The Phytophthora Cactorum Genome Provides Insights Into The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantitative Comparison and Metabolite Profiling of Saponins In
Article pubs.acs.org/JAFC Terms of Use Quantitative Comparison and Metabolite Profiling of Saponins in Different Parts of the Root of Panax notoginseng † ‡ † † ‡ ‡ † ‡ Jing-Rong Wang, , Lee-Fong Yau, Wei-Na Gao, Yong Liu, Pui-Wing Yick, Liang Liu,*, , † ‡ and Zhi-Hong Jiang*, , † State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China ‡ School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China *S Supporting Information ABSTRACT: Although both rhizome and root of Panax notoginseng are officially utilized as notoginseng in “Chinese Pharmacopoeia”, individual parts of the root were differently used in practice. To provide chemical evidence for the differentiated usage, quantitative comparison and metabolite profiling of different portions derived from the whole root, as well as commercial samples, were carried out, showing an overall higher content of saponins in rhizome, followed by main root, branch root, and fi brous root. Ginsenoside Rb2 was proposed as a potential marker with a content of 0.5 mg/g as a threshold value for differentiating rhizome from other parts. Multivariate analysis of the metabolite profile further suggested 32 saponins as potential markers for the discrimination of different parts of notoginseng. Collectively, the study provided comprehensive chemical evidence for the distinct usage of different parts of notoginseng and, hence, is of great importance for the rational application and exploitation of individual parts of notoginseng. KEYWORDS: notoginseng, ginsenosides, LC−MS, metabolomics, root ■ INTRODUCTION that is, rhizome, main root, branch root, and fibrous root, were ff The root of Panax notoginseng (Burk.) F.H. -
Phytopythium: Molecular Phylogeny and Systematics
Persoonia 34, 2015: 25–39 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X685382 Phytopythium: molecular phylogeny and systematics A.W.A.M. de Cock1, A.M. Lodhi2, T.L. Rintoul 3, K. Bala 3, G.P. Robideau3, Z. Gloria Abad4, M.D. Coffey 5, S. Shahzad 6, C.A. Lévesque 3 Key words Abstract The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium COI clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and Bayesian LSU phylogenetic analysis of the nuclear ribosomal DNA (LSU and SSU) and mitochondrial DNA cytochrome oxidase Oomycetes subunit 1 (COI) as well as statistical analyses of pairwise distances strongly support the status of Phytopythium as Oomycota a separate phylogenetic entity. Phytopythium is morphologically intermediate between the genera Phytophthora Peronosporales and Pythium. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. Phytopythium The formal transfer of clade K species to Phytopythium and a comparison with morphologically similar species of Pythiales the genera Pythium and Phytophthora is presented. A new species is described, Phytopythium mirpurense. SSU Article info Received: 28 January 2014; Accepted: 27 September 2014; Published: 30 October 2014. INTRODUCTION establish which species belong to clade K and to make new taxonomic combinations for these species. To achieve this The genus Pythium as defined by Pringsheim in 1858 was goal, phylogenies based on nuclear LSU rRNA (28S), SSU divided by Lévesque & de Cock (2004) into 11 clades based rRNA (18S) and mitochondrial DNA cytochrome oxidase1 (COI) on molecular systematic analyses. -
Molecular Identification and Detection of Phytophthora Species on Some Important Mediterranean Plants Including Sweet Chestnut
For. Snow Landsc. Res. 76, 3: 351–356 (2001) 351 Molecular identification and detection of Phytophthora species on some important Mediterranean plants including sweet chestnut Santa Olga Cacciola1, Naomi A. Williams2, David E. L. Cooke2 and James M. Duncan2 1 Dipartimento di Scienze Entomologiche Fitopatologiche, Microbiologiche Agrarie e Zootecniche – Sezione di Patologia Vegetale e Microbiologia Agraria 90128 Palermo, University of Palermo, Italy [email protected] 2 Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, Scotland, U.K. [email protected] Abstract PCR amplification of the internal transcribed spacer regions and 5.8S gene of rDNA and sequencing or restriction digestion of the resultant product were used to confirm the identities of a collection of Phytophthora isolates from a variety of hosts in Italy. All isolates were of previously described species, but a number of new host-pathogen combinations of potential economic import ance were found, including P. palmivora on olive (Olea europaea) trees. Three Phyto ph - thora isolates from chestnut (Castanea sativa) trees were identified as P. cambivora, a known pathogen of chestnut. Existing, but previously unpublished, rapid, sensitive, DNA-based assays for P. cambivora and P. cinnamomi are described. In combination with similar diagnostics for other species such as P. cactorum, these assays could be used to detect nearly all important Phytophthora species known to occur in chestnut. Keywords: Phytophthora, ITS-RFLP, specific primers, diagnosis, Castanea sativa, Italy 1 Introduction The genus Phytophthora comprises approximately 60 species, nearly all of which are pathogens that damage plants and some of which are among the most important pathogens worldwide (ERWIN and RIBEIRO 1996). -
