Towards Better Delivery of Cannabidiol (CBD)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FDA Comments on CBD in Foods
Popular Content Public Health Focus FDA and Marijuana: Questions and Answers 1. How is marijuana therapy being used by some members of the medical community? 2. Why hasn’t the FDA approved marijuana for medical uses? 3. Is marijuana safe for medical use? 4. How does FDA’s role differ from NIH and DEA’s role when it comes to the investigation of marijuana for medical use? 5. Does the FDA object to the clinical investigation of marijuana for medical use? 6. What kind of research is the FDA reviewing when it comes to the efficacy of marijuana? 7. How can patients get into expanded access program for marijuana for medical use? 8. Does the FDA have concerns about administering a cannabis product to children? 9. What is FDA’s reaction to states that are allowing marijuana to be sold for medical uses without the FDA’s approval? 10. What is the FDA’s position on state “Right to Try” bills? 11. Has the agency received any adverse event reports associated with marijuana for medical conditions? 12. Can products that contain cannabidiol be sold as dietary supplements? 13. Is it legal, in interstate commerce, to sell a food to which cannabidiol has been added? 14. In making the two previous determinations, why did FDA conclude that substantial clinical investigations have been authorized for and/or instituted about cannabidiol, and that the existence of such investigations has been made public? 15. Will FDA take enforcement action regarding cannabidiol products that are marketed as dietary supplements? What about foods to which cannabidiol has been added? 16. -
Development and Validation of an Ultra-Fast and Sensitive Microflow
Drug Testing Research article and Analysis Received: 6 June 2016 Revised: 9 July 2016 Accepted: 10 July 2016 Published online in Wiley Online Library: 10 August 2016 (www.drugtestinganalysis.com) DOI 10.1002/dta.2042 Development and validation of an ultra-fast and sensitive microflow liquid chromatography- tandem mass spectrometry (MFLC-MS/MS) method for quantification of LSD and its metabolites in plasma and application to a controlled LSD administration study in humans Andrea E. Steuer,a* Michael Poetzsch,a Lorena Stock,a Lisa Eisenbeiss,a Yasmin Schmid,b Matthias E. Liechtib and Thomas Kraemera Lysergic acid diethylamide (LSD) is a semi-synthetic hallucinogen that has gained popularity as a recreational drug and has been investigated as an adjunct to psychotherapy. Analysis of LSD represents a major challenge in forensic toxicology due to its insta- bility, low drug concentrations, and short detection windows in biological samples. A new, fast, and sensitive microflow liquid chromatography (MFLC) tandem mass spectrometry method for the validated quantification of LSD, iso-LSD, 2-oxo 3-hydroxy- LSD (oxo-HO-LSD), and N-desmethyl-LSD (nor-LSD) was developed in plasma and applied to a controlled pharmacokinetic (PK) study in humans to test whether LSD metabolites would offer for longer detection windows. Five hundred microlitres of plasma were extracted by solid phase extraction. Analysis was performed on a Sciex Eksigent MFLC system coupled to a Sciex 5500 QTrap. The method was validated according to (inter)-national guidelines. MFLC allowed for separation of the mentioned analytes within 3 minutes and limits of quantification of 0.01 ng/mL. -
Pharmacokinetic Drug–Drug Interactions Among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients
International Journal of Molecular Sciences Review Pharmacokinetic Drug–Drug Interactions among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients Marta Kara´zniewicz-Łada 1 , Anna K. Główka 2 , Aniceta A. Mikulska 1 and Franciszek K. Główka 1,* 1 Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Pozna´n,Poland; [email protected] (M.K.-Ł.); [email protected] (A.A.M.) 2 Department of Bromatology, Poznan University of Medical Sciences, 60-354 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-(0)61-854-64-37 Abstract: Anti-epileptic drugs (AEDs) are an important group of drugs of several generations, rang- ing from the oldest phenobarbital (1912) to the most recent cenobamate (2019). Cannabidiol (CBD) is increasingly used to treat epilepsy. The outbreak of the SARS-CoV-2 pandemic in 2019 created new challenges in the effective treatment of epilepsy in COVID-19 patients. The purpose of this review is to present data from the last few years on drug–drug interactions among of AEDs, as well as AEDs with other drugs, nutrients and food. Literature data was collected mainly in PubMed, as well as google base. The most important pharmacokinetic parameters of the chosen 29 AEDs, mechanism of action and clinical application, as well as their biotransformation, are presented. We pay a special attention to the new potential interactions of the applied first-generation AEDs (carba- Citation: Kara´zniewicz-Łada,M.; mazepine, oxcarbazepine, phenytoin, phenobarbital and primidone), on decreased concentