Surveywfikkn1 and WFIKKN2: ¬タワcompanion¬タン Proteins

Total Page:16

File Type:pdf, Size:1020Kb

Surveywfikkn1 and WFIKKN2: ¬タワcompanion¬タン Proteins Cytokine & Growth Factor Reviews 32 (2016) 75–84 Contents lists available at ScienceDirect Cytokine & Growth Factor Reviews journal homepage: www.elsevier.com/locate/cytogfr Survey WFIKKN1 and WFIKKN2: “Companion” proteins regulating TGFB activity a, b,c Olivier Monestier *, Véronique Blanquet a INRA, UR1037 Laboratory of Fish Physiology and Genomic, Growth and Flesh Quality Group, Campus de Beaulieu, 35000 Rennes, France b INRA, UMR1061 Unité de Génétique Moléculaire Animale, 87060 Limoges, France c Université de Limoges, 87060 Limoges, France A R T I C L E I N F O A B S T R A C T Article history: Received 10 May 2016 The WFIKKN (WAP, Follistatin/kazal, Immunoglobulin, Kunitz and Netrin domain-containing) protein Received in revised form 7 June 2016 family is composed of two multidomain proteins: WFIKKN1 and WFIKKN2. They were formed by domain Accepted 10 June 2016 shuffling and are likely present in deuterostoms. The WFIKKN (also called GASP) proteins are well known Available online 11 June 2016 for their function in muscle and skeletal tissues, namely, inhibition of certain members of the transforming growth factor beta (TGFB) superfamily such as myostatin (MSTN) and growth and Keywords: differentiation factor 11 (GDF11). However, the role of the WFIKKN proteins in other tissues is still poorly GASP1 understood in spite of evidence suggesting possible action in the inner ear, brain and reproduction. GASP2 Further, several recent studies based on next generation technologies revealed differential expression of WFIKKN WFIKKN1 and WFIKKN2 in various tissues suggesting that their function is not limited to MSTN and GDF11 WFIKKNRP inhibition in musculoskeletal tissue. In this review, we summarize current knowledge about the WFIKKN Myostatin inhibitors proteins and propose that they are “companion” proteins for various growth factors by providing localized and sustained presentation of TGFB proteins to their respective receptors, thus regulating the balance between the activation of Smad and non-Smad pathways by TGFB. ã 2016 Elsevier Ltd. All rights reserved. Contents 1. Introduction . 76 2. Modular domain structure of the WFIKKN1 and WFIKKN2 proteins . 76 3. The origin of WFIKKN1 and WFIKKN2: multidomain proteins constructed by module shuffling . 76 4. Expression pattern and regulation of WFIKKN1 and WFIKKN2 . 78 4.1. WFIKKN expression in musculoskeletal system . 78 4.2. WFIKKN expression in brain . 78 4.3. WFIKKN expression in other tissues or cell lines . 78 5. Role of WFIKKN in MSTN and GDF11 inhibition . 79 6. Evidences for other functions of WFIKKN . 80 6.1. Function of the WFIKKN antiproteasic modules . 80 6.2. WFIKKN proteins interact with several TGFB superfamily proteins . 80 6.3. WFIKKN are expressed in various tissues . 80 6.4. Polymorphisms of WFIKKN1 and WFIKKN2 are linked with ovulation rate and autism . 80 Abbreviations: WFIKKN, WAP, Follistatin/kazal, Immunoglobulin, Kunitz And Netrin Domain Containing protein; TGFB, transforming growth factor beta; MSTN, myostatin; GDF11, growth and differentiation factor 11; GASP, growth and differentiation factor-associated serum protein; WAP, Whey Acidic Protein; NTR domain, netrin domain; KU, kunitz domain; BMP, Bone morphogenetic protein; PCoLCE, type I procollagen C-proteinase enhancer proteins; TIMPs, tissue inhibitors of metalloproteinases; IgC2, immunoglobulin C2 type domain; FSTL, follistatin-like protein; ADAMTSL, a disintegrin-like and metalloprotease domain with thrombospondin type I motifs-like; WGD, whole genome duplication; PPAR, peroxisome proliferator-activated receptor; MAV, meninges and associated vasculature; LAP, latency associated peptide; FST, follistatin; ACVR, activing receptor; ALK, Anaplastic lymphoma kinase; ERK, Extracellular signal-regulated kinases; JNK, c-Jun N-terminal kinases; PI3K, Phosphoinositide 3-kinase. * Corresponding author. E-mail addresses: [email protected] (O. Monestier), [email protected] (V. Blanquet). http://dx.doi.org/10.1016/j.cytogfr.2016.06.003 1359-6101/ã 2016 Elsevier Ltd. All rights reserved. 