Cefoxitin Versus Piperacillin– Tazobactam As Surgical Antibiotic Prophylaxis in Patients Undergoing Pancreatoduodenectomy: Protocol for a Randomised Controlled Trial

Total Page:16

File Type:pdf, Size:1020Kb

Cefoxitin Versus Piperacillin– Tazobactam As Surgical Antibiotic Prophylaxis in Patients Undergoing Pancreatoduodenectomy: Protocol for a Randomised Controlled Trial Open access Protocol BMJ Open: first published as 10.1136/bmjopen-2020-048398 on 4 March 2021. Downloaded from Cefoxitin versus piperacillin– tazobactam as surgical antibiotic prophylaxis in patients undergoing pancreatoduodenectomy: protocol for a randomised controlled trial Nicole M Nevarez ,1 Brian C Brajcich,2 Jason Liu,2,3 Ryan Ellis,2 Clifford Y Ko,2 Henry A Pitt,4 Michael I D'Angelica,5 Adam C Yopp1 To cite: Nevarez NM, ABSTRACT Strengths and limitations of this study Brajcich BC, Liu J, et al. Introduction Although antibiotic prophylaxis is Cefoxitin versus piperacillin– established in reducing postoperative surgical site tazobactam as surgical ► A major strength of this study is the multi- infections (SSIs), the optimal antibiotic for prophylaxis in antibiotic prophylaxis institutional, double- arm, randomised controlled in patients undergoing pancreatoduodenectomy (PD) remains unclear. The study trial design. objective is to evaluate if administration of piperacillin– pancreatoduodenectomy: ► A limitation of this study is that all perioperative care protocol for a randomised tazobactam as antibiotic prophylaxis results in decreased is at the discretion of the operating surgeon and is controlled trial. BMJ Open 30- day SSI rate compared with cefoxitin in patients not standardised. 2021;11:e048398. doi:10.1136/ undergoing elective PD. ► All data will be collected through the American bmjopen-2020-048398 Methods and analysis This study will be a multi- College of Surgeons National Surgical Quality ► Prepublication history for institution, double- arm, non- blinded randomised controlled Improvement Program, which is a strength for its this paper is available online. superiority trial. Adults ≥18 years consented to undergo PD ease of use but a limitation due to the variety of data To view these files, please visit for all indications who present to institutions participating included. the journal online (http:// dx. doi. in the National Surgical Quality Improvement Program org/ 10. 1136/ bmjopen- 2020- Hepato- Pancreato- Biliary (NSQIP HPB) Collaborative 048398). will be included. Data collection will use the NSQIP HPB Trial registration number NCT03269994. http://bmjopen.bmj.com/ Received 27 December 2020 Collaborative Surgical Clinical Reviewers. Patients will be randomised to either 1–2 g intravenous cefoxitin or Revised 02 February 2021 INTRODUCTION Accepted 04 February 2021 3.375–4.5 g intravenous piperacillin–tazobactam within 60 min of surgical incision. The primary outcome will be Surgical site infections (SSIs) remain the 30- day postoperative SSI rate following PD. Secondary most common and costly of all hospital- outcomes will include 30- day postoperative mortality; acquired infections (HAIs), accounting for 1 specific postoperative complication rate; and unplanned nearly 20% of all HAIs. SSIs are associated reoperation, length of stay, and hospital readmission. with increased length of stay and a twofold to on September 26, 2021 by guest. Protected copyright. A subset of patients will have bacterial isolates and 11- fold increase in mortality. Despite rates of sensitivities of intraoperative bile cultures and SSIs. SSI in other complex abdominal operations Postoperative SSIs and secondary outcomes will be decreasing, the SSI rate after pancreatoduo- analysed using logistic regression models with the primary denectomy (PD) has remained unchanged, predictor as the randomised treatment group. Additional ranging from 11% to 48%.2 An analysis of adjustment will be made for preoperative biliary stent data from the