Functional Characterization of Extracellular Protease Inhibitors of Phytophthora Infestans

Total Page:16

File Type:pdf, Size:1020Kb

Functional Characterization of Extracellular Protease Inhibitors of Phytophthora Infestans FUNCTIONAL CHARACTERIZATION OF EXTRACELLULAR PROTEASE INHIBITORS OF PHYTOPHTHORA INFESTANS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Miaoying Tian, M.S. * * * * * The Ohio State University 2005 Dissertation Committee: Dr. Sophien Kamoun, Adviser Dr. Terrence L. Graham Approved by Dr. Saskia A. Hogenhout Dr. Margaret G. Redinbaugh Adviser Dr. Guo-Liang Wang Graduate Program in Plant Pathology ABSTRACT The oomycetes form one of several lineages within the eukaryotes that independently evolved a parasitic lifestyle and are thought to have developed unique mechanisms of pathogenicity. The devastating oomycete plant pathogen Phytophthora infestans causes late blight, a ravaging disease of potato and tomato. Little is known about processes associated with P. infestans pathogenesis, particularly the suppression of host defense responses. We used data mining of P. infestans sequence databases to identify 18 extracellular protease inhibitors belonging to two major structural classes: (i) Kazal-like serine protease inhibitors (EPI1 to EPI14) and (ii) cystatin-like cysteine protease inhibitors (EPIC1 to EPIC4). A variety of molecular, biochemical and bioinformatic approaches were employed to functionally characterize these genes and investigate their roles in pathogen virulence. The 14 EPI proteins form a diverse family and appear to have evolved by domain shuffling, gene duplication, and diversifying selection to target a diverse array of serine proteases. Recombinant EPI1 and EPI10 proteins inhibited subtilisin A among major serine proteases, and inhibited and interacted with tomato P69B subtilase, a pathogenesis-related protein belonging to PR7 class. The recombinant cystatin-like cysteine protease inhibitor EPIC2B interacted with a novel tomato papain-like extracellular cysteine protease PIP1 with an implicated role in plant defense. PIP1 is closely related to Rcr3, an apoplastic cysteine protease required for ii tomato Cf-2 and Cladosporium fulvm Avr2-dependent defense response. Both EPIC1 and EPIC2B interacted with Rcr3. Interactions with plant defense-related proteases suggest a counterdefense role of these extracellular protease inhibitors. Interestingly, EPIC1 and EPIC2B were degraded by tomato pathogenesis-related P69B subtilase and EPI1 protected both proteins from degradation, indicating that EPI1 contributes to virulence by protecting pathogen proteins from degradation by defense-related proteases. In addition, our overall results suggest that complex cascades of inhibition of host proteases by diverse extracellular protease inhibitors of P. infestans might occur in the plant apoplast during infection, thus leading to multifaceted suppression of plant defense responses. Both Kazal-like and cystatin-like inhibitors are widespread in the oomycetes, but have not been reported in other microbial plant pathogens. Inhibition of host proteases by P. infestans protease inhibitors is proposed to be a novel mechanism of pathogen suppression of plant defense. iii Dedicated to my parents and husband iv ACKNOWLEDGMENTS When I started writing this section, my brain started to gather memories during my Ph. D study. I felt that I had improved a lot in many aspects, including experimental skills, oral presentations, writing and personal confidence in my future career. All of these are not possible without my adviser Dr. Sophien Kamoun’s great contributions. He guided me with his great intelligence, enthusiasm, patience, encouragement and support. I would like to express my special appreciation and respect to him. I am also greatly thankful to my other Student Advisory Committee members: Dr. Terrence Graham, Dr. Margaret Redinbaugh, Dr. Guoliang Wang and Dr. Saskia Hogenhout for their stimulating discussions and constructive advices. I would like to thank all the previous and current Kamoun lab members, who I have worked together, especially Diane Kinney, Shujing Dong, Joe Win, Edgar Huitema, Trudy Torto-Alalibo, Luis da Cunha, Zhenyu Liu, Jorunn Bos, Nicolas Champouret, Jing Song, Thirumala-devi Kanneganti and Cahid Cakir for all kinds