76 O. Monestier, V. Blanquet / Cytokine & Growth Factor Reviews 32 (2016) 75–84 7. WFIKKN inhibition of TGFB is just partial . 81 8. Conclusion . 82 Acknowledgements . 82 References . 82 1. Introduction (called also four-disulfide core motif). A WAP domain is a functional motif found in many proteins that exhibit serine WFIKKN1 and WFIKKN2 (also called Growth and differentiation protease inhibition activity [24–27]. factor Associated Serum Protein (GASP) 2 and 1, respectively) are – kazal-type serine protease inhibitors and follistatin-like domain. secreted proteins originally discovered in 2000 and 2002 by Composed of ten cysteines, kazal-type inhibitors are the most Trexler et al. [1,2]. Due to their predicted protein domain studied canonical proteinase inhibitors, and the classical kazal composition and their ubiquitous expression, these proteins are domain structure includes a central alpha helix inserted assumed to form a family of multivalent protease inhibitors. In between two beta-strands and a third toward the C terminus 2003, a major advance in the understanding of the function of this [25,26,28,29]. kazal-like domains are also seen in the extracel- gene family was made when WFIKKN2 was described as an MSTN lular part of agrins which are not known to have proteinase associated protein found in human and mouse sera that could inhibitory effect but are implicated in the interaction of agrin specifically inhibit MSTN, but not activin activity [3]. Since 2003, with BMP2, BMP4 and TGFB1 [30]. many studies confirmed that the WFIKKN proteins act as myostatin – two kunitz domains (KU1 and KU2), which are usually present in and GDF11 inhibitors [4–9] and are implicated in muscle growth proteins that belong to the MEROPS inhibitor family I2 or the [10–14]. However, only weak effects on muscle tissue were kunitz/bovine pancreatic trypsin inhibitor family and inhibit observed after overexpression or inactivation of Wfikkn1/Wfikkn2 proteases of the S1 family [25,26,28]. Their size is about 50 in mice [7,9]. Further, several recent studies based on high residues with few secondary structures and their fold is throughput next generation technologies (microarray, RNAseq, . constrained by three disulphide bonds. ) revealed differential expression of WFIKKN1 and WFIKKN2 in – and the NTR module in the C-terminal part of the WFIKKN various tissues and conditions suggesting that their function is not proteins, also found in the C-terminal part of netrins, C3, C4, and limited to MSTN and GDF11 inhibition in muscle and skeletal C5 components of the complement system, secreted frizzled- tissues. Nevertheless, the role of members of this gene family in related proteins, type I procollagen C-proteinase enhancer other tissues is still poorly understood despite evidence suggesting proteins (PCoLCE), as well as in the N-terminal part of tissue possible action in the inner ear [15], brain [16–19] and reproduc- inhibitors of metalloproteinases (TIMPs) [1,25,26,31]. The NTR tion [20,21]. We summarize here current knowledge about module is a basic domain containing six conserved cysteines, WFIKKN1 and WFIKKN2 and propose a more generic function which are likely to form internal disulphide bonds, and several for these two proteins. conserved blocks of hydrophobic residues [31]. Information on the role of the NTR domains in the other NTR domain-containing 2. Modular domain structure of the WFIKKN1 and WFIKKN2 proteins is limited. There have been no reports of proteinase proteins inhibitory activity in the NTR domains of netrins, C3/C4/C5 complement