Alnus Glutinosa
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875229; this version posted December 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Investigations into the declining health of alder (Alnus glutinosa) along the river Lagan in Belfast, including the first report of Phytophthora lacustris causing disease of Alnus in Northern Ireland Richard O Hanlon (1, 2)* Julia Wilson (2), Deborah Cox (1) (1) Agri-Food and Biosciences Institute, Belfast, BT9 5PX, Northern Ireland, UK. (2) Queen’s University Belfast, Northern Ireland, UK * [email protected] Additional key words: Plant health, Forest pathology, riparian, root and collar rot. Abstract Common alder (Alnus glutinosa) is an important tree species, especially in riparian and wet habitats. Alder is very common across Ireland and Northern Ireland, and provides a wide range of ecosystem services. Surveys along the river Lagan in Belfast, Northern Ireland led to the detection of several diseased Alnus trees. As it is known that Alnus suffers from a Phytophthora induced decline, this research set out to identify the presence and scale of the risk to Alnus health from Phytophthora and other closely related oomycetes. Sampling and a combination of morphological and molecular testing of symptomatic plant material and river baits identified the presence of several Phytophthora species, including Phytophthora lacustris. A survey of the tree vegetation along an 8.5 km stretch of the river revealed that of the 166 Alnus trees counted, 28 were severely defoliated/diseased and 9 were dead. -
Presidio Phytophthora Management Recommendations
2016 Presidio Phytophthora Management Recommendations Laura Sims Presidio Phytophthora Management Recommendations (modified) Author: Laura Sims Other Contributing Authors: Christa Conforti, Tom Gordon, Nina Larssen, and Meghan Steinharter Photograph Credits: Laura Sims, Janet Klein, Richard Cobb, Everett Hansen, Thomas Jung, Thomas Cech, and Amelie Rak Editors and Additional Contributors: Christa Conforti, Alison Forrestel, Alisa Shor, Lew Stringer, Sharon Farrell, Teri Thomas, John Doyle, and Kara Mirmelstein Acknowledgements: Thanks first to Matteo Garbelotto and the University of California, Berkeley Forest Pathology and Mycology Lab for providing a ‘forest pathology home’. Many thanks to the members of the Phytophthora huddle group for useful suggestions and feedback. Many thanks to the members of the Working Group for Phytophthoras in Native Habitats for insight into the issues of Phytophthora. Many thanks to Jennifer Parke, Ted Swiecki, Kathy Kosta, Cheryl Blomquist, Susan Frankel, and M. Garbelotto for guidance. I would like to acknowledge the BMP documents on Phytophthora that proceeded this one: the Nursery Industry Best Management Practices for Phytophthora ramorum to prevent the introduction or establishment in California nursery operations, and The Safe Procurement and Production Manual. 1 Title Page: Authors and Acknowledgements Table of Contents Page Title Page 1 Table of Contents 2 Executive Summary 5 Introduction to the Phytophthora Issue 7 Phytophthora Issues Around the World 7 Phytophthora Issues in California 11 Phytophthora -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
Functional Characterization of Extracellular Protease Inhibitors of Phytophthora Infestans
FUNCTIONAL CHARACTERIZATION OF EXTRACELLULAR PROTEASE INHIBITORS OF PHYTOPHTHORA INFESTANS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Miaoying Tian, M.S. * * * * * The Ohio State University 2005 Dissertation Committee: Dr. Sophien Kamoun, Adviser Dr. Terrence L. Graham Approved by Dr. Saskia A. Hogenhout Dr. Margaret G. Redinbaugh Adviser Dr. Guo-Liang Wang Graduate Program in Plant Pathology ABSTRACT The oomycetes form one of several lineages within the eukaryotes that independently evolved a parasitic lifestyle and are thought to have developed unique mechanisms of pathogenicity. The devastating oomycete plant pathogen Phytophthora infestans causes late blight, a ravaging disease of potato and tomato. Little is known about processes associated with P. infestans