SUPPLEMENTARY MATERIALS and METHODS PBMC Transcriptomics

Total Page:16

File Type:pdf, Size:1020Kb

SUPPLEMENTARY MATERIALS and METHODS PBMC Transcriptomics BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut SUPPLEMENTARY MATERIALS AND METHODS PBMC transcriptomics identifies immune-metabolism disorder during the development of HBV-ACLF Contents l Supplementary methods l Supplementary Figure 1 l Supplementary Figure 2 l Supplementary Figure 3 l Supplementary Figure 4 l Supplementary Figure 5 l Supplementary Table 1 l Supplementary Table 2 l Supplementary Table 3 l Supplementary Table 4 l Supplementary Tables 5-14 l Supplementary Table 15 l Supplementary Table 16 l Supplementary Table 17 Li J, et al. Gut 2021;0:1–13. doi: 10.1136/gutjnl-2020-323395 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut SUPPLEMENTARY METHODS Test for HBV DNA The levels of HBV DNA were detected using real-time PCR with a COBAS® AmpliPrep/COBAS® TaqMan 48 System (Roche, Basel, Switzerland) and HBV Test v2.0. Criteria for diagnosing cirrhosis Pathology The gold standard for the diagnosis of cirrhosis is a liver biopsy obtained through a percutaneous or transjugular approach.1 Ultrasonography was performed 2-4 hours before biopsy. Liver biopsy specimens were obtained by experienced physicians. Percutaneous transthoracic puncture of the liver was performed according to the standard criteria. After biopsy, patients were monitored in the hospital with periodic analyses of haematocrit and other vital signs for 24 hours. Cirrhosis was diagnosed according to the globally agreed upon criteria.2 Cirrhosis is defined based on its pathological features under a microscope: (a) the presence of parenchymal nodules, (b) differences in liver cell size and appearance, (c) fragmentation of the biopsy specimen, (d) fibrous septa, and (d) an altered architecture and vascular relationships. Depending on the size of the nodules, three macroscopic types have been defined: micronodular, macronodular, and mixed cirrhosis. Endoscopy Gastroscopy (endoscopic examination of the oesophagus, stomach, and duodenum) was performed to exclude the possibility of oesophageal and gastric varices. Radiology Ultrasound is routinely used to evaluate cirrhosis.3 The liver size was calculated from the longitudinal diameter of the right and left lobes and considered normal in the range of 9-14 cm and 7-10 cm, respectively.4 Liver morphology was based on the caudate/right lobe ratio, as the former tends to be enlarged and the latter to shrink with the progression of cirrhosis. This ratio was considered normal at a value less than 0.6.5 Liver boundaries were examined on the inferior surface of the left and right lobes, particularly in relationship with the gallbladder Li J, et al. Gut 2021;0:1–13. doi: 10.1136/gutjnl-2020-323395 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut and right kidney, and were distinguished as normal, rounded and nodular.6 Liver echogenicity was classified as normal, with increased reflectivity, and coarse and irregular in relation to the echogenicity and the distribution of parenchymal echoes.7 Portal vein diameter was measured as the largest anteroposterior diameter at the crossing point with the hepatic artery during suspended respiration and considered normal at a value less than 12 mm.8 The mean flow velocity of the portal vein was calculated using the pulsed Doppler technique9 after positioning the sample volume at the cross point of the vein with the hepatic artery and considered normal at values greater than 15 cm/s. Spleen size was assessed by the longitudinal cross-sectional area, as this parameter has been reported to correlate with the actual spleen volume10 and is considered normal at values up to 45 cm2. A small and nodular liver may be detected in patients with advanced cirrhosis, along with increased echogenicity and irregularly appearing areas. Other findings suggestive of cirrhosis in imaging are an enlarged caudate lobe, widening of the liver fissures and enlargement of the spleen. Other radiological tests include elastography techniques,11 abdominal CT and liver/bile duct MRI (MRCP). Sample preparation for mRNA sequencing For mRNA-seq, PBMCs were collected from patients and volunteers using Ficoll-PaqueTM PLUS medium (GE Healthcare, Uppsala, Sweden), and total RNA was extracted using TRIzol reagent (Ambion, Carlsbad, CA). Sequencing libraries were prepared according to the manufacturer’s instructions (TruSeq® RNA LT Sample Prep Kit v2, Illumina, San Diego, CA), including purifying and fragmenting mRNA, synthesizing first-strand cDNAs, synthesizing second-strand cDNAs, performing end repair by adenylating the 3' ends, ligating adapters, and enriching DNA