approximately 70 institutions presence. Additionally, bacterial cultures and isolates within the Hepato- Pancreato- Biliary (HPB) will be summarised by presence of bacterial species and © Author(s) (or their Collaborative of the American College of employer(s)) 2021. Re- use antibiotic sensitivities. Surgeons National Surgical Quality Improve- Ethics and dissemination This study is approved permitted under CC BY-NC. No ment Program (ACS NSQIP) detailing 3592 commercial re- use. See rights by the Institutional Review Board at Memorial Sloan and permissions. Published by Kettering Cancer Center. This trial will evaluate the effect PDs in 2015 revealed the rate of postopera- BMJ. of piperacillin–tazobactam compared with cefoxitin as tive combined superficial incisional, deep For numbered affiliations see antibiotic prophylaxis on the hazard of postoperative SSIs. incisional and organ/space SSIs to be 21.7% end of article. The results will be disseminated regardless of the effect (n=778). This SSI rate was nearly threefold the of the intervention on study outcomes. The manuscript rate after colon resections, which was 8.9% in Correspondence to 3 Dr Adam C Yopp; describing the effect of the intervention will be submitted ACS NSQIP hospitals in 2015. Factors asso- adam. yopp@ utsouthwestern. to a peer- reviewed journal when data collection and ciated with the high rate of SSIs in patients edu analyses are complete. undergoing PD include preoperative biliary Nevarez NM, et al. BMJ Open 2021;11:e048398. doi:10.1136/bmjopen-2020-048398 1 Open access BMJ Open: first published as 10.1136/bmjopen-2020-048398 on 4 March 2021. Downloaded from stenting, malnutrition, receipt of neoadjuvant therapy piperacillin–tazobactam as antibiotic prophylaxis will and prolonged operative duration among others.4–7 reduce rates of SSI after PD compared with cefoxitin. In 2003, the Centers for Medicare and Medicaid Services initiated a programme to reduce preventable Study setting 8–10 surgical complications including SSIs. This effort This trial will be carried out among the 80 institutions resulted in the creation of the Surgical Care Improvement in the USA participating in both the ACS NSQIP HPB 11–13 Project (SCIP) measures. The three SCIP measures Collaborative and ACS NSQIP Procedure Targeted with regard to antibiotics and SSI prevention include (1) Pancreatectomy Program. ACS NSQIP is a nationally vali- administration of antibiotics within 1 hour of incision dated, risk- adjusted, outcome- based effort to measure time, (2) selection of appropriate antibiotic therapy and and improve surgical care. The programme employs a (3) discontinuation of antibiotics within 24 hours after prospective data registry to quantify 30- day, risk- adjusted surgery end time (or 48 hours for cardiac procedures). surgical outcomes, which provide a standardised compar- The current SCIP guidelines recommend a one-time dose ison of outcomes among all participating hospitals.24 In of cefotetan, cefoxitin, ampicillin/sulbactam, or ertap- an internal analysis, 2210 PDs were conducted in 2015 enem or cefazolin or cefuroxime plus metronidazole with specifically at these institutions participating in the ACS no evidence of Β-lactam allergy as antimicrobial prophy- NSQIP Procedure Targeted Pancreatectomy Program.3 laxis in PD; alternative agents in patients with a B- lactam allergy include clindamycin or vancomycin plus amino- Patient population and eligibility criteria glycoside or aztreonam or fluoroquinolone.13 The study population will consist of all patients ≥18 years Although administration of a first-generation or of age at the ACS NSQIP HPB Collaborative institutions second- generation cephalosporin in patients under- undergoing elective PD for all indications (cancer and going PD remains the most common antibiotic regimen non- cancer). Exclusion criteria include patients under- for surgical prophylaxis, observational studies have going a minimally