proteins, WFIKKN1 and WFIKKN2. In contrast, this In mammals, the WFIKKN family is composed of two domain is frequently involved in binding to heparin or related paralogous genes of 3–7 kb (Table 1) structured in two exons macromolecules [32–36]. and one intron. The short first exon (570 bp) encodes a signal peptide for secretion and a WAP (Whey Acidic Protein) domain Considering the posttranslational maturation, we know that whereas the last larger exon encodes a follistatin/kazal domain, an WFIKKN2 is a glycoprotein and contain two N-glycans, one located IgC2 (immunoglobulin C2 type) domain, two kunitz domains and a between the IgC2 and the KU1 domains (N314) and the other in the NTR (netrin) domain, hence the name: WAP, Follistatin/kazal, NTR domain (N514). The loss of these N-glycans leads to a decrease Immunoglobulin, Kunitz and NTR domain-containing protein. in protein secretion rate but does not appear to affect the WFIKKN1 and 2 share about 55% identity (Table 2), but the 6 functional activity of the protein in C2C12 cells [37]. Furthermore, modules including 38 cysteines are well conserved in all vertebrate several mucin-type O-glycans seem to be present between the WFIKKN proteins [22]. Five out of six domains of the WFIKKN kazal and the IgC2 domains. proteins exhibit homology-predicted antiprotease activity, so these proteins are classified as heterotypic compound inhibitors 3. The origin of WFIKKN1 and WFIKKN2: multidomain proteins (I90 family of peptidase inhibitors) along with only two other constructed by module shuffling proteins: the Red Sea turtle chelonianin and human eppin [23]. These antiproteasic domains include: WFIKKN1 and WFIKKN2 are paralogous genes as supported by paralogons and blocks of synteny [22,38]. These genes are present – WAP domain composed of a characteristic sequence motif of in all mammals, and one copy of WFIKKN1 and two of WFIKKN2 are eight cysteines found in a four-disulfide core arrangement present in some fish species [4,22]. A unique ancestral gene was Table 1 WFIKKN general information (Ensembl). Chromosome Gene size (kb) Transcrit size (bp) Exons number Protein size (aa) Human WFIKKN1 16 3.19 2018 2 548 Mouse WFIKKN1 17 3.23 2530 2 552 Human WFIKKN2 17 6.94 3588 2 576 Mouse WFIKKN2 11 6.75 3516 2 571 Download English Version: https://daneshyari.com/en/article/5531219 Download Persian Version: https://daneshyari.com/article/5531219 Daneshyari.com.
Recommended publications
  • Downloaded from NCBI
    bioRxiv preprint doi: https://doi.org/10.1101/818179; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Proteolysis and neurogenesis modulated by LNR domain proteins explosion 2 support male differentiation in the crustacean Oithona nana 3 Kevin Sugier1, Romuald Laso-Jadart1, Soheib Kerbache1, Jos Kafer4, Majda Arif1, Laurie Bertrand2, Karine 4 Labadie2, Nathalie Martins2, Celine Orvain2, Emmanuelle Petit2, Julie Poulain1, Patrick Wincker1, Jean-Louis 5 Jamet3, Adriana Alberti2 and Mohammed-Amin Madoui1 6 1. Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université 7 Paris-Saclay, Evry, France 8 2. Commissariat à l'Energie Atomique (CEA), Institut François Jacob, Genoscope, Evry, France 9 3. Université de Toulon, Aix-Marseille Université, CNRS/INSU/IRD, Mediterranean Institute of 10 Oceanography MIO UMR 7294, CS 60584, 83041 Toulon cedex 9, France 11 4. Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS UMR 5558, France 12 bioRxiv preprint doi: https://doi.org/10.1101/818179; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 13 Abstract 14 Copepods are the most numerous animals and play an essential role in the marine trophic web 15 and biogeochemical cycles. The genus Oithona is described as having the highest numerical 16 density, as the most cosmopolite copepod and iteroparous. The Oithona male paradox obliges 17 it to alternate feeding (immobile) and mating (mobile) phases.