fragments. The pooled library consisted of sequences with lengths of approximately 250 nucleotides. The library was sequenced using a HiSeq 2500 sequencing Li J, et al. Gut 2021;0:1–13. doi: 10.1136/gutjnl-2020-323395 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut system (Illumina). qRT-PCR qRT-PCR validation with samples from patients and experimental rats was performed to confirm the results of the transcriptomic analysis. qRT-PCR was performed using a two-step protocol with specific primers, TB Green DYE II (Takara, Beijing, China), and an ABI 7500HT instrument (Thermo Fisher, Waltham, MA) according to the manufacturer’s instructions. The amount of cDNA was optimized to ensure that the amplification of both control genes and cDNAs of interest occurred in the exponential phase. Transcripts were quantified using the comparative Ct method and normalized to the levels of the endogenous control (glyceraldehyde phosphate dehydrogenase, GAPDH). IHC The expression of potential proteins encoded by the target genes were validated using IHC in liver tissues derived from patients with HBV-ACLF and patients with LC (n=5/group) according to a previously described protocol.12 Liver specimens were obtained from patients with HBV-ACLF who received a liver transplant, while liver specimens were obtained from patients with LC during biopsies. As a control, normal liver tissues were obtained from therapeutic partial hepatectomies that were performed in patients with trauma-induced liver rupture and who exhibited no signs of hepatic dysfunction, hepatitis virus (including A-E) infection or hepatic cancer. Because the isolation of liver tissue samples from patients with stable CHB and ACHD was difficult, IHC was not performed on samples from patients with CHB and ACHD. Experimental animals Li J, et al. Gut 2021;0:1–13. doi: 10.1136/gutjnl-2020-323395 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut SPF-grade male Sprague-Dawley rats (80 g body weight) were housed under controlled environmental conditions (22±1°C, 55±5% relative humidity, 12 hour light–dark cycle) with free access to food and water ad libitum. Animal care and all experimental procedures were approved by the Animal Care Ethics Committee of the First Affiliated Hospital, Zhejiang University, and conducted in accordance with the National Institute of Health (NIH) guidelines. Establishment of the ACLF model Rats were randomly allocated into two groups (control group: n=10; ACLF group: n=30). In the ACLF group, rats were intraperitoneally administered porcine serum (Gibco, Grand Island, NY, USA) at 2 mL/kg13 twice a week for 12 consecutive weeks to generate liver cirrhosis. Afterwards, rats with liver cirrhosis were intraperitoneally injected with D-galactosamine (D- Gal) and lipopolysaccharide (LPS) in combination (800 mg/kg D-Gal and 100 µg/kg LPS) to induce acute liver failure based on chronic liver cirrhosis14, 15. Meanwhile, rats in the control group were only administered normal saline. Animals were sacrificed at 0 and 48 hours, and blood and tissue samples were collected. Evaluation of biochemical function Biochemical tests of liver function were evaluated by analysing 6 markers in rats in the control, LC and ACLF groups using an automatic clinical chemistry analyser (AU5800, Beckman, Jersey City, NJ, USA). Haematoxylin-eosin (H&E) and Masson’s trichrome (M&T) staining Liver tissues from the rat model of different stages of ACLF were collected for H&E and M&T staining to observe the pathological features and progression of liver cirrhosis. Each liver tissue section was heat-fixed at 60°C for 1 hour and then stained with H&E, as previously described.16 Li J, et al. Gut 2021;0:1–13. doi: 10.1136/gutjnl-2020-323395 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut M&T staining was performed according to recommended protocols (Maixin Biotech, Fuzhou, China and Solarbio LIFE SCIENCE, Beijing, China), as previously described.17 Identification of DEGs Adaptors and low-quality reads were removed using Trimmomatic v0.36 with the default parameters.18 Paired-end transcriptome sequencing reads from each sample were aligned with a human reference genome (GRCh38.87) using HISAT v2.0.5 with the default parameters.19 StringTie v1.3.0 was used to assemble and quantify expressed genes and transcripts for each sample and then merge the transcripts from all samples.20 PrepDE was used to compute the raw read counts for each gene. Ballgown v2.6.0 was used to perform multigroup comparisons of gene expression in fragments per kilobase per million.21 Low-variance genes were removed if their expression variance was <1.0 across samples. Significance was defined as a q value <0.05, i.e., a false discovery rate <5%.
