Cystatin C Is a More Reliable Biomarker for Determining Egfr To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Guide to Transthyretin Amyloidosis
A Guide to Transthyretin Amyloidosis Authored by Teresa Coelho, Bo-Goran Ericzon, Rodney Falk, Donna Grogan, Shu-ichi Ikeda, Mathew Maurer, Violaine Plante-Bordeneuve, Ole Suhr, Pedro Trigo 2016 Edition Edited by Merrill Benson, Mathew Maurer What is amyloidosis? Amyloidosis is a systemic disorder characterized by extra cellular deposition of a protein-derived material, known as amyloid, in multiple organs. Amyloidosis occurs when native or mutant poly- peptides misfold and aggregate as fibrils. The amyloid deposits cause local damage to the cells around which they are deposited leading to a variety of clinical symptoms. There are at least 23 different proteins associated with the amyloidoses. The most well-known type of amyloidosis is associated with a hematological disorder, in which amyloid fibrils are derived from monoclonal immunoglobulin light-chains (AL amyloidosis). This is associated with a clonal plasma cell disorder, closely related to and not uncommonly co-existing with multiple myeloma. Chronic inflammatory conditions such as rheumatoid arthritis or chronic infections such as bronchiectasis are associated with chronically elevated levels of the inflammatory protein, serum amyloid A, which may misfold and cause AA amyloidosis. The hereditary forms of amyloidosis are autosomal dominant diseases characterized by deposition of variant proteins, in dis- tinctive tissues. The most common hereditary form is transthyretin amyloidosis (ATTR) caused by the misfolding of protein monomers derived from the tetrameric protein transthyretin (TTR). Mutations in the gene for TTR frequently re- sult in instability of TTR and subsequent fibril formation. Closely related is wild-type TTR in which the native TTR protein, particu- larly in the elderly, can destabilize and re-aggregate causing non- familial cases of TTR amyloidosis. -
Functional Characterization of Extracellular Protease Inhibitors of Phytophthora Infestans
FUNCTIONAL CHARACTERIZATION OF EXTRACELLULAR PROTEASE INHIBITORS OF PHYTOPHTHORA INFESTANS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Miaoying Tian, M.S. * * * * * The Ohio State University 2005 Dissertation Committee: Dr. Sophien Kamoun, Adviser Dr. Terrence L. Graham Approved by Dr. Saskia A. Hogenhout Dr. Margaret G. Redinbaugh Adviser Dr. Guo-Liang Wang Graduate Program in Plant Pathology ABSTRACT The oomycetes form one of several lineages within the eukaryotes that independently evolved a parasitic lifestyle and are thought to have developed unique mechanisms of pathogenicity. The devastating oomycete plant pathogen Phytophthora infestans causes late blight, a ravaging disease of potato and tomato. Little is known about processes associated with P. infestans pathogenesis, particularly the suppression of host defense responses. We used data mining of P. infestans sequence databases to identify 18 extracellular protease inhibitors belonging to two major structural classes: (i) Kazal-like serine protease inhibitors (EPI1 to EPI14) and (ii) cystatin-like cysteine protease inhibitors (EPIC1 to EPIC4). A variety of molecular, biochemical and bioinformatic approaches were employed to functionally characterize these genes and investigate their roles in pathogen virulence. The 14 EPI proteins form a diverse family and appear to have evolved by domain shuffling, gene duplication, and diversifying selection to target a diverse array of serine proteases. Recombinant EPI1 and EPI10 proteins inhibited subtilisin A among major serine proteases, and inhibited and interacted with tomato P69B subtilase, a pathogenesis-related protein belonging to PR7 class. The recombinant cystatin-like cysteine protease inhibitor EPIC2B interacted with a novel tomato papain-like extracellular cysteine protease PIP1 with an implicated role in plant defense. -
Frequency of Renal Monitoring – Creatinine and Cystatin C): an Observational Cohort Study of Primary Care Patients with Reduced Egfr