of help and discussion. I am grateful to MCIC staff and Maize Virology Group at USDA for the convenience they provided for me to use all kinds of equipments. Finally, I would like to say “ Thank you so much” to my husband Dongliang Wu. Without his support and understanding, my Ph.D dream wouldn’t come true. v VITA 1990 - 1994…………………. B.S. Plant Protection, Agricultural University of Hebei, P. R.China 1994 - 1997………………….. M.S., Plant Pathology, The Graduate School of Chinese Academy of Agricultural Sciences, P. R. China 1997 - 2000………………….. Research associate, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, P.R. China 2000 - present ……………….. Graduate Research Associate, The Ohio State University PUBLICATIONS Research Publication 1. Tian, M., Champouret, N., and Kamoun, S. 2004. Extracellular protease inhibitors of Phytophthora infestans determine a novel counterdefense mechanism. Phytopathology. 94: S136. 2. Tian, M., Huitema, E., da Cunha, L., Torto, T., and Kamoun, S. 2004. A Kazal- like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. Journal of Biological Chemistry. 279(25), 26370- 26377. 3. Huitema, E., Bos, J. I. B., Tian, M., Win, J., Waugh, M. E. and Kamoun, S. 2004. Linking sequence to phenotype in Phytophthora-plant interactions. Trends in Microbiology. 12(4), 193-200. 4. Tian, M., and Feng, L. (2000) Identification of a molecular marker linked with ToMV resistance gene in tomato using Randomly Amplified Polymorphic DNA. Acta Phytopathologica Sinica 30(2):158-161. vi 5. Tian, M., Wu, M., and Cheng, Z. (1999) Construction of plant expression vector harboring defective replicase gene of Barley Yellow Dwarf Virus and gaining of transgenic wheat plants Scientia Agricultura Sinica 32(5): 49-54. FIELDS OF STUDY Major Field: Plant Pathology Specialty: Molecular Plant-Microbe Interactions vii TABLE OF CONTENTS Page Abstract………………………………………………………………………………….. ii Dedication……………………………………………………………………………….. iv Acknowledgments……………………………………………………………………….. v Vita………………………………………………………………………………………. vi List of Tables…………………………………………………………………………….. x List of Figures…………………………………………………………………………… xi Chapters: 1. Introduction……………………………………………………………………... 1 References………………………………………………………………………. 10 2. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B………………………… 17 2.1 Abstract……………………………………………………………………... 17 2.2 Introduction…………………………………………………………………. 18 2.3 Materials and Methods……………………………………………………… 20 2.4 Results………………………………………………………………………. 28 2.5 Discussion…………………………………………………………………... 34 2.6 Acknowledgments…………………………………………………………... 37 2.7 References……………………………………………………………………38 3. Evolution of Kazal-like protease inhibitors in Phytophthora was driven by gene duplication, domain shuffling, and diversifying selection……………...51 3.1 Abstract………………………………………………………………………51 3.2 Introduction…………………………………………………………………..52 3.3 Materials and Methods……………………………………………………….56 3.4 Results………………………………………………………………………..58 3.5 Discussion……………………………………………………………………65 3.6 Acknowledgments……………………………………………………………70 3.7 References……………………………………………………………………70 viii 4. A second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the tomato pathogenesis-related protease P69B……………...87 4.1 Abstract………………………………………………………………………87 4.2 Introduction…………………………………………………………………..88 4.3 Materials and Methods……………………………………………………….91 4.4 Results………………………………………………………………………..96 4.5 Discussion…………………………………………………………………..101 4.6 Acknowledgments…………………………………………………………..105 4.7 References…………………………………………………………………..105 5. An atypical two disulfide bridge Kazal domain from Phytophthora exhibits stable inhibitory activity against serine proteases of the subtilisin family……..117 5.1 Abstract……………………………………………………………………..117 5.2 Introduction…………………………………………………………………118 5.3 Materials and Methods……………………………………………………...123 5.4 Results………………………………………………………………………126 5.5 Discussion…………………………………………………………………..131 5.6 Acknowledgments…………………………………………………………..134 5.7 References…………………………………………………………………..134 6. Kazal-like serine protease inhibitor EPI1 from Phytophthora infestans is involved in virulence by initiating cascades of inhibition of plant defense-related proteases…………………………………………………143 6.1 Abstract……………………………………………………………………..143 6.2 Introduction…………………………………………………………………144 6.3 Materials and Methods……………………………………………………...148 