invasive (laparoscopic or robotic) PD; suggested that these regimens may provide inadequate known and documented allergies to any of the penicil- coverage for Enterococcus spp, Escherichia coli, and Kleb- 14–20 lins, cephalosporins or β-lactamase inhibitors; patients siella spp. These organisms are the most common highly unlikely to undergo PD according to the surgeon’s isolates from SSIs following PD, especially in patients 14–20 judgement, such as conditions amenable to pancreas what have had preoperative biliary stenting. Two enucleation or ampullectomy; patients with long-term retrospective studies compared the rate of SSI following glucocorticosteroid use; patients unable to provide PD when antimicrobial surgical prophylaxis was changed from the SCIP recommended cefoxitin (62%), cefazolin informed consent; patients with renal insufficiency or failure with creatinine clearance ≤40 mL/min or receiving and metronidazole (15%) and clindamycin (8%) to a http://bmjopen.bmj.com/ piperacillin–tazobactam regimen. In both studies, the haemodialysis or peritoneal dialysis; pregnant or nursing rate of SSI decreased twofold to fivefold, following use (lactating) women; patients with a known bacterial infec- of piperacillin–tazobactam for antibiotic prophylaxis.21 22 tion present at the time of surgery or who received anti- Currently there is one prospective, non- randomised study microbial therapy within 7 days prior to surgery. using piperacillin–tazobactam for antibiotic prophylaxis; this study which showed that patients had a higher rate of Recruitment HAI (43% vs 33%; p=0.004), superficial SSI (11% vs 2%; This study will be open to all patients seen at the partic- 23 ipating ACS NSQIP HPB Collaborative institutions who p<0.001) and pneumonia (16% vs 9%; p=0.006). on September 26, 2021 by guest. Protected copyright. meet the eligibility criteria described above. Further- Objective more, to be a participating institution, the hospital must The objective of this study is to determine if administra- be part
Recommended publications
  • Extraneal PI Brunei.Pdf
    BAXTER EXTRANEAL Peritoneal Dialysis Solution The drained fluid should be inspected for the presence of fibrin or cloudiness, with 7.5% Icodextrin which may indicate the presence of peritonitis. For intraperitoneal administration only Safety and effectiveness in pediatric patients have not been established. Protein, amino acids, water-soluble vitamins, and other medicines may be lost PATIENT LEAFLET during peritoneal dialysis and may require replacement. Peritoneal dialysis should be done with caution in patients with: Product name 1) abdominal conditions, including disruption of the peritoneal membrane and EXTRANEAL (Icodextrin 7.5%) diaphragm by surgery, from congenital anomalies or trauma until healing is complete, abdominal tumors, abdominal wall infection, hernias, fecal Composition fistula, colostomy, or ileostomy, frequent episodes of diverticulitis, EXTRANEAL is a sterile solution for intraperitoneal administration. inflammatory or ischemic bowel disease, large polycystic kidneys, or other conditions that compromise the integrity of the abdominal wall, abdominal Each 100 ml of EXTRANEAL contains: Electrolyte solution content per 1000 ml: surface, or intra-abdominal cavity; and Icodextrin 7.5 g Sodium 132 mmol 2) other conditions including aortic graft placement and severe pulmonary Sodium Chloride 538 mg Calcium 1.75 mmol disease. Patients should be carefully monitored to avoid over- and underhydration, Sodium Lactate 448 mg Magnesium 0.25 mmol which may have severe consequences including congestive heart failure, Calcium Chloride 25.7 mg Chloride 96 mmol volume depletion and shock. An accurate fluid balance record should be kept and the patient’s body weight monitored. Magnesium Chloride 5.08mg Lactate 40 mmol Overinfusion of an EXTRANEAL volume into the peritoneal cavity may be Theoretical osmolarity 284 (milliosmoles per litre).