pathogenesis, particularly the suppression of host defense responses. We used data mining of P. infestans sequence databases to identify 18 extracellular protease inhibitors belonging to two major structural classes: (i) Kazal-like serine protease inhibitors (EPI1 to EPI14) and (ii) cystatin-like cysteine protease inhibitors (EPIC1 to EPIC4). A variety of molecular, biochemical and bioinformatic approaches were employed to functionally characterize these genes and investigate their roles in pathogen virulence. The 14 EPI proteins form a diverse family and appear to have evolved by domain shuffling, gene duplication, and diversifying selection to target a diverse array of serine proteases. Recombinant EPI1 and EPI10 proteins inhibited subtilisin A among major serine proteases, and inhibited and interacted with tomato P69B subtilase, a pathogenesis-related protein belonging to PR7 class. The recombinant cystatin-like cysteine protease inhibitor EPIC2B interacted with a novel tomato papain-like extracellular cysteine protease PIP1 with an implicated role in plant defense. -
Expression of a Barley Cystatin Gene in Maize Enhances Resistance Against Phytophagous Mites by Altering Their Cysteine-Proteases
Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases Laura Carrillo • Manuel Martínez • Koreen Ramessar • Inés Cambra • Pedro Castañera • Félix Ortego • Isabel Díaz Abstract Phytocystatins are inhibitors of cysteine-prote reproductive performance. Besides, a significant reduction ases from plants putatively involved in plant defence based of cathepsin L-like and/or cathepsin B-like activities was on their capability of inhibit heterologous enzymes. We observed when the spider mite fed on maize plants have previously characterised the whole cystatin gene expressing HvCPI-6 cystatin. These findings reveal the family members from barley (HvCPI-1 to HvCPI-13). The potential of barley cystatins as acaricide proteins to protect aim of this study was to assess the effects of barley cyst- plants against two important mite pests. atins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of Keywords Cysteine protease • Phytocystatin • Spider proteolytic activity profile in both mite species showed the mite • Transgenic maize • Tetranychus urticae • presence of the cysteine-proteases, putative targets of Brevipalpus chilensis cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, Introduction HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 Crop losses due to herbivorous pest, mainly insects and protein were generated and the functional integrity of the mites, are estimated to be about 8-15% of the total yield cystatin transgene was confirmed by in vitro inhibitory for major crops worldwide, despite pesticide use (Oerke effect observed against T urticae and B. -
Susceptibility of Pacific Yew (Taxus Brevifolia Nutt.) to Phytophthora Lateralis Redacted for Privacy Abstract Approved: Everett M Hansen
AN ABSTRACT OF THE THESIS OF Marion S. Murray for the degree of Master of Science in Plant Pathology presented on April 10, 1995. Title: Susceptibility of Pacific Yew (Taxus brevifolia Nutt.) to Phytophthora lateralis Redacted for Privacy Abstract Approved: Everett M Hansen In 1991 Pacific yew (Taxus brevifolia Nutt.) was reported as a new host for Phytophthora lateralis Tucker and Milbrath which is an aggressive root rot pathogen thought previously to be specific to Port-Orford-cedar. This study was designed to compare the pathogenicity of P. lateralis on the two hosts, and to characterize sites where Pacific yew mortality occurs. The specific objectives were: 1) compare root colonization and mortality of Pacific yew and Port-Orford-cedar seedlings and rooted cuttings; 2) compare lesion length on inoculated Pacific yew and Port-Orford cedar branches and stems; 3) compare zoospore attraction to freshly cut Pacific yew and Port-Orford-cedar rootlets; 4) compare amount of mortality of Pacific yew and Port-Orford-cedar in infested drainages and determine extent of yew mortality; and 5) characterize sites where P. lateralis causes Pacific yew mortality. Root colonization of P. lateralis was significantly greater in cedar than in yew. Seedling mortality averaged 58% for cedar and 4% for yew. Lesion length on the cedar seedling stems was twice the lesion length on yew stems, and cedar branches had lesions four times longer than yew branches. Abundant zoospore aggregation occurred on cedar rootlets along the zone of elongation and the region of maturation. In comparison, far fewer zoospores encysted along the yew rootlets, and were concentrated on the root hairs. -
Phytophthora Damping Off and Root Rot of Soybean Anne E