Recommended publications
  • Inhibition of Breast and Brain Cancer Cell Growth by Bccipα, An
    Oncogene (2001) 20, 336 ± 345 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Inhibition of breast and brain cancer cell growth by BCCIPa,an evolutionarily conserved nuclear protein that interacts with BRCA2 Jingmei Liu1, Yuan Yuan1,2, Juan Huan2 and Zhiyuan Shen*,1 1Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center; 915 Camino de Salud, NE. Albuquerque, New Mexico, NM 87131, USA; 2Graduate Program of Molecular Genetics, College of Medicine, University of Illinois at Chicago, 900 S. Ashland Ave. Chicago, Illinois, IL 60607, USA BRCA2 is a tumor suppressor gene involved in mammary mouse BRCA2. It is expected that important functions tumorigenesis. Although important functions have been of BRCA2 reside in these conserved domains. Based on assigned to a few conserved domains of BRCA2, little is the functional analysis of the conserved BRCA2 known about the longest internal conserved domain domains, several models have been proposed for the encoded by exons 14 ± 24. We identi®ed a novel protein, role of BRCA2 in tumor suppression. designated BCCIPa, that interacts with part of the An N-terminus conserved domain in exon 3 (amino internal conserved region of human BRCA2. Human acids 48 ± 105) has been implicated in transcriptional BCCIP represents a family of proteins that are regulation of gene expression (Milner et al., 1997; evolutionarily conserved, and contain three distinct Nordling et al., 1998). Deletion of this region has been domains: an N-terminus acidic domain (NAD) of 30 ± identi®ed in breast cancers (Nordling et al., 1998).
    [Show full text]
  • ATG7 Promotes Autophagy in Sepsis‑Induced Acute Kidney Injury and Is Inhibited by Mir‑526B
    MOLECULAR MEDICINE REPORTS 21: 2193-2201, 2020 ATG7 promotes autophagy in sepsis‑induced acute kidney injury and is inhibited by miR‑526b YING LIU1*, JILAI XIAO1*, JIAKUI SUN1*, WENXIU CHEN1, SHU WANG1, RUN FU1, HAN LIU1 and HONGGUANG BAO2 Departments of 1Critical Care Medicine and 2Anesthesiology, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China Received July 12, 2019; Accepted January 14, 2020 DOI: 10.3892/mmr.2020.11001 Abstract. Sepsis is considered to be the most common Autophagy is a highly regulated lysosomal intracellular contributing factor in the development of acute kidney degradation pathway involved in removing aggregated protein injury (AKI). However, the mechanisms by which sepsis and maintaining intracellular homeostasis (4,5). Autophagy is leads to AKI remain unclear. Autophagy is important for a associated with several diseases, including kidney disease (6). number of fundamental biological activities and plays a key Autophagy is considered to be a degradation system that occurs role in numerous different diseases. The present study demon- under conditions of stress in order to meet energy and nutrient strated that autophagy is involved in sepsis-induced kidney requirements. Autophagy is very important for a number of injury and upregulates ATG7, LC3 and Beclin I. In addition, fundamental biological activities (4,5). Dysregulation of it was revealed that miR‑526b is decreased in sepsis-induced autophagy has been emphasized in the occurrence of a variety kidney injury, and miR‑526b was identified as a direct regu- of diseases, as the targets of selective autophagy, including key lator of ATG7. Furthermore, the present study investigated organelles, such as mitochondria and lysosomes, are involved the biological effects of ATG7 inhibited by miR‑526b and in diseases (7,8).
    [Show full text]
  • Small Cell Ovarian Carcinoma: Genomic Stability and Responsiveness to Therapeutics
    Gamwell et al. Orphanet Journal of Rare Diseases 2013, 8:33 http://www.ojrd.com/content/8/1/33 RESEARCH Open Access Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics Lisa F Gamwell1,2, Karen Gambaro3, Maria Merziotis2, Colleen Crane2, Suzanna L Arcand4, Valerie Bourada1,2, Christopher Davis2, Jeremy A Squire6, David G Huntsman7,8, Patricia N Tonin3,4,5 and Barbara C Vanderhyden1,2* Abstract Background: The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. Method: The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. Results: BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing.