    [Show full text]
  • Traumatic Haemoabdomen
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2010 Traumatic haemoabdomen Sigrist, Nadja ; Spreng, D Abstract: Haemoabdomen is an important differential diagnosis for canine and feline abdominal trauma. The diagnosis is made by aspiration of blood from the abdomen by abdominocentesis. Spleen and liver are the most likely sources of traumatic bleeding. Patients are stabilized with appropriate fl uid therapy, oxygen supplementation and analgesia. With ongoing haemorrhage, serial measurement of abdominal and venous haematocrit can be helpful in making the decision between surgical and medical therapy. Most patients with traumatic haemoabdomen can be treated medically. Surgical therapy should be reserved for patients that cannot be stabilized despite medical intervention. The surgical approach should be thoroughly planned in order to minimize further abdominal blood loss and blood transfusions should be readily available. Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-123588 Journal Article Published Version Originally published at: Sigrist, Nadja; Spreng, D (2010). Traumatic haemoabdomen. European Journal of Companion Animal Practice (EJCAP), 20(1):45-52. CRITICAL CARE REPRINT PAPER (CH) Traumatic Haemoabdomen N. Sigrist(1), D. Spreng(1) SUMMARY Traumatic haemoabdomen Haemoabdomen is an important differential diagnosis for canine and feline abdominal trauma. The diagnosis is made by aspiration of blood from the abdomen by abdominocentesis. Spleen and liver are the most likely sources of traumatic bleeding. Patients are stabilized with appropriate fl uid therapy, oxygen supplementation and analgesia. With ongoing haemorrhage, serial measurement of abdominal and venous haematocrit can be helpful in making the decision between surgical and medical therapy.
    [Show full text]
  • Severe Sepsis and Septic Shock Antibiotic Guide
    Stanford Health Issue Date: 05/2017 Stanford Antimicrobial Safety and Sustainability Program Severe Sepsis and Septic Shock Antibiotic Guide Table 1: Antibiotic selection options for healthcare associated and/or immunocompromised patients • Healthcare associated: intravenous therapy, wound care, or intravenous chemotherapy within the prior 30 days, residence in a nursing home or other long-term care facility, hospitalization in an acute care hospital for two or more days within the prior 90 days, attendance at a hospital or hemodialysis clinic within the prior 30 days • Immunocompromised: Receiving chemotherapy, known systemic cancer not in remission, ANC <500, severe cell-mediated immune deficiency Table 2: Antibiotic selection options for community acquired, immunocompetent patients Table 3: Antibiotic selection options for patients with simple sepsis, community acquired, immunocompetent patients requiring hospitalization. Risk Factors for Select Organisms P. aeruginosa MRSA Invasive Candidiasis VRE (and other resistant GNR) Community acquired: • Known colonization with MDROs • Central venous catheter • Liver transplant • Prior IV antibiotics within 90 day • Recent MRSA infection • Broad-spectrum antibiotics • Known colonization • Known colonization with MDROs • Known MRSA colonization • + 1 of the following risk factors: • Prolonged broad antibacterial • Skin & Skin Structure and/or IV access site: ♦ Parenteral nutrition therapy Hospital acquired: ♦ Purulence ♦ Dialysis • Prolonged profound • Prior IV antibiotics within 90 days ♦ Abscess
    [Show full text]
  • Below Are the CLSI Breakpoints for Selected Bacteria. Please Use Your Clinical Judgement When Assessing Breakpoints
    Below are the CLSI breakpoints for selected bacteria. Please use your clinical judgement when assessing breakpoints. The lowest number does NOT equal most potent antimicrobial. Contact Antimicrobial Stewardship for drug selection and dosing questions. Table 1: 2014 MIC Interpretive Standards for Enterobacteriaceae (includes E.coli, Klebsiella, Enterobacter, Citrobacter, Serratia and Proteus spp) Antimicrobial Agent MIC Interpretive Criteria (g/mL) Enterobacteriaceae S I R Ampicillin ≤ 8 16 ≥ 32 Ampicillin-sulbactam ≤ 8/4 16/8 ≥ 32/16 Aztreonam ≤ 4 8 ≥ 16 Cefazolin (blood) ≤ 2 4 ≥ 8 Cefazolin** (uncomplicated UTI only) ≤ 16 ≥ 32 Cefepime* ≤ 2 4-8* ≥ 16 Cefotetan ≤ 16 32 ≥ 64 Ceftaroline ≤ 0.5 1 ≥ 2 Ceftazidime ≤ 4 8 ≥ 16 Ceftriaxone ≤ 1 2 ≥ 4 Cefpodoxime ≤ 2 4 ≥ 8 Ciprofloxacin ≤ 1 2 ≥ 4 Ertapenem ≤ 0.5 1 ≥ 2 Fosfomycin ≤ 64 128 ≥256 Gentamicin ≤ 4 8 ≥ 16 Imipenem ≤ 1 2 ≥ 4 Levofloxacin ≤ 2 4 ≥ 8 Meropenem ≤ 1 2 ≥ 4 Piperacillin-tazobactam ≤ 16/4 32/4 – 64/4 ≥ 128/4 Trimethoprim-sulfamethoxazole ≤ 2/38 --- ≥ 4/76 *Susceptibile dose-dependent – see chart below **Cefazolin can predict results for cefaclor, cefdinir, cefpodoxime, cefprozil, cefuroxime axetil, cephalexin and loracarbef for uncomplicated UTIs due to E.coli, K.pneumoniae, and P.mirabilis. Cefpodoxime, cefinidir, and cefuroxime axetil may be tested individually because some isolated may be susceptible to these agents while testing resistant to cefazolin. Cefepime dosing for Enterobacteriaceae ( E.coli, Klebsiella, Enterobacter, Citrobacter, Serratia & Proteus spp) Susceptible Susceptible –dose-dependent (SDD) Resistant MIC </= 2 4 8 >/= 16 Based on dose of: 1g q12h 1g every 8h or 2g every 8 h Do not give 2g q12 Total dose 2g 3-4g 6g NA Table 2: 2014 MIC Interpretive Standards for Pseudomonas aeruginosa and Acinetobacter spp.
    [Show full text]
  • Fosfomycin Resistance in Escherichia Coli Isolates from South Korea and in Vitro Activity of Fosfomycin Alone and in Combination with Other Antibiotics
    antibiotics Article Fosfomycin Resistance in Escherichia coli Isolates from South Korea and in vitro Activity of Fosfomycin Alone and in Combination with Other Antibiotics Hyeri Seok 1 , Ji Young Choi 2, Yu Mi Wi 3, Dae Won Park 1, Kyong Ran Peck 4 and Kwan Soo Ko 2,* 1 Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea; [email protected] (H.S.); [email protected] (D.W.P.) 2 Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; [email protected] 3 Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea; [email protected] 4 Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-31-299-6223 Received: 17 February 2020; Accepted: 3 March 2020; Published: 6 March 2020 Abstract: We investigated fosfomycin susceptibility in Escherichia coli clinical isolates from South Korea, including community-onset, hospital-onset, and long-term care facility (LTCF)-onset isolates. The resistance mechanisms and genotypes of fosfomycin-resistant isolates were also identified. Finally, the in vitro efficacy of combinations of fosfomycin with other antibiotics were examined in susceptible or extended spectrum β-lactamase (ESBL)-producing E. coli isolates. The fosfomycin resistance rate was 6.7% and was significantly higher in LTCF-onset isolates than community-onset and hospital-onset isolates. Twenty-one sequence types (STs) were identified among 19 fosfomycin-resistant E. coli isolates, showing diverse genotypes. fosA3 was found in only two isolates, and diverse genetic variations were identified in three genes associated with fosfomycin resistance, namely, GlpT, UhpT, and MurA.