6.4 Results………………………………………………………………………154 6.5 Discussion…………………………………………………………………..163 6.6 Acknowledgments…………………………………………………………..170 6.7 References…………………………………………………………………..170 Bibliography……………………………………………………………………………189 ix LIST OF TABLES Table Page 2.1 Predicted Kazal-like proteins from the oomycete plant pathogens Phytophthora infestans, Phytophthora sojae, Phytophthora ramorum, Phytophthora brassicae, and Plasmopara halstedii…………………………….50 3.1 Primers used for RT-PCR amplifications of epi genes from P. infestans……… 85 3.2 Putative orthologous epi genes in P. infestans, P. sojae and P. ramorum………86 6.1 Primers used in Chapter 6………………………………………………………187 6.2 Predicted cystatin-like extracellular protease inhibitors from the oomycete plant pathogens Phytophthora infestans, Phytophthora sojae and Phytophthora ramorum…………………………………………………………188
Recommended publications
  • Downloaded from NCBI
    bioRxiv preprint doi: https://doi.org/10.1101/818179; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Proteolysis and neurogenesis modulated by LNR domain proteins explosion 2 support male differentiation in the crustacean Oithona nana 3 Kevin Sugier1, Romuald Laso-Jadart1, Soheib Kerbache1, Jos Kafer4, Majda Arif1, Laurie Bertrand2, Karine 4 Labadie2, Nathalie Martins2, Celine Orvain2, Emmanuelle Petit2, Julie Poulain1, Patrick Wincker1, Jean-Louis 5 Jamet3, Adriana Alberti2 and Mohammed-Amin Madoui1 6 1. Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université 7 Paris-Saclay, Evry, France 8 2. Commissariat à l'Energie Atomique (CEA), Institut François Jacob, Genoscope, Evry, France 9 3. Université de Toulon, Aix-Marseille Université, CNRS/INSU/IRD, Mediterranean Institute of 10 Oceanography MIO UMR 7294, CS 60584, 83041 Toulon cedex 9, France 11 4. Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS UMR 5558, France 12 bioRxiv preprint doi: https://doi.org/10.1101/818179; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 13 Abstract 14 Copepods are the most numerous animals and play an essential role in the marine trophic web 15 and biogeochemical cycles. The genus Oithona is described as having the highest numerical 16 density, as the most cosmopolite copepod and iteroparous. The Oithona male paradox obliges 17 it to alternate feeding (immobile) and mating (mobile) phases.
    [Show full text]
  • Plant Protease Inhibitors: a Defense Strategy in Plants
    Biotechnology and Molecular Biology Review Vol. 2 (3), pp. 068-085, August 2007 Available online at http://www.academicjournals.org/BMBR ISSN 1538-2273 © 2007 Academic Journals Standard Review Plant protease inhibitors: a defense strategy in plants Huma Habib and Khalid Majid Fazili* Department of Biotechnology, The University of Kashmir, P/O Naseembagh, Hazratbal, Srinagar -190006, Jammu and Kashmir, India. Accepted 7 July, 2007 Proteases, though essentially indispensable to the maintenance and survival of their host organisms, can be potentially damaging when overexpressed or present in higher concentrations, and their activities need to be correctly regulated. An important means of regulation involves modulation of their activities through interaction with substances, mostly proteins, called protease inhibitors. Some insects and many of the phytopathogenic microorganisms secrete extracellular enzymes and, in particular, enzymes causing proteolytic digestion of proteins, which play important roles in pathogenesis. Plants, however, have also developed mechanisms to fight these pathogenic organisms. One important line of defense that plants have to fight these pathogens is through various inhibitors that act against these proteolytic enzymes. These inhibitors are thus active in endogenous as well as exogenous defense systems. Protease inhibitors active against different mechanistic classes of proteases have been classified into different families on the basis of significant sequence similarities and structural relationships. Specific protease inhibitors are currently being overexpressed in certain transgenic plants to protect them against invaders. The current knowledge about plant protease inhibitors, their structure and their role in plant defense is briefly reviewed. Key words: Proteases, enzymes, protease inhibitors, serpins, cystatins, pathogens, defense. Table of content 1.