    [Show full text]
  • A University of Sussex Phd Thesis Available Online Via
    A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details Exploring interactions between Epstein- Barr virus transcription factor Zta and The Human Genome By IJIEL BARAK NARANJO PEREZ FERNANDEZ A Thesis submitted for the degree of Doctor of Philosophy University Of Sussex School of Life Sciences September 2017 ii I hereby declare that this thesis has not been and will not be, submitted in whole or in part to another University for the award of any other degree. Signature:…………………………..…………………………..……………………… iii Acknowledgements I want to thank Professor Alison J Sinclair for her guidance, mentoring and above all continuous patience. During the time that I’ve been part of her lab I’ve appreciated her wisdom as an educator her foresight as a scientist and tremendous love as a parent. I wish that someday soon rather than later her teachings are reflected in my person and career; hopefully inspiring others like me. Thanks to Professor Michelle West for her help whenever needed or offered. Her sincere and honest feedback, something that I only learned to appreciate after my personal scientific insight was developed.
    [Show full text]
  • Two Locus Inheritance of Non-Syndromic Midline Craniosynostosis Via Rare SMAD6 and 4 Common BMP2 Alleles 5 6 Andrew T
    1 2 3 Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and 4 common BMP2 alleles 5 6 Andrew T. Timberlake1-3, Jungmin Choi1,2, Samir Zaidi1,2, Qiongshi Lu4, Carol Nelson- 7 Williams1,2, Eric D. Brooks3, Kaya Bilguvar1,5, Irina Tikhonova5, Shrikant Mane1,5, Jenny F. 8 Yang3, Rajendra Sawh-Martinez3, Sarah Persing3, Elizabeth G. Zellner3, Erin Loring1,2,5, Carolyn 9 Chuang3, Amy Galm6, Peter W. Hashim3, Derek M. Steinbacher3, Michael L. DiLuna7, Charles 10 C. Duncan7, Kevin A. Pelphrey8, Hongyu Zhao4, John A. Persing3, Richard P. Lifton1,2,5,9 11 12 1Department of Genetics, Yale University School of Medicine, New Haven, CT, USA 13 2Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA 14 3Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA 15 4Department of Biostatistics, Yale University School of Medicine, New Haven, CT, USA 16 5Yale Center for Genome Analysis, New Haven, CT, USA 17 6Craniosynostosis and Positional Plagiocephaly Support, New York, NY, USA 18 7Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA 19 8Child Study Center, Yale University School of Medicine, New Haven, CT, USA 20 9The Rockefeller University, New York, NY, USA 21 22 ABSTRACT 23 Premature fusion of the cranial sutures (craniosynostosis), affecting 1 in 2,000 24 newborns, is treated surgically in infancy to prevent adverse neurologic outcomes. To 25 identify mutations contributing to common non-syndromic midline (sagittal and metopic) 26 craniosynostosis, we performed exome sequencing of 132 parent-offspring trios and 59 27 additional probands.
