CB10 1SA, United Kingdom; §Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; and ¶Department of Biochemistry, Imperial College, London SW7 2AZ, United Kingdom Communicated by Liane B. Russell, Oak Ridge National Laboratory, Oak Ridge, TN, January 9, 2006 (received for review September 15, 2005) Chromosome deletions in the mouse have proven invaluable in the deletions also provided the means to produce physical maps of dissection of gene function. The brown deletion complex com- genetic markers. Studies of this kind have been published for prises >28 independent genome rearrangements, which have several loci, including albino (Tyr), piebald (Ednrb), pink-eyed been used to identify several functional loci on chromosome 4 dilution (p), and the brown deletion complex (2–6).
    [Show full text]
  • NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-7-2018 Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer Jairo Ramos [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Clinical Epidemiology Commons Recommended Citation Ramos, Jairo, "Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer" (2018). FIU Electronic Theses and Dissertations. 3872. https://digitalcommons.fiu.edu/etd/3872 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida DECIPHER MECHANISMS BY WHICH NUCLEAR RESPIRATORY FACTOR ONE (NRF1) COORDINATES CHANGES IN THE TRANSCRIPTIONAL AND CHROMATIN LANDSCAPE AFFECTING DEVELOPMENT AND PROGRESSION OF INVASIVE BREAST CANCER A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PUBLIC HEALTH by Jairo Ramos 2018 To: Dean Tomás R. Guilarte Robert Stempel College of Public Health and Social Work This dissertation, Written by Jairo Ramos, and entitled Decipher Mechanisms by Which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer, having been approved in respect to style and intellectual content, is referred to you for judgment.
    [Show full text]
  • Characterization of Human Macroh2a Through Gene Targeting Shawn C
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2014 Characterization of Human MacroH2A Through Gene Targeting Shawn C. Moseley Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES CHARACTERIZATION OF HUMAN MACROH2A THROUGH GENE TARGETING By SHAWN C. MOSELEY A Thesis submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Spring Semester, 2014 Shawn C. Moseley defended this thesis on March 31, 2014. The members of the supervisory committee were: Brian Chadwick Professor Directing Thesis Jonathan Dennis Committee Member Karen McGinnis Committee Member The Graduate School has verified and approved the above-named committee members and certifies that the thesis has been approved in accordance with university requirements. ii ACKNOWLEDGMENTS I would like to thank my advisor Dr. Brian Chadwick, as well as Dr. Jonathan Dennis and Dr. Karen McGinnis for their advice, assistance, and support. I would also like to thank all of the members of the Chadwick lab, past and present, for their support. iii TABLE OF CONTENTS List of Tables ............................................................................................................................. vi List of Figures ...........................................................................................................................vii
    [Show full text]
  • 1 Novel Expression Signatures Identified by Transcriptional Analysis
    ARD Online First, published on October 7, 2009 as 10.1136/ard.2009.108043 Ann Rheum Dis: first published as 10.1136/ard.2009.108043 on 7 October 2009. Downloaded from Novel expression signatures identified by transcriptional analysis of separated leukocyte subsets in SLE and vasculitis 1Paul A Lyons, 1Eoin F McKinney, 1Tim F Rayner, 1Alexander Hatton, 1Hayley B Woffendin, 1Maria Koukoulaki, 2Thomas C Freeman, 1David RW Jayne, 1Afzal N Chaudhry, and 1Kenneth GC Smith. 1Cambridge Institute for Medical Research and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK 2Roslin Institute, University of Edinburgh, Roslin, Midlothian, EH25 9PS, UK Correspondence should be addressed to Dr Paul Lyons or Prof Kenneth Smith, Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK. Telephone: +44 1223 762642, Fax: +44 1223 762640, E-mail: [email protected] or [email protected] Key words: Gene expression, autoimmune disease, SLE, vasculitis Word count: 2,906 The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Annals of the Rheumatic Diseases and any other BMJPGL products to exploit all subsidiary rights, as set out in their licence (http://ard.bmj.com/ifora/licence.pdf). http://ard.bmj.com/ on September 29, 2021 by guest. Protected copyright. 1 Copyright Article author (or their employer) 2009.