    [Show full text]
  • Piperacillin/Tazobactam Drug Class1 Antibiotic – Penicillin with Β-Lactamase Inhibitor
    Monographs for Commonly Administered Intravenous Medications in Home and Community Care Piperacillin/Tazobactam Drug Class1 Antibiotic – penicillin with β-lactamase inhibitor Spectrum1 Refer to product monograph for complete spectrum For β-lactamase producing bacteria strains (e.g., Haemophilus influenza, Escherichia coli, and Staphylococcus aureus). Also to susceptible Acinetobacter species, Klebsiella pneumonia, Pseudomonas aeruginosa often combined with aminoglycoside). Cross Sensitivities / Allergies1 Cross sensitivities with penicillin and possibly cephalosporin and/or beta-lactam inhibitors Indications1,2 Intra-abdominal Respiratory tract Skin and skin structure Septicemia Gynecological Urinary tract Other conditions based on culture and sensitivity results Outpatient Considerations1 For patients with a documented allergy to penicillin, cephalosporin or beta-lactam inhibitor, the first dose should be administered in a hospital or clinic setting. Must be able to access laboratory monitoring (either at outpatient laboratory or by arranging in-home lab) if using an interacting oral medication (see Potential Drug Interactions section) Prescribing Considerations At time of ordering please provide the following to the pharmacist: and Dosage in Adults1,2 Height, weight Most recent serum creatinine with date obtained Indication (infection being treated) Usually dosed every 6 to 8 hours. Available as 2 g/0.25 g, 3 g/0.375 g, 4 g/0.5 g piperacillin/tazobactam (dose selected based on indication) Maximum 18 g/ 2.25 g piperacillin/tazobactam daily Dose and administration interval require adjustment for renal impairment Errors have occurred due to unusual ordering as combined dose of piperacillin and tazobactam. Order may be expressed only as piperacillin component or as a total of piperacillin + tazobactam (8:1 ratio).
    [Show full text]
  • Eml-2017-Antibacterials-Eng.Pdf
    Consideration of antibacterial medicines as part of the revisions to 2017 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) Section 6.2 Antibacterials including Access, Watch and Reserve Lists of antibiotics This summary has been prepared by the Health Technologies and Pharmaceuticals (HTP) programme at the WHO Regional Office for Europe. It is intended to communicate changes to the 2017 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) to national counterparts involved in the evidence-based selection of medicines for inclusion in national essential medicines lists (NEMLs), lists of medicines for inclusion in reimbursement programs, and medicine formularies for use in primary, secondary and tertiary care. This document does not replace the full report of the WHO Expert Committee, 2017 and this summary should be read in conjunction with the full report (WHO Technical Report Series, No. 1006; http://apps.who.int/iris/bitstream/10665/259481/1/9789241210157-eng.pdf?ua=1). The revised lists of essential medicines (in English) are available as follows: 2017 WHO Model List of Essential Medicines for adults (EML) http://www.who.int/medicines/publications/essentialmedicines/20th_EML2017_FINAL_amend edAug2017.pdf?ua=1 2017 Model List of Essential Medicines for children (EMLc) http://www.who.int/medicines/publications/essentialmedicines/6th_EMLc2017_FINAL_amend edAug2017.pdf?ua=1 Summary of changes to Section 6.2 Antibacterials: Section 6 of the EML covers anti-infective medicines. Disease-specific subsections within Section 6, such as those covering medicines for tuberculosis, HIV, hepatitis and malaria, have been regularly reviewed and updated, taking into consideration relevant WHO treatment guidelines.
    [Show full text]
  • Peritoneal Dialysis in the 21St Century: an Analysis of Current Problems and Future Developments
    J Am Soc Nephrol 13: S104–S116, 2002 Peritoneal Dialysis in the 21st Century: An Analysis of Current Problems and Future Developments RAM GOKAL Manchester Royal Infirmary, Manchester, United Kingdom. One major development in the field of kidney diseases in the of death on PD as compared with HD and by and large found 21st century will be in prevention of end-stage renal disease that mortality risk was equal for HD and PD in the various (ESRD). Basic research has made inroads into the understand- studies reported. After this analysis was the report of Bloem- ing of the mechanisms of progression of chronic renal failure, bergen et al. (2), which was based on the US Renal Data including the understanding of the functions of genes activated Systems (USRDS) data on prevalent patients (1987, 1988, and by renal damage. All this may well result in a major reduction 1989). This showed that PD subjects had a 19% higher risk of in the incidence of ESRD. The second important development mortality as compared with patients who used HD. This was will be in transplantation, which will constitute the mainstay of met with considerable consternation in the United States and ESRD treatment in the next century. The clinical introduction probably did the therapy a major disservice. Analysis from the of xenotransplantation and the cloning of one’s own organs via Canadian Organ Replacement Registry on patients starting one’s stem cells may well represent the major areas of replace- RRT between 1990 and 1994 showed that for incident patients, ment therapy. This will reduce dialysis as a method to support the survival with PD was better in the first 2 yr of treatment the main treatments.