    [Show full text]
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • Cyclovirobuxine D Induced-Mitophagy Through the P65/BNIP3/LC3 Axis Potentiates Its Apoptosis-Inducing Effects in Lung Cancer Cells
    International Journal of Molecular Sciences Article Cyclovirobuxine D Induced-Mitophagy through the p65/BNIP3/LC3 Axis Potentiates Its Apoptosis-Inducing Effects in Lung Cancer Cells Cheng Zeng 1, Tingting Zou 1, Junyan Qu 1, Xu Chen 1, Suping Zhang 2,* and Zhenghong Lin 1,* 1 School of Life Sciences, Chongqing University, Chongqing 401331, China; [email protected] (C.Z.); [email protected] (T.Z.); [email protected] (J.Q.); [email protected] (X.C.) 2 Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Department of Pharmacology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518055, China * Correspondence: [email protected] (S.Z.); [email protected] (Z.L.) Abstract: Mitophagy plays a pro-survival or pro-death role that is cellular-context- and stress- condition-dependent. In this study, we revealed that cyclovirobuxine D (CVB-D), a natural compound derived from Buxus microphylla, was able to provoke mitophagy in lung cancer cells. CVB-D-induced mitophagy potentiates apoptosis by promoting mitochondrial dysfunction. Mechanistically, CVB-D initiates mitophagy by enhancing the expression of the mitophagy receptor BNIP3 and strengthening its interaction with LC3 to provoke mitophagy. Our results further showed that p65, a transcriptional suppressor of BNIP3, is downregulated upon CVB-D treatment. The ectopic expression of p65 inhibits BNIP3 expression, while its knockdown significantly abolishes its transcriptional repression on BNIP3 Citation: Zeng, C.; Zou, T.; Qu, J.; Chen, X.; Zhang, S.; Lin, Z. upon CVB-D treatment. Importantly, nude mice bearing subcutaneous xenograft tumors presented Cyclovirobuxine D retarded growth upon CVB-D treatment.
    [Show full text]
  • Autophagic Digestion of Leishmania Major by Host Macrophages Is
    Frank et al. Parasites & Vectors (2015) 8:404 DOI 10.1186/s13071-015-0974-3 RESEARCH Open Access Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210 Benjamin Frank1, Ana Marcu1, Antonio Luis de Oliveira Almeida Petersen2,3, Heike Weber4, Christian Stigloher5, Jeremy C. Mottram2, Claus Juergen Scholz4 and Uta Schurigt1* Abstract Background: Autophagy participates in innate immunity by eliminating intracellular pathogens. Consequently, numerous microorganisms have developed strategies to impair the autophagic machinery in phagocytes. In the current study, interactions between Leishmania major (L. m.) and the autophagic machinery of bone marrow-derived macrophages (BMDM) were analyzed. Methods: BMDM were generated from BALB/c mice, and the cells were infected with L. m. promastigotes. Transmission electron microscopy (TEM) and electron tomography were used to investigate the ultrastructure of BMDM and the intracellular parasites. Affymetrix® chip analyses were conducted to identify autophagy-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The protein expression levels of autophagy related 5 (ATG5), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), cathepsin E (CTSE), mechanistic target of rapamycin (MTOR), microtubule-associated proteins 1A/1B light chain 3B (LC3B), and ubiquitin (UB) were investigated through western blot analyses. BMDM were transfected with specific small interfering RNAs (siRNAs) against autophagy-related genes and with mimics or inhibitors of autophagy-associated miRNAs. The infection rates of BMDM were determined by light microscopy after a parasite-specific staining. Results: The experiments demonstrated autophagy induction in BMDM after in vitro infection with L.