    [Show full text]
  • Recessive TRAPPC11 Mutations Cause a Disease Spectrum of Limb Girdle Muscular Dystrophy and Myopathy with Movement Disorder and Intellectual Disability
    REPORT Recessive TRAPPC11 Mutations Cause a Disease Spectrum of Limb Girdle Muscular Dystrophy and Myopathy with Movement Disorder and Intellectual Disability Nina Bo¨gershausen,1,2,3,19 Nassim Shahrzad,4,19 Jessica X. Chong,5,19 Ju¨rgen-Christoph von Kleist-Retzow,6 Daniela Stanga,4 Yun Li,1,2,3 Francois P. Bernier,7,10 Catrina M. Loucks,7 Radu Wirth,1 Eric G. Puffenberger,8 Robert A. Hegele,9 Julia Schreml,1,2,3 Gabriel Lapointe,4 Katharina Keupp,1,2,3 Christopher L. Brett,4 Rebecca Anderson,5 Andreas Hahn,11 A. Micheil Innes,7,10 Oksana Suchowersky,12 Marilyn B. Mets,13 Gudrun Nu¨rnberg,14 D. Ross McLeod,7 Holger Thiele,14 Darrel Waggoner,5 Janine Altmu¨ller,14 Kym M. Boycott,15 Benedikt Schoser,16 Peter Nu¨rnberg,2,3,14 Carole Ober,5,17 Raoul Heller,1 Jillian S. Parboosingh,7,10 Bernd Wollnik,1,2,3,* Michael Sacher,4,18,* and Ryan E. Lamont7,19 Myopathies are a clinically and etiologically heterogeneous group of disorders that can range from limb girdle muscular dystrophy (LGMD) to syndromic forms with associated features including intellectual disability. Here, we report the identification of mutations in transport protein particle complex 11 (TRAPPC11) in three individuals of a consanguineous Syrian family presenting with LGMD and in five individuals of Hutterite descent presenting with myopathy, infantile hyperkinetic movements, ataxia, and intellectual disability. By using a combination of whole-exome or genome sequencing with homozygosity mapping, we identified the homozygous c.2938G>A (p.Gly980Arg) missense mutation within the gryzun domain of TRAPPC11 in the Syrian LGMD family and the homozygous c.1287þ5G>A splice-site mutation resulting in a 58 amino acid in-frame deletion (p.Ala372_Ser429del) in the foie gras domain of TRAPPC11 in the Hutterite families.
    [Show full text]
  • Prenatal Diagnosis of Two De Novo 4Q35-Qter Deletions Characterized
    Manolakos et al. Molecular Cytogenetics 2013, 6:47 http://www.molecularcytogenetics.org/content/6/1/47 RESEARCH Open Access Prenatal diagnosis of two de novo 4q35-qter deletions characterized by array-CGH Emmanouil Manolakos1,10*, Konstantinos Kefalas2, Annalisa Vetro3, Eirini Oikonomidou1, George Daskalakis4, Natasa Psara5, Elisa Siomou1, Elena Papageorgiou1, Eirini Sevastopoulou5, Anastasia Konstantinidou6, Nikolaos Vrachnis7, Loretta Thomaidis8, Orsetta Zuffardi3,9 and Ioannis Papoulidis1 Abstract Background: The 4q- syndrome is a well known genetic condition caused by a partial terminal or interstitial deletion in the long arm of chromosome 4. The great variability in the extent of these deletions and the possible contribution of additional genetic rearrangements, such as unbalanced translocations, lead to a wide spectrum of clinical manifestations. The majority of reports of 4q- cases are associated with large deletions identified by conventional chromosome analysis; however, the widespread clinical use of novel molecular techniques such as array comparative genomic hybridization (a-CGH) has increased the detection rate of submicroscopic chromosomal aberrations associated with 4q- phenotype. Results: Herein we report two prenatal cases of 4qter deletions which presented the first with no sonographic findings and the second with brain ventriculomegaly combined with oligohydramnios. Standard karyotyping demonstrated a deletion at band q35.1 of chromosome 4 in both cases. The application of a-CGH confirmed the diagnosis and offered a precise characterization of the genetic defect. Conclusions: We provide a review of the currently available literature on the prenatal diagnostic approach of 4q- syndrome and we compare our results with other published cases. Our data suggest that the identification and the precise molecular characterization of new cases with 4q- syndrome will contribute in elucidating the genetic spectrum of this disorder.
    [Show full text]
  • Microarray Bioinformatics and Its Applications to Clinical Research
    Microarray Bioinformatics and Its Applications to Clinical Research A dissertation presented to the School of Electrical and Information Engineering of the University of Sydney in fulfillment of the requirements for the degree of Doctor of Philosophy i JLI ··_L - -> ...·. ...,. by Ilene Y. Chen Acknowledgment This thesis owes its existence to the mercy, support and inspiration of many people. In the first place, having suffering from adult-onset asthma, interstitial cystitis and cold agglutinin disease, I would like to express my deepest sense of appreciation and gratitude to Professors Hong Yan and David Levy for harbouring me these last three years and providing me a place at the University of Sydney to pursue a very meaningful course of research. I am also indebted to Dr. Craig Jin, who has been a source of enthusiasm and encouragement on my research over many years. In the second place, for contexts concerning biological and medical aspects covered in this thesis, I am very indebted to Dr. Ling-Hong Tseng, Dr. Shian-Sehn Shie, Dr. Wen-Hung Chung and Professor Chyi-Long Lee at Change Gung Memorial Hospital and University of Chang Gung School of Medicine (Taoyuan, Taiwan) as well as Professor Keith Lloyd at University of Alabama School of Medicine (AL, USA). All of them have contributed substantially to this work. In the third place, I would like to thank Mrs. Inge Rogers and Mr. William Ballinger for their helpful comments and suggestions for the writing of my papers and thesis. In the fourth place, I would like to thank my swim coach, Hirota Homma.
    [Show full text]