FACT SHEET Agriculture and Natural Resources AC-17-09 Phytophthora Damping Off and Root Rot of Soybean Anne E. Dorrance and Dennis Mills Department of Plant Pathology The Ohio State University hytophthora damping off and root rot have been increased use of no-tillage and reduced tillage residue Pthe most destructive diseases of soybeans in Ohio management systems, however, Phytophthora damp- for more than 50 years. When rainfall saturates fields ing off and root rot has become a serious problem in soon after planting, severe seedling kill can result other areas of Ohio as well. The soil-borne pathogen in yield losses greater than 50% in individual fields. that causes this disease (Phytophthora sojae) can be Phytophthora seed rot and pre-emergence damping found in most agricultural soils in the state. off are one of the major causes of replanting on heavy soils. Historically, statewide yield losses average 11% Symptoms in years with wet springs and 8% in years with more Phytophthora normal planting seasons. can attack soy- The disease is most severe in poorly drained soils bean plants at any with high clay content. Traditionally, the northwest stage of develop- section of the state has had severe problems with ment. Symptoms Phytophthora damping off and root rot. With the in young plants include rapid yel- lowing and wilt- ing accompanied by a soft rot and collapse of the root. More ma- ture plants gener- ally show reduced vigor and may be gradually killed as the growing Figure 2. Phytophthora stem season progresses. rot—adult plant showing stem Figure 1. -
Chamaecyparis Lawsoniana in Europe: Distribution, Habitat, Usage and Threats
Chamaecyparis lawsoniana Chamaecyparis lawsoniana in Europe: distribution, habitat, usage and threats T. Houston Durrant, G. Caudullo The conifer Lawson cypress (Chamaecyparis lawsoniana (A. Murray) Parl.) is native to a small area in North America. Variable in form, there are over 200 cultivars selected for horticultural purposes. It has been planted in many countries in Europe, usually as an ornamental, although the timber is also of good quality. It has been severely affected in its native range by root rot disease, and this has now spread to the European population. Chamaecyparis lawsoniana (A. Murray) Parl., known as Lawson cypress, or Port Orford cedar in the United States, is a Frequency large conifer native to North America. It belongs to the family < 25% 25% - 50% Cupressaceae, and is sometimes referred to as a “false-cypress” 50% - 75% to distinguish it from other cypresses in the family. It is long- > 75% lived (more than 600 years) and can reach heights of up to 50 m (exceptionally up to 70 m in its native range) and a diameter exceeding 2 m1, 2. The tree is narrowly columnar with slender, down-curving branches; frequently with forked stems. The bark is silvery-brown, becoming furrowed and very thick with age giving mature trees good fire resistance2, 3. The wood is highly aromatic with a distinctive ginger-like odour, as is the foliage which has a parsley-like scent when crushed3, 4. The evergreen scale-like leaves are around 2-3 mm long5. Abundant, round pea-sized cones ripen in autumn with seed dispersal occurring immediately after and continuing until the following spring6. -
Panax Notoginseng Saponins: a Review of Its Mechanisms of Antidepressant Or Anxiolytic Effects and Network Analysis on Phytochemistry and Pharmacology
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2018 doi:10.20944/preprints201803.0117.v1 Peer-reviewed version available at Molecules 2018, 23, 940; doi:10.3390/molecules23040940 Panax Notoginseng Saponins: A Review of its Mechanisms of Antidepressant or Anxiolytic Effects and Network Analysis on Phytochemistry and Pharmacology Weijie Xie 1,2,3,4, Xiangbao Meng 1,2,3,4, Yadong Zhai 1,2,3,4, Ping Zhou 1,2,3,4, Tianyuan Ye 1,2,3,4, Zhen Wang 1,2,3,4, Guibo Sun 1,2,3,4 *, and Xiaobo Sun 1,2,3,4 * 1 Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; [email protected] (W. X.); [email protected] (X. M.); [email protected] (Y. Z.); [email protected] (P. Z.); [email protected] (T. Y.); [email protected] (Z. W.) 2 Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China 3 Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Beijing 100193, China 4 Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China * Correspondence: [email protected] (G.S.); [email protected] (X.S.); Tel.: +86-10-5783-3220 (G.S.); +86-10-5783-3013 (X.S.) Abstract Panax notoginseng, as traditional Chinese medicine, has a long history of high clinical value, such as anti-inflammatory, anti-oxidation, inhibition of platelet aggregation, regulation of blood glucose and blood pressure, inhibition of neuronal apoptosis and neuronal protection, and its main ingredients are Panax notoginseng saponins (PNS).