Accepted Manuscript British Journal of General Practice FORM-2C (Frequency of Renal Monitoring – Creatinine and Cystatin C): An observational cohort study of primary care patients with reduced eGFR Fleming, Susannah; Perera, Rafael; Taylor, Kathryn; Jones, Louise; Hobbs, FD Richard; James, Tim; O’Callaghan, Chris; Shine, Brian; Verbakel, Jan ; Stevens, Richard; Bankhead, Clare DOI: https://doi.org/10.3399/BJGP.2020.0940 To access the most recent version of this article, please click the DOI URL in the line above. Received 19 October 2020 Revised 15 March 2021 Accepted 07 April 2021 © 2021 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/). Published by British Journal of General Practice. For editorial process and policies, see: https://bjgp.org/authors/bjgp-editorial-process-and-policies When citing this article please include the DOI provided above. Author Accepted Manuscript This is an ‘author accepted manuscript’: a manuscript that has been accepted for publication in British Journal of General Practice, but which has not yet undergone subediting, typesetting, or correction. Errors discovered and corrected during this process may materially alter the content of this manuscript, and the latest published version (the Version of Record) should be used in preference to any preceding versions Title page FORM-2C (Frequency of Renal Monitoring – Creatinine and Cystatin C): An observational cohort study of primary care patients -
Expression of a Barley Cystatin Gene in Maize Enhances Resistance Against Phytophagous Mites by Altering Their Cysteine-Proteases
Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases Laura Carrillo • Manuel Martínez • Koreen Ramessar • Inés Cambra • Pedro Castañera • Félix Ortego • Isabel Díaz Abstract Phytocystatins are inhibitors of cysteine-prote reproductive performance. Besides, a significant reduction ases from plants putatively involved in plant defence based of cathepsin L-like and/or cathepsin B-like activities was on their capability of inhibit heterologous enzymes. We observed when the spider mite fed on maize plants have previously characterised the whole cystatin gene expressing HvCPI-6 cystatin. These findings reveal the family members from barley (HvCPI-1 to HvCPI-13). The potential of barley cystatins as acaricide proteins to protect aim of this study was to assess the effects of barley cyst- plants against two important mite pests. atins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of Keywords Cysteine protease • Phytocystatin • Spider proteolytic activity profile in both mite species showed the mite • Transgenic maize • Tetranychus urticae • presence of the cysteine-proteases, putative targets of Brevipalpus chilensis cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, Introduction HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 Crop losses due to herbivorous pest, mainly insects and protein were generated and the functional integrity of the mites, are estimated to be about 8-15% of the total yield cystatin transgene was confirmed by in vitro inhibitory for major crops worldwide, despite pesticide use (Oerke effect observed against T urticae and B. -
Distinct Human Prolactin (Hprl) and Growth Hormone (Hgh)
Available online at www.sciencedirect.com Journal of Biotechnology 133 (2008) 27–35 Distinct human prolactin (hPRL) and growth hormone (hGH) behavior under bacteriophage lambda PL promoter control: Temperature plays a major role in protein yields C.R.J. Soares ∗, E.K.M. Ueda, T.L. Oliveira, F.I.C. Gomide, S.R. Heller, P. Bartolini Biotechnology Department, IPEN-CNEN, Av. Lineu Prestes, 2242 Cidade Universit´aria, 05508-900 S˜ao Paulo, Brazil Received 6 February 2007; received in revised form 21 August 2007; accepted 24 August 2007 Abstract When producing recombinant protein for therapy, it is desirable not only to obtain substantial amounts of the protein, but also to make sure that potential contaminants such as inducing agents are not present in the final product. To prevent this, one can use expression systems in which the promoter (PL) is activated by a temperature shift that denatures a repressor (e.g., cIts). In this manner, hGH was successfully expressed and −1 −1 ◦ secreted in Escherichia coli periplasm, with specific yields well above 1 gml A600, after a temperature shift from 30 to 42 C. However, attempts −1 −1 to express a related hormone, human prolactin, employing the same protocol were unsuccessful, providing 0.03 gml A600 at the most. A process is described in which this labile protein is obtained from a cIts− strain under optimized temperature condition (37 ◦C). The highest periplasmic ± −1 −1 ∼ secretions of prolactin ever reported were thus obtained: 0.92 0.10 gml A600 at an optical density of 3A600 units in shake flask cultures and ∼ −1 −1 1 gml A600,atanODof35A600 units, via a rapid and flexible batch feed process in laboratory bioreactor. -
Cystatin C: a Potential Target for Alzheimers Treatment