    [Show full text]
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood
    pathogens Article Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood Mononuclear Cells in Horses during Equine Herpesvirus 1 Infection Lila M. Zarski 1, Patty Sue D. Weber 2, Yao Lee 1 and Gisela Soboll Hussey 1,* 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; [email protected] (L.M.Z.); [email protected] (Y.L.) 2 Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected] Abstract: Equine herpesvirus 1 (EHV-1) affects horses worldwide and causes respiratory dis- ease, abortions, and equine herpesvirus myeloencephalopathy (EHM). Following infection, a cell- associated viremia is established in the peripheral blood mononuclear cells (PBMCs). This viremia is essential for transport of EHV-1 to secondary infection sites where subsequent immunopathol- ogy results in diseases such as abortion or EHM. Because of the central role of PBMCs in EHV-1 pathogenesis, our goal was to establish a gene expression analysis of host and equine herpesvirus genes during EHV-1 viremia using RNA sequencing. When comparing transcriptomes of PBMCs during peak viremia to those prior to EHV-1 infection, we found 51 differentially expressed equine genes (48 upregulated and 3 downregulated). After gene ontology analysis, processes such as the interferon defense response, response to chemokines, the complement protein activation cascade, cell adhesion, and coagulation were overrepresented during viremia. Additionally, transcripts for EHV-1, EHV-2, and EHV-5 were identified in pre- and post-EHV-1-infection samples. Looking at Citation: Zarski, L.M.; Weber, P.S.D.; micro RNAs (miRNAs), 278 known equine miRNAs and 855 potentially novel equine miRNAs were Lee, Y.; Soboll Hussey, G.
    [Show full text]
  • Implications in Parkinson's Disease
    Journal of Clinical Medicine Review Lysosomal Ceramide Metabolism Disorders: Implications in Parkinson’s Disease Silvia Paciotti 1,2 , Elisabetta Albi 3 , Lucilla Parnetti 1 and Tommaso Beccari 3,* 1 Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Sant’Andrea delle Fratte, 06132 Perugia, Italy; [email protected] (S.P.); [email protected] (L.P.) 2 Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Sant’Andrea delle Fratte, 06132 Perugia, Italy 3 Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti, 06123 Perugia, Italy; [email protected] * Correspondence: [email protected] Received: 29 January 2020; Accepted: 20 February 2020; Published: 21 February 2020 Abstract: Ceramides are a family of bioactive lipids belonging to the class of sphingolipids. Sphingolipidoses are a group of inherited genetic diseases characterized by the unmetabolized sphingolipids and the consequent reduction of ceramide pool in lysosomes. Sphingolipidoses include several disorders as Sandhoff disease, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann Pick disease, Farber disease, and GM2 gangliosidosis. In sphingolipidosis, lysosomal lipid storage occurs in both the central nervous system and visceral tissues, and central nervous system pathology is a common hallmark for all of them. Parkinson’s disease, the most common neurodegenerative movement disorder, is characterized by the accumulation and aggregation of misfolded α-synuclein that seem associated to some lysosomal disorders, in particular Gaucher disease. This review provides evidence into the role of ceramide metabolism in the pathophysiology of lysosomes, highlighting the more recent findings on its involvement in Parkinson’s disease. Keywords: ceramide metabolism; Parkinson’s disease; α-synuclein; GBA; GLA; HEX A-B; GALC; ASAH1; SMPD1; ARSA * Correspondence [email protected] 1.
    [Show full text]
  • Supplemental Table S1
    Entrez Gene Symbol Gene Name Affymetrix EST Glomchip SAGE Stanford Literature HPA confirmed Gene ID Profiling profiling Profiling Profiling array profiling confirmed 1 2 A2M alpha-2-macroglobulin 0 0 0 1 0 2 10347 ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7 1 0 0 0 0 3 10350 ABCA9 ATP-binding cassette, sub-family A (ABC1), member 9 1 0 0 0 0 4 10057 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 1 0 0 0 0 5 10060 ABCC9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 1 0 0 0 0 6 79575 ABHD8 abhydrolase domain containing 8 1 0 0 0 0 7 51225 ABI3 ABI gene family, member 3 1 0 1 0 0 8 29 ABR active BCR-related gene 1 0 0 0 0 9 25841 ABTB2 ankyrin repeat and BTB (POZ) domain containing 2 1 0 1 0 0 10 30 ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-oxoacyl-Coenzyme A thiol 0 1 0 0 0 11 43 ACHE acetylcholinesterase (Yt blood group) 1 0 0 0 0 12 58 ACTA1 actin, alpha 1, skeletal muscle 0 1 0 0 0 13 60 ACTB actin, beta 01000 1 14 71 ACTG1 actin, gamma 1 0 1 0 0 0 15 81 ACTN4 actinin, alpha 4 0 0 1 1 1 10700177 16 10096 ACTR3 ARP3 actin-related protein 3 homolog (yeast) 0 1 0 0 0 17 94 ACVRL1 activin A receptor type II-like 1 1 0 1 0 0 18 8038 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 1 0 0 0 0 19 8751 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 1 0 0 0 0 20 8728 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 1 0 0 0 0 21 81792 ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 1 0 0 0 0 22 9507 ADAMTS4 ADAM metallopeptidase with thrombospondin type 1