    [Show full text]
  • Expression of a Barley Cystatin Gene in Maize Enhances Resistance Against Phytophagous Mites by Altering Their Cysteine-Proteases
    Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases Laura Carrillo • Manuel Martínez • Koreen Ramessar • Inés Cambra • Pedro Castañera • Félix Ortego • Isabel Díaz Abstract Phytocystatins are inhibitors of cysteine-prote­ reproductive performance. Besides, a significant reduction ases from plants putatively involved in plant defence based of cathepsin L-like and/or cathepsin B-like activities was on their capability of inhibit heterologous enzymes. We observed when the spider mite fed on maize plants have previously characterised the whole cystatin gene expressing HvCPI-6 cystatin. These findings reveal the family members from barley (HvCPI-1 to HvCPI-13). The potential of barley cystatins as acaricide proteins to protect aim of this study was to assess the effects of barley cyst- plants against two important mite pests. atins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of Keywords Cysteine protease • Phytocystatin • Spider proteolytic activity profile in both mite species showed the mite • Transgenic maize • Tetranychus urticae • presence of the cysteine-proteases, putative targets of Brevipalpus chilensis cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, Introduction HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 Crop losses due to herbivorous pest, mainly insects and protein were generated and the functional integrity of the mites, are estimated to be about 8-15% of the total yield cystatin transgene was confirmed by in vitro inhibitory for major crops worldwide, despite pesticide use (Oerke effect observed against T urticae and B.
    [Show full text]
  • Insights Into the Role of Tick Salivary Protease Inhibitors During Ectoparasite–Host Crosstalk
    International Journal of Molecular Sciences Review Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite–Host Crosstalk Mohamed Amine Jmel 1,† , Hajer Aounallah 2,3,† , Chaima Bensaoud 1, Imen Mekki 1,4, JindˇrichChmelaˇr 4, Fernanda Faria 3 , Youmna M’ghirbi 2 and Michalis Kotsyfakis 1,* 1 Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 Ceskˇ é Budˇejovice,Czech Republic; [email protected] (M.A.J.); [email protected] (C.B.); [email protected] (I.M.) 2 Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; [email protected] (H.A.); [email protected] (Y.M.) 3 Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil; [email protected] 4 Faculty of Science, University of South Bohemia in Ceskˇ é Budˇejovice, 37005 Ceskˇ é Budˇejovice, Czech Republic; [email protected] * Correspondence: [email protected] † These authors contributed equally. Abstract: Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents.
    [Show full text]
  • Molecular Cloning and Characterization of Cystatin, a Cysteine Protease Inhibitor, from Bufo Melanostictus
    Biosci. Biotechnol. Biochem., 77 (10), 2077–2081, 2013 Molecular Cloning and Characterization of Cystatin, a Cysteine Protease Inhibitor, from Bufo melanostictus y Wa LIU,1 Senlin JI,1 A-Mei ZHANG,2 Qinqin HAN,1 Yue FENG,2 and Yuzhu SONG1; 1Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China 2Laboratory of Molecular Virology, Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China Received May 31, 2013; Accepted July 17, 2013; Online Publication, October 7, 2013 [doi:10.1271/bbb.130424] Cystatins are efficient inhibitors of papain-like cys- inhibit pathogens, such as CP1 from green kiwi fruit, teine proteinases, and they serve various important which exhibits antifungal activity against Alternaria physiological functions. In this study, a novel cystatin, radicina and Botrytis cinerea both in vitro and in vivo;2) Cystatin-X, was cloned from a cDNA library of the skin the cystatin gene in wheat, which provides resistance of Bufo melanostictus. The single nonglycosylated poly- against Karnal bunt, caused by Tilletia indica;3) and peptide chain of Cystatin-X consisted of 102 amino acid chicken cystatins, which inhibit the growth of Porphyr- residues, including seven cysteines. Evolutionary analy- omonas gingivalis.4) A small number of cystatins from sis indicated that Cystatin-X can be grouped with family amphibians have been identified by means of genome 1 cystatins. It contains cystatin-conserved motifs known and transcriptome sequencing, but their functions have to interact with the active site of cysteine proteinases.