    [Show full text]
  • Antibiotic Prophylaxis in Peritoneal Dialysis Patients
    Advances in Peritoneal Dialysis, Vol. 33, 2017 Antibiotic Prophylaxis in Miten J. Dhruve, Joanne M. Bargman Peritoneal Dialysis Patients Peritonitis is an important cause of morbidity, Discussion mortality, and technique failure in patients on peri- toneal dialysis (PD). The most effective approach Endoscopy in PD patients to peritonitis is prevention, which includes careful Several studies have looked at PD patients undergoing patient training and follow-up. Although peritonitis colonoscopy. Yip et al. (4) reported on 97 colonosco- as a result of contiguous spread of bacteria or fungi pies performed in 77 patients, observing a 6.3% rate of during invasive procedures, or as a result of seeding peritonitis after colonoscopy. Patients who were given of the peritoneum during bacteremia, is uncommon, prophylactic antibiotics did not develop colonoscopy- the likelihood of such spread is often predictable, and related peritonitis. The authors also noted that no in- the risk can be mitigated with antibiotic prophylaxis. crease in the rate of peritonitis was observed in patients Here, we describe the rationale for, and approach to, who underwent polypectomy. Wu et al. (5) reported a antibiotic prophylaxis in PD patients for the preven- similar post-endoscopy peritonitis rate of 6.4% and tion of infective episodes. noted that no patient prescribed prophylactic antibiot- ics developed peritonitis. In addition, several other Key words small case reports demonstrated the phenomenon of Antibiotics, peritonitis, prevention, bacteremia peritonitis after colonoscopy, with some even reporting a much higher rate of peritonitis (increased by a factor Introduction of 3 – 5) in patients undergoing polypectomy than in Peritonitis is the leading cause of technique failure those having nontherapeutic colonoscopy (5–9).
    [Show full text]
  • Antibiotic Prophylaxis for GI Endoscopy
    GUIDELINE Antibiotic prophylaxis for GI endoscopy This is one of a series of statements discussing the use of procedure. Endoscopy-related bacteremia carries a small GI endoscopy in common clinical situations. The Stan- risk of localization of infection in remote tissues (ie, infec- dards of Practice Committee of the American Society for tive endocarditis [IE]). Endoscopy also may result in local Gastrointestinal Endoscopy (ASGE) prepared this docu- infections in which a typically sterile space or tissue is ment, and it updates a previously issued document on breached and contaminated by an endoscopic accessory this topic.1 In preparing this guideline, MEDLINE and or by contrast material injection. This document is an up- PubMed databases were used to search for publications date of the prior ASGE document on antibiotic prophylaxis between January 1975 and December 2013 pertaining for GI endoscopy,1 discusses infectious adverse events to this topic. The search was supplemented by accessing related to endoscopy, and provides recommendations for the “related articles” feature of PubMed, with articles periprocedural antibiotic therapy. identified on MEDLINE and PubMed as the references. Additional references were obtained from the bibliogra- phies of the identified articles and from recommenda- BACTEREMIA ASSOCIATED WITH tions of expert consultants. When few or no data were ENDOSCOPIC PROCEDURES available from well-designed prospective trials, emphasis was given to results from large series and reports from Bacteremia can occur after endoscopic procedures and has been advocated as a surrogate marker for IE risk. How- recognized experts. Weaker recommendations are indi- fi cated by phrases such as “We suggest.” whereas stronger ever, clinically signi cant infections are extremely rare.