    [Show full text]
  • Plant Protease Inhibitors: a Defense Strategy in Plants
    Biotechnology and Molecular Biology Review Vol. 2 (3), pp. 068-085, August 2007 Available online at http://www.academicjournals.org/BMBR ISSN 1538-2273 © 2007 Academic Journals Standard Review Plant protease inhibitors: a defense strategy in plants Huma Habib and Khalid Majid Fazili* Department of Biotechnology, The University of Kashmir, P/O Naseembagh, Hazratbal, Srinagar -190006, Jammu and Kashmir, India. Accepted 7 July, 2007 Proteases, though essentially indispensable to the maintenance and survival of their host organisms, can be potentially damaging when overexpressed or present in higher concentrations, and their activities need to be correctly regulated. An important means of regulation involves modulation of their activities through interaction with substances, mostly proteins, called protease inhibitors. Some insects and many of the phytopathogenic microorganisms secrete extracellular enzymes and, in particular, enzymes causing proteolytic digestion of proteins, which play important roles in pathogenesis. Plants, however, have also developed mechanisms to fight these pathogenic organisms. One important line of defense that plants have to fight these pathogens is through various inhibitors that act against these proteolytic enzymes. These inhibitors are thus active in endogenous as well as exogenous defense systems. Protease inhibitors active against different mechanistic classes of proteases have been classified into different families on the basis of significant sequence similarities and structural relationships. Specific protease inhibitors are currently being overexpressed in certain transgenic plants to protect them against invaders. The current knowledge about plant protease inhibitors, their structure and their role in plant defense is briefly reviewed. Key words: Proteases, enzymes, protease inhibitors, serpins, cystatins, pathogens, defense. Table of content 1.
    [Show full text]
  • Molecular Characterization of Latent GDF8 Reveals Mechanisms
    Molecular characterization of latent GDF8 reveals PNAS PLUS mechanisms of activation Ryan G. Walkera,1, Jason C. McCoya,1, Magdalena Czepnika, Melanie J. Millsb,c, Adam Haggd,e, Kelly L. Waltond, Thomas R. Cottonf, Marko Hyvönenf, Richard T. Leeb,c, Paul Gregorevice,g,h,i, Craig A. Harrisond,j,2, and Thomas B. Thompsona,2 aDepartment of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267; bHarvard Stem Cell Institute, Harvard University, Cambridge, MA 02138; cDepartment of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138; dBiomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, VIC 3800, Australia; eBaker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; fDepartment of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom; gDepartment of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; hDepartment of Physiology, University of Melbourne, Parkville, VIC 3010, Australia; iDepartment of Neurology, University of Washington School of Medicine, Seattle, WA 98195; and jHudson Institute of Medical Research, Clayton, VIC 3168, Australia Edited by Se-Jin Lee, Johns Hopkins University, Baltimore, MD, and approved December 7, 2017 (received for review August 22, 2017) Growth/differentiation factor 8 (GDF8), or myostatin, negatively the latent TGF-β1 crystal structure provided a molecular expla- regulates muscle mass. GDF8 is held in a latent state through nation for how latency is exerted by the prodomain via a co- interactions with its N-terminal prodomain, much like TGF-β. Using ordinated interaction between the N-terminal alpha helix (alpha- a combination of small-angle X-ray scattering and mutagenesis, 1), latency lasso, and fastener of the prodomain with type I and we characterized the interactions of GDF8 with its prodomain.
    [Show full text]
  • Revealing the Role of the Human Blood Plasma Proteome in Obesity Using Genetic Drivers
    ARTICLE https://doi.org/10.1038/s41467-021-21542-4 OPEN Revealing the role of the human blood plasma proteome in obesity using genetic drivers Shaza B. Zaghlool 1,11, Sapna Sharma2,3,4,11, Megan Molnar 2,3, Pamela R. Matías-García2,3,5, Mohamed A. Elhadad 2,3,6, Melanie Waldenberger 2,3,7, Annette Peters 3,4,7, Wolfgang Rathmann4,8, ✉ Johannes Graumann 9,10, Christian Gieger2,3,4, Harald Grallert2,3,4,12 & Karsten Suhre 1,12 Blood circulating proteins are confounded readouts of the biological processes that occur in 1234567890():,; different tissues and organs. Many proteins have been linked to complex disorders and are also under substantial genetic control. Here, we investigate the associations between over 1000 blood circulating proteins and body mass index (BMI) in three studies including over 4600 participants. We show that BMI is associated with widespread changes in the plasma proteome. We observe 152 replicated protein associations with BMI. 24 proteins also associate with a genome-wide polygenic score (GPS) for BMI. These proteins are involved in lipid metabolism and inflammatory pathways impacting clinically relevant pathways of adiposity. Mendelian randomization suggests a bi-directional causal relationship of BMI with LEPR/LEP, IGFBP1, and WFIKKN2, a protein-to-BMI relationship for AGER, DPT, and CTSA, and a BMI-to-protein relationship for another 21 proteins. Combined with animal model and tissue-specific gene expression data, our findings suggest potential therapeutic targets fur- ther elucidating the role of these proteins in obesity associated pathologies. 1 Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar.