    [Show full text]
  • Supplementary Table S1 List of Proteins Identified with LC-MS/MS in the Exudates of Ustilaginoidea Virens Mol
    Supplementary Table S1 List of proteins identified with LC-MS/MS in the exudates of Ustilaginoidea virens Mol. weight NO a Protein IDs b Protein names c Score d Cov f MS/MS Peptide sequence g [kDa] e Succinate dehydrogenase [ubiquinone] 1 KDB17818.1 6.282 30.486 4.1 TGPMILDALVR iron-sulfur subunit, mitochondrial 2 KDB18023.1 3-ketoacyl-CoA thiolase, peroxisomal 6.2998 43.626 2.1 ALDLAGISR 3 KDB12646.1 ATP phosphoribosyltransferase 25.709 34.047 17.6 AIDTVVQSTAVLVQSR EIALVMDELSR SSTNTDMVDLIASR VGASDILVLDIHNTR 4 KDB11684.1 Bifunctional purine biosynthetic protein ADE1 22.54 86.534 4.5 GLAHITGGGLIENVPR SLLPVLGEIK TVGESLLTPTR 5 KDB16707.1 Proteasomal ubiquitin receptor ADRM1 12.204 42.367 4.3 GSGSGGAGPDATGGDVR 6 KDB15928.1 Cytochrome b2, mitochondrial 34.9 58.379 9.4 EFDPVHPSDTLR GVQTVEDVLR MLTGADVAQHSDAK SGIEVLAETMPVLR 7 KDB12275.1 Aspartate 1-decarboxylase 11.724 112.62 3.6 GLILTLSEIPEASK TAAIAGLGSGNIIGIPVDNAAR 8 KDB15972.1 Glucosidase 2 subunit beta 7.3902 64.984 3.2 IDPLSPQQLLPASGLAPGR AAGLALGALDDRPLDGR AIPIEVLPLAAPDVLAR AVDDHLLPSYR GGGACLLQEK 9 KDB15004.1 Ribose-5-phosphate isomerase 70.089 32.491 32.6 GPAFHAR KLIAVADSR LIAVADSR MTFFPTGSQSK YVGIGSGSTVVHVVDAIASK 10 KDB18474.1 D-arabinitol dehydrogenase 1 19.425 25.025 19.2 ENPEAQFDQLKK ILEDAIHYVR NLNWVDATLLEPASCACHGLEK 11 KDB18473.1 D-arabinitol dehydrogenase 1 11.481 10.294 36.6 FPLIPGHETVGVIAAVGK VAADNSELCNECFYCR 12 KDB15780.1 Cyanovirin-N homolog 85.42 11.188 31.7 QVINLDER TASNVQLQGSQLTAELATLSGEPR GAATAAHEAYK IELELEK KEEGDSTEKPAEETK LGGELTVDER NATDVAQTDLTPTHPIR 13 KDB14501.1 14-3-3
    [Show full text]
  • Reproductionresearch
    REPRODUCTIONRESEARCH SPINK3 modulates mouse sperm physiology through the reduction of nitric oxide level independently of its trypsin inhibitory activity L Zalazar, T E Saez Lancellotti1, M Clementi1, C Lombardo, L Lamattina, R De Castro, M W Forne´s1 and A Cesari Instituto de Investigaciones Biolo´gicas (IIB), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CCT–Mar del Plata, CONICET, Funes 3250, 4th Floor, Mar del Plata 7600, Argentina and 1Laboratorio de Investigaciones Androlo´gicas de Mendoza (LIAM, IHEM–CONICET), Facultad de Ciencias Me´dicas, Universidad Nacional de Cuyo, CCT–Mendoza, CONICET, Mendoza, Argentina Correspondence should be addressed to A Cesari; Email: [email protected] M W Forne´s and A Cesari contributed equally to this work Abstract Serine protease inhibitor Kazal-type (SPINK3)/P12/PSTI-II is a small secretory protein from mouse seminal vesicle which contains a C KAZAL domain and shows calcium (Ca2 )-transport inhibitory (caltrin) activity. This molecule was obtained as a recombinant protein and its effect on capacitated sperm cells was examined. SPINK3 inhibited trypsin activity in vitro while the fusion protein GST-SPINK3 had no effect on this enzyme activity. The inactive GST-SPINK3 significantly reduced the percentage of spermatozoa positively stained for nitric oxide (NO) with the specific probe DAF-FM DA and NO concentration measured by Griess method in capacitated mouse sperm; C the same effect was observed when sperm were capacitated under low Ca2 concentration, using either intracellular (BAPTA-AM) or C extracellular Ca2 (EDTA) chelators. The percentage of sperm showing spontaneous and progesterone-induced acrosomal reaction was significantly lower in the presence of GST-SPINK3 compared to untreated capacitated spermatozoa.