    [Show full text]
  • Clinical Guidelines for the Antibiotic Treatment for Community-Acquired
    Special Article Infection & https://doi.org/10.3947/ic.2017.49.4.301 Infect Chemother 2017;49(4):301-325 Chemotherapy ISSN 2093-2340 (Print) · ISSN 2092-6448 (Online) Clinical Guidelines for the Antibiotic Treatment for Community-Acquired Skin and Soft Tissue Infection Yee Gyung Kwak1,2*, Seong-Ho Choi3,4*, Tark Kim1,5*, Seong Yeon Park3,6*, Soo-Hong Seo7,8, Min Bom Kim9,10, Sang-Ho Choi2,11 1The Korean Society of Infectious Diseaes; 2Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang; 3The Korean Society for Chemotherapy; 4Department of Internal Medicine, Chung Ang University College of Medicine, Seoul; 5Department of Internal Medicine, SoonChunHyang University Bucheon Hospital, Bucheon; 6Department of Internal Medicine, Dongguk University College of Medicine, Goyang; 7The Korean Dermatological Association; 8Department of Dermatology, Korea University College of Medicine, Seoul; 9The Korean Orthopaedic Association; 10Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul; 11Department of Infectious Diseases, Ulsan University College of Medicine, Seoul, Korea Skin and soft tissue infection (SSTI) is common and important infectious disease. This work represents an update to 2012 Korean guideline for SSTI. The present guideline was developed by the adaptation method. This clinical guideline provides recommen- dations for the diagnosis and management of SSTI, including impetigo/ecthyma, purulent skin and soft tissue infection, erysipe- las and cellulitis, necrotizing fasciitis, pyomyositis, clostridial myonecrosis, and human/animal bite. This guideline targets com- munity-acquired skin and soft tissue infection occurring among adult patients aged 16 years and older. Diabetic foot infection, surgery-related infection, and infections in immunocompromised patients were not included in this guideline.
    [Show full text]
  • Optimizing Intravenous Fosfomycin Dosing in Combination With
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector International Journal of Infectious Diseases 50 (2016) 23–29 Contents lists available at ScienceDirect International Journal of Infectious Diseases jou rnal homepage: www.elsevier.com/locate/ijid Optimizing intravenous fosfomycin dosing in combination with carbapenems for treatment of Pseudomonas aeruginosa infections in critically ill patients based on pharmacokinetic/pharmacodynamic (PK/PD) simulation a b b c a, O. Asuphon , P. Montakantikul , J. Houngsaitong , P. Kiratisin , P. Sonthisombat * a Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand b Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand c Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand A R T I C L E I N F O A B S T R A C T Article history: Objective: The purpose of the study was to determine the optimal dosing regimen of intravenous Received 29 March 2016 fosfomycin for the treatment of Pseudomonas aeruginosa (PA) based on PK/PD targets. Received in revised form 11 June 2016 Method: A total of 120 PA isolates were recovered from various clinical specimens at university hospital Accepted 15 June 2016 in Thailand. Minimum Inhibitory Concentrations (MICs) of all the isolates were determined by the E-test Corresponding Editor: Eskild Petersen, method. PK parameters were obtained from a published study. Monte Carlo simulation was performed to Aarhus, Denmark calculate the percentage of target attainment (PTA) and cumulative fraction of response (CFR). Results: MIC90 of fosfomycin alone, fosfomycin in combination with carbapenem, carbapenems alone Keywords: and carbapenems in combination with fosfomycin were >1,024, 1,024, >32 and 32 mg/ml, for multidrug fosfomycin resistant (MDR)-PA and 512, 128, 8 and 3 mg/ml respectively, for non-MDR PA.
    [Show full text]