    [Show full text]
  • Acetyl-Coa Synthetase 3 Promotes Bladder Cancer Cell Growth Under Metabolic Stress Jianhao Zhang1, Hongjian Duan1, Zhipeng Feng1,Xinweihan1 and Chaohui Gu2
    Zhang et al. Oncogenesis (2020) 9:46 https://doi.org/10.1038/s41389-020-0230-3 Oncogenesis ARTICLE Open Access Acetyl-CoA synthetase 3 promotes bladder cancer cell growth under metabolic stress Jianhao Zhang1, Hongjian Duan1, Zhipeng Feng1,XinweiHan1 and Chaohui Gu2 Abstract Cancer cells adapt to nutrient-deprived tumor microenvironment during progression via regulating the level and function of metabolic enzymes. Acetyl-coenzyme A (AcCoA) is a key metabolic intermediate that is crucial for cancer cell metabolism, especially under metabolic stress. It is of special significance to decipher the role acetyl-CoA synthetase short chain family (ACSS) in cancer cells confronting metabolic stress. Here we analyzed the generation of lipogenic AcCoA in bladder cancer cells under metabolic stress and found that in bladder urothelial carcinoma (BLCA) cells, the proportion of lipogenic AcCoA generated from glucose were largely reduced under metabolic stress. Our results revealed that ACSS3 was responsible for lipogenic AcCoA synthesis in BLCA cells under metabolic stress. Interestingly, we found that ACSS3 was required for acetate utilization and histone acetylation. Moreover, our data illustrated that ACSS3 promoted BLCA cell growth. In addition, through analyzing clinical samples, we found that both mRNA and protein levels of ACSS3 were dramatically upregulated in BLCA samples in comparison with adjacent controls and BLCA patients with lower ACSS3 expression were entitled with longer overall survival. Our data revealed an oncogenic role of ACSS3 via regulating AcCoA generation in BLCA and provided a promising target in metabolic pathway for BLCA treatment. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Introduction acetyl-CoA synthetase short chain family (ACSS), which In cancer cells, considerable number of metabolic ligates acetate and CoA6.
    [Show full text]
  • Autophagy-Related 7 Modulates Tumor Progression in Triple-Negative Breast Cancer
    Laboratory Investigation (2019) 99:1266–1274 https://doi.org/10.1038/s41374-019-0249-2 ARTICLE Autophagy-related 7 modulates tumor progression in triple-negative breast cancer 1 1 1 1 1 2 3 1 Mingyang Li ● Jingwei Liu ● Sihui Li ● Yanling Feng ● Fei Yi ● Liang Wang ● Shi Wei ● Liu Cao Received: 6 November 2018 / Revised: 11 February 2019 / Accepted: 14 February 2019 / Published online: 15 April 2019 © United States & Canadian Academy of Pathology 2019 Abstract The exact role of autophagy in breast cancers remains elusive. In this study, we explored the potential functions of autophagy-related 7 (Atg7) in breast cancer cell lines and tissues. Compared to normal breast tissue, a significantly lower expression of Atg7 was observed in triple-negative breast cancer (TNBC), but not other subtypes. A higher Atg7 expression was significantly associated with favorable clinicopathologic factors and better prognostic outcomes in patients with TNBC. Reflecting the clinical and pathologic observations, Atg7 was found to inhibit proliferation and migration, but promotes apoptosis in TNBC cell lines. Furthermore, Atg7 suppressed epithelial–mesenchymal transition through inhibiting aerobic glycolysis metabolism of TNBC cells. These findings provided novel molecular and clinical evidence of Atg7 in modulating 1234567890();,: 1234567890();,: the biological behavior of TNBC, thus warranting further investigation. Introduction and epidermal growth factor receptor 2 (HER-2), accounts for 15–20% of breast cancers [2]. Cytotoxic chemotherapy Breast cancer is the most commonly diagnosed cancer and remains the mainstay for the treatment of TNBC due to lack the leading cause of cancer death among women worldwide of targeted therapies. Moreover, TNBC is prone to recur- [1].
    [Show full text]