Editorial Cystatin C: a potential target for Alzheimer’s treatment Expert Rev. Neurotherapeutics 8(5), 687–689 (2008) Efrat Levy “…cystatin C binds soluble Aβ and inhibits Aβ oligomerization Departments of and amyloidogenesis, protecting the brain against Psychiatry & Pharmacology, amyloid-induced toxicity.” New York University School of Medicine, Alzheimer's disease is one of the most in familial Alzheimer’s disease in the Nathan S. Kline prevalent chronic diseases of the aging brains of mice results in amyloid plaque Institute, 140 Old population. Neuropathologically, the deposition. Some proteins associated Orangeburg Road, Orangeburg, disease is characterized by neurodegener- with amyloid lesions may have a role in NY 10962, USA ation and the presence of two patho- the pathological processes leading to Tel.: +1 845 398 5540 logical features, amyloid plaques and amyloidogenesis and neuronal degenera- Fax: +1 845 398 5422 neurofibrillary tangles. Amyloid-β (Aβ) tion, and others may bind secondarily to [email protected] is the major constituent of the amyloid amyloid deposits. It was demonstrated plaques. It is a ubiquitously expressed that cystatin C binds to the Aβ region soluble peptide that can form aggregates, within full-length amyloid precursor pro- either oligomeric or fibrillar, that are tein and that this association does not neurotoxic. Extensive research focuses on affect Aβ generation either in vitro [10] or prevention of Aβ aggregation as a possi- in vivo [11]. The association of cystatin C ble therapy for the disease. Recent stud- with the amyloid precursor protein was ies have shown that the endogenous pro- recently confirmed by in vivo mapping of tein cystatin C binds soluble Aβ and protein interactions in intact mouse inhibits Aβ oligomerization and amyloido- tissue [12]. -
Molecular Cloning and Characterization of Cystatin, a Cysteine Protease Inhibitor, from Bufo Melanostictus
Biosci. Biotechnol. Biochem., 77 (10), 2077–2081, 2013 Molecular Cloning and Characterization of Cystatin, a Cysteine Protease Inhibitor, from Bufo melanostictus y Wa LIU,1 Senlin JI,1 A-Mei ZHANG,2 Qinqin HAN,1 Yue FENG,2 and Yuzhu SONG1; 1Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China 2Laboratory of Molecular Virology, Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China Received May 31, 2013; Accepted July 17, 2013; Online Publication, October 7, 2013 [doi:10.1271/bbb.130424] Cystatins are efficient inhibitors of papain-like cys- inhibit pathogens, such as CP1 from green kiwi fruit, teine proteinases, and they serve various important which exhibits antifungal activity against Alternaria physiological functions. In this study, a novel cystatin, radicina and Botrytis cinerea both in vitro and in vivo;2) Cystatin-X, was cloned from a cDNA library of the skin the cystatin gene in wheat, which provides resistance of Bufo melanostictus. The single nonglycosylated poly- against Karnal bunt, caused by Tilletia indica;3) and peptide chain of Cystatin-X consisted of 102 amino acid chicken cystatins, which inhibit the growth of Porphyr- residues, including seven cysteines. Evolutionary analy- omonas gingivalis.4) A small number of cystatins from sis indicated that Cystatin-X can be grouped with family amphibians have been identified by means of genome 1 cystatins. It contains cystatin-conserved motifs known and transcriptome sequencing, but their functions have to interact with the active site of cysteine proteinases. -
Higher Plasma Cystatin C Is Associated with Mortality After Acute
Hendrickson et al. Critical Care (2020) 24:416 https://doi.org/10.1186/s13054-020-03111-1 RESEARCH Open Access Higher plasma cystatin C is associated with mortality after acute respiratory distress syndrome: findings from a Fluid and Catheter Treatment Trial (FACTT) substudy Carolyn M. Hendrickson1* , Yuenting D. Kwong2, Annika G. Belzer3, Michael G. Shlipak4,5, Michael A. Matthay6,7 and Kathleen D. Liu6,7 Abstract Background: Cystatin C is a well-validated marker of glomerular filtration rate in chronic kidney disease. Higher plasma concentrations of cystatin C are associated with worse clinical outcomes in heterogenous populations of critically ill patients and may be superior to creatinine in identifying kidney injury in critically ill patients. We hypothesized that elevated levels of plasma cystatin C in patients with acute respiratory distress syndrome (ARDS) would be associated with mortality risk. Methods: In a retrospective study, cystatin C was measured by nephelometry on plasma obtained at enrollment from 919 patients in the Fluid and Catheter Treatment Trial. Multivariable logistic regression was performed testing the association between quartiles of cystatin C and 60-day mortality. Analyses were stratified by acute kidney injury (AKI) status identified in the first 7 days after enrollment by Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Results: Cystatin C was significantly higher among those patients who died compared to those who survived to 60 days [1.2 (0.9–1.9) mg/L vs. 0.8 (0.6–1.2) mg/L, p < 0.001]. Compared to the lower three quartiles, subjects in the highest quartile of cystatin C had a significantly higher odds of death at 60 days [OR 1.8 (1.2–2.6), p = 0.003 in adjusted analyses]; the odds of death incrementally rose in higher cystatin C quartiles compared to the lowest quartile (OR 1.1, 1.8, and 2.5). -