    [Show full text]
  • The Phytophthora Cactorum Genome Provides Insights Into The
    www.nature.com/scientificreports Corrected: Author Correction OPEN The Phytophthora cactorum genome provides insights into the adaptation to host defense Received: 30 October 2017 Accepted: 12 April 2018 compounds and fungicides Published online: 25 April 2018 Min Yang1,2, Shengchang Duan1,3, Xinyue Mei1,2, Huichuan Huang 1,2, Wei Chen1,4, Yixiang Liu1,2, Cunwu Guo1,2, Ting Yang1,2, Wei Wei1,2, Xili Liu5, Xiahong He1,2, Yang Dong1,4 & Shusheng Zhu1,2 Phytophthora cactorum is a homothallic oomycete pathogen, which has a wide host range and high capability to adapt to host defense compounds and fungicides. Here we report the 121.5 Mb genome assembly of the P. cactorum using the third-generation single-molecule real-time (SMRT) sequencing technology. It is the second largest genome sequenced so far in the Phytophthora genera, which contains 27,981 protein-coding genes. Comparison with other Phytophthora genomes showed that P. cactorum had a closer relationship with P. parasitica, P. infestans and P. capsici. P. cactorum has similar gene families in the secondary metabolism and pathogenicity-related efector proteins compared with other oomycete species, but specifc gene families associated with detoxifcation enzymes and carbohydrate-active enzymes (CAZymes) underwent expansion in P. cactorum. P. cactorum had a higher utilization and detoxifcation ability against ginsenosides–a group of defense compounds from Panax notoginseng–compared with the narrow host pathogen P. sojae. The elevated expression levels of detoxifcation enzymes and hydrolase activity-associated genes after exposure to ginsenosides further supported that the high detoxifcation and utilization ability of P. cactorum play a crucial role in the rapid adaptability of the pathogen to host plant defense compounds and fungicides.
    [Show full text]
  • The DNA Sequence and Comparative Analysis of Human Chromosome 20
    articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M.
    [Show full text]
  • The Role of Cystatins in Cells of the Immune System
    FEBS Letters 580 (2006) 6295–6301 Minireview The role of cystatins in cells of the immune system Natasˇa Kopitar-Jerala* Department of Biochemistry and Molecular Biology, Jozˇef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia Received 16 August 2006; revised 22 October 2006; accepted 24 October 2006 Available online 3 November 2006 Edited by Masayuki Miyasaka The cystatins constitute a large group of evolutionary Abstract The cystatins constitute a large group of evolutionary related proteins with diverse biological activities. Initially, they related proteins acting as protease inhibitors of papain-like were characterized as inhibitors of lysosomal cysteine proteases cysteine proteases belonging to enzyme family C1 (see the – cathepsins. Cathepsins are involved in processing and presenta- MEROPS database at http://merops.sanger.ac.uk), such as tion of antigens, as well as several pathological conditions such cathepsins B, H, L, and S and legumain-related proteases of as inflammation and cancer. Recently, alternative functions of the family C13 [10]. Type 1 cystatins, stefins (A and B), are cystatins have been proposed: they also induce tumour necrosis polypeptides of 98 amino acid residues which possess neither factor and interleukin 10 synthesis and stimulate nitric oxide disulfide bonds nor carbohydrate side chains and are located production. The aim of the present review was the analysis of mainly intracellularly. Type 2 cystatins C, D, E/M, F, S, SN, data on cystatins from NCBI GEO database and the literature, and SA are characterized by two conserved disulfide bridges, and obtained in microarray and serial analysis of gene expres- a larger size (120 residues) and the presence of a signal sion (SAGE) experiments.