    [Show full text]
  • Functional Characterization of Extracellular Protease Inhibitors of Phytophthora Infestans
    FUNCTIONAL CHARACTERIZATION OF EXTRACELLULAR PROTEASE INHIBITORS OF PHYTOPHTHORA INFESTANS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Miaoying Tian, M.S. * * * * * The Ohio State University 2005 Dissertation Committee: Dr. Sophien Kamoun, Adviser Dr. Terrence L. Graham Approved by Dr. Saskia A. Hogenhout Dr. Margaret G. Redinbaugh Adviser Dr. Guo-Liang Wang Graduate Program in Plant Pathology ABSTRACT The oomycetes form one of several lineages within the eukaryotes that independently evolved a parasitic lifestyle and are thought to have developed unique mechanisms of pathogenicity. The devastating oomycete plant pathogen Phytophthora infestans causes late blight, a ravaging disease of potato and tomato. Little is known about processes associated with P. infestans pathogenesis, particularly the suppression of host defense responses. We used data mining of P. infestans sequence databases to identify 18 extracellular protease inhibitors belonging to two major structural classes: (i) Kazal-like serine protease inhibitors (EPI1 to EPI14) and (ii) cystatin-like cysteine protease inhibitors (EPIC1 to EPIC4). A variety of molecular, biochemical and bioinformatic approaches were employed to functionally characterize these genes and investigate their roles in pathogen virulence. The 14 EPI proteins form a diverse family and appear to have evolved by domain shuffling, gene duplication, and diversifying selection to target a diverse array of serine proteases. Recombinant EPI1 and EPI10 proteins inhibited subtilisin A among major serine proteases, and inhibited and interacted with tomato P69B subtilase, a pathogenesis-related protein belonging to PR7 class. The recombinant cystatin-like cysteine protease inhibitor EPIC2B interacted with a novel tomato papain-like extracellular cysteine protease PIP1 with an implicated role in plant defense.
    [Show full text]
  • Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
    Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation
    [Show full text]
  • Transcriptomic Profiles of High and Low Antibody Responders to Smallpox
    Genes and Immunity (2013) 14, 277–285 & 2013 Macmillan Publishers Limited All rights reserved 1466-4879/13 www.nature.com/gene ORIGINAL ARTICLE Transcriptomic profiles of high and low antibody responders to smallpox vaccine RB Kennedy1,2, AL Oberg1,3, IG Ovsyannikova1,2, IH Haralambieva1,2, D Grill1,3 and GA Poland1,2 Despite its eradication over 30 years ago, smallpox (as well as other orthopox viruses) remains a pathogen of interest both in terms of biodefense and for its use as a vector for vaccines and immunotherapies. Here we describe the application of mRNA-Seq transcriptome profiling to understanding immune responses in smallpox vaccine recipients. Contrary to other studies examining gene expression in virally infected cell lines, we utilized a mixed population of peripheral blood mononuclear cells in order to capture the essential intercellular interactions that occur in vivo, and would otherwise be lost, using single cell lines or isolated primary cell subsets. In this mixed cell population we were able to detect expression of all annotated vaccinia genes. On the host side, a number of genes encoding cytokines, chemokines, complement factors and intracellular signaling molecules were downregulated upon viral infection, whereas genes encoding histone proteins and the interferon response were upregulated. We also identified a small number of genes that exhibited significantly different expression profiles in subjects with robust humoral immunity compared with those with weaker humoral responses. Our results provide evidence that differential gene regulation patterns may be at work in individuals with robust humoral immunity compared with those with weaker humoral immune responses. Genes and Immunity (2013) 14, 277–285; doi:10.1038/gene.2013.14; published online 18 April 2013 Keywords: Next-generation sequencing; mRNA-Seq; vaccinia virus; smallpox vaccine INTRODUCTION these 44 subjects had two samples (uninfected and vaccinia Vaccinia virus (VACV) is the immunologically cross-protective infected).