The Phytophthora Cactorum Genome Provides Insights Into The
www.nature.com/scientificreports Corrected: Author Correction OPEN The Phytophthora cactorum genome provides insights into the adaptation to host defense Received: 30 October 2017 Accepted: 12 April 2018 compounds and fungicides Published online: 25 April 2018 Min Yang1,2, Shengchang Duan1,3, Xinyue Mei1,2, Huichuan Huang 1,2, Wei Chen1,4, Yixiang Liu1,2, Cunwu Guo1,2, Ting Yang1,2, Wei Wei1,2, Xili Liu5, Xiahong He1,2, Yang Dong1,4 & Shusheng Zhu1,2 Phytophthora cactorum is a homothallic oomycete pathogen, which has a wide host range and high capability to adapt to host defense compounds and fungicides. Here we report the 121.5 Mb genome assembly of the P. cactorum using the third-generation single-molecule real-time (SMRT) sequencing technology. It is the second largest genome sequenced so far in the Phytophthora genera, which contains 27,981 protein-coding genes. Comparison with other Phytophthora genomes showed that P. cactorum had a closer relationship with P. parasitica, P. infestans and P. capsici. P. cactorum has similar gene families in the secondary metabolism and pathogenicity-related efector proteins compared with other oomycete species, but specifc gene families associated with detoxifcation enzymes and carbohydrate-active enzymes (CAZymes) underwent expansion in P. cactorum. P. cactorum had a higher utilization and detoxifcation ability against ginsenosides–a group of defense compounds from Panax notoginseng–compared with the narrow host pathogen P. sojae. The elevated expression levels of detoxifcation enzymes and hydrolase activity-associated genes after exposure to ginsenosides further supported that the high detoxifcation and utilization ability of P. cactorum play a crucial role in the rapid adaptability of the pathogen to host plant defense compounds and fungicides. -
The DNA Sequence and Comparative Analysis of Human Chromosome 20
articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M. -
Clinical Utility of Serum Cystatin C in Predicting Coronary Artery Disease
Cardiology Journal 2010, Vol. 17, No. 4, pp. 374–380 Copyright © 2010 Via Medica ORIGINAL ARTICLE ISSN 1897–5593 Clinical utility of serum cystatin C in predicting coronary artery disease Mevlut Koc, Mustafa Kemal Batur, Osman Karaarslan, Gülcan Abali Adana Numune Education and Research Hospital, Department of Cardiology, Adana, Turkey Abstract Background: There is limited data regarding the clinical utility of cystatin C in patients with stable coronary artery disease (CAD). The aim of this study was to determine the predictive value of cystatin C for the presence and severity of CAD and the association between this protein and other biochemical risk factors for atherosclerosis in patients with suspected CAD. Methods: Ninety-four patients with CAD, and 92 patients without CAD but with cardiovascu- lar risk factors, were included in this study. Echocardiography and other pertinent laboratory examinations were performed. Subjects were divided into four groups according to their cystatin C quartile. Cystatin C groups were analyzed for the association with CAD characteristics. Results: The number of patients with CAD increased as the quartile of cystatin C increased, and there was a remarkable difference between quartiles (p < 0.001). Logistic regression analy- sis revealed independent predictors of incident CAD as cystatin C, hs-CRP, eGFR, HDL choles- terol and SBP (p = 0.005, p = 0.027, p = 0.017, p = 0.014 and p = 0.001, respectively). Moreover, cystatin C concentration was significantly correlated with CAD severity score (b = 0.258, p < 0.01). A cut-off value of 0.82 mg/L for cystatin C predicted incident CAD with a sensitivity and specificity of 75.5% and 75.0% respectively. -
Molecular Mechanisms in Amyloid Disorders. Novel Treatment Options in Hereditary Cystatin C Amyloid Angiopathy
Molecular Mechanisms in Amyloid Disorders. Novel Treatment Options in Hereditary Cystatin C Amyloid Angiopathy. Östner, Gustav 2013 Link to publication Citation for published version (APA): Östner, G. (2013). Molecular Mechanisms in Amyloid Disorders. Novel Treatment Options in Hereditary Cystatin C Amyloid Angiopathy. Division of Clinical Chemistry and Pharmacology, Faculty of Medicine, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Molecular Mechanisms in Amyloid Disorders Novel Treatment Options in Hereditary Cystatin C Amyloid Angiopathy GUSTAV RANHEIMER ÖSTNER Clinical Chemistry Department of Laboratory Medicine Lund University, Sweden DOCTORAL DISSERTATION by due permission of the Faculty of Medicine, Lund University, Sweden, to be defended at Wallenberg Neurocenter, Segerfalksalen, Sölvegatan 17, Lund, Saturday 14th of September 2013 at 9.15 a.m.