    [Show full text]
  • Gene Pyramiding of Peptidase Inhibitors Enhances Plant Resistance to the Spider Mite Tetranychus Urticae
    Gene Pyramiding of Peptidase Inhibitors Enhances Plant Resistance to the Spider Mite Tetranychus urticae Maria Estrella Santamaria1,2,3, Ine´s Cambra, Manuel Martinez1, Clara Pozancos1, Pablo Gonza´lez- Melendi1, Vojislava Grbic2, Pedro Castan˜ era3, Felix Ortego3, Isabel Diaz1* 1 Centro de Biotecnologı´a y Geno´mica de Plantas (UPM-INIA). Campus Montegancedo Universidad Polite´cnica de Madrid, Autopista M40 (km 38), Madrid, Spain, 2 Department of Biology Western University, Ontario, Canada, 3 Dpto. Biologia Medioambiental, Centro de Investigaciones Biolo´gicas, CSIC, Madrid, Spain Abstract The two-spotted spider mite Tetranychus urticae is a damaging pest worldwide with a wide range of host plants and an extreme record of pesticide resistance. Recently, the complete T. urticae genome has been published and showed a proliferation of gene families associated with digestion and detoxification of plant secondary compounds which supports its polyphagous behaviour. To overcome spider mite adaptability a gene pyramiding approach has been developed by co- expressing two barley proteases inhibitors, the cystatin Icy6 and the trypsin inhibitor Itr1 genes in Arabidopsis plants by Agrobacterium-mediated transformation. The presence and expression of both transgenes was studied by conventional and quantitative real time RT-PCR assays and by indirect ELISA assays. The inhibitory activity of cystatin and trypsin inhibitor was in vitro analysed using specific substrates. Single and double transformants were used to assess the effects of spider mite infestation. Double transformed lines showed the lowest damaged leaf area in comparison to single transformants and non- transformed controls and different accumulation of H2O2 as defence response in the leaf feeding site, detected by diaminobenzidine staining.
    [Show full text]
  • Proteolysis and Neurogenesis Modulated by LNR Domain Proteins
    bioRxiv preprint doi: https://doi.org/10.1101/818179; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Proteolysis and neurogenesis modulated by LNR domain proteins explosion 2 support male differentiation and sacrificial behaviour in the iteroparous 3 crustacean Oithona nana 4 Kevin Sugier1, Romuald Laso-Jadart1, Soheib Kerbache1, Jos Kafer4, Majda Arif1, Laurie Bertrand2, Karine 5 Labadie2, Nathalie Martins2, Celine Orvain2, Emmanuelle Petit2, Julie Poulain1, Patrick Wincker1, Jean-Louis 6 Jamet3, Adriana Alberti2 and Mohammed-Amin Madoui1 7 1. Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université 8 Paris-Saclay, Evry, France 9 2. Commissariat à l'Energie Atomique (CEA), Institut François Jacob, Genoscope, Evry, France 10 3. Université de Toulon, Aix-Marseille Université, CNRS/INSU/IRD, Mediterranean Institute of 11 Oceanography MIO UMR 7294, CS 60584, 83041 Toulon cedex 9, France 12 4. Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS UMR 5558, France 13 bioRxiv preprint doi: https://doi.org/10.1101/818179; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 14 Abstract 15 Copepods are the most numerous animals and play an essential role in the marine trophic web 16 and biogeochemical cycles. The genus Oithona is described as having the highest numerical 17 density, as the most cosmopolite copepod and iteroparous. The Oithona male paradox obliges 18 it to alternate feeding (immobile) and mating (mobile) phases.
    [Show full text]