    [Show full text]
  • Circulating Protein Signatures and Causal Candidates for Type 2 Diabetes
    Diabetes Volume 69, August 2020 1843 Circulating Protein Signatures and Causal Candidates for Type 2 Diabetes Valborg Gudmundsdottir,1,2 Shaza B. Zaghlool,3 Valur Emilsson,2,4 Thor Aspelund,1,2 Marjan Ilkov,2 Elias F. Gudmundsson,2 Stefan M. Jonsson,1 Nuno R. Zilhão,2 John R. Lamb,5 Karsten Suhre,3 Lori L. Jennings,6 and Vilmundur Gudnason1,2 Diabetes 2020;69:1843–1853 | https://doi.org/10.2337/db19-1070 GENETICS/GENOMES/PROTEOMICS/METABOLOMICS The increasing prevalence of type 2 diabetes poses More than 240 genetic loci have been associated with type a major challenge to societies worldwide. Blood-based 2 diabetes in genome-wide association studies (GWAS) factors like serum proteins are in contact with every (1–5), and blood-based biomarker candidates for type organ in the body to mediate global homeostasis and 2 diabetes have begun to emerge, perhaps most notably may thus directly regulate complex processes such as the branched-chain amino acids (BCAAs) (6,7), the catab- aging and the development of common chronic dis- olism of which has recently been proposed as a novel eases. We applied a data-driven proteomics approach, treatment target for obesity-associated insulin resistance measuring serum levels of 4,137 proteins in 5,438 elderly (8). However, only fragmentary data are available for Icelanders, and identified 536 proteins associated with serum protein links to type 2 diabetes (9). While few prevalent and/or incident type 2 diabetes. We validated biomarker candidates provide much improvement in a subset of the observed associations in an independent type 2 diabetes prediction over conventional measures case-control study of type 2 diabetes.
    [Show full text]
  • Influence of WFIKKN1 on BMP1‐Mediated
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Influence of WFIKKN1 on BMP1-mediated activation of latent myostatin Gyorgy€ Szlama, Viktor Vas arhelyi, Maria Trexler and Laszl o Patthy Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary Keywords The NTR domain of WFIKKN1 protein has been shown to have signifi- BMP1; heparin; latent myostatin; myostatin; cant affinity for the prodomain regions of promyostatin and latent myo- WFIKKN1 statin but the biological significance of these interactions remained unclear. In view of its role as a myostatin antagonist, we tested the assumption that Correspondence L. Patthy, Institute of Enzymology, WFIKKN1 inhibits the release of myostatin from promyostatin and/or Research Centre for Natural Sciences, latent myostatin. WFIKKN1 was found to have no effect on processing of Hungarian Academy of Sciences, Budapest, promyostatin by furin, the rate of cleavage of latent myostatin by BMP1, P.O. Box 286, H-1519, Hungary however, was significantly enhanced in the presence of WFIKKN1 and Tel: +361 382 6751 this enhancer activity was superstimulated by heparin. Unexpectedly, E-mail: [email protected] WFIKKN1 was also cleaved by BMP1 and our studies have shown that the KKN1 fragment generated by BMP1-cleavage of WFIKKN1 con- (Received 26 May 2016, revised 19 September 2016, accepted 24 October tributes most significantly to the observed enhancer activity. Analysis of a 2016) pro-TGF-b -based homology model of homodimeric latent myostatin revealed that the BMP1-cleavage sites are buried and not readily accessible doi:10.1111/febs.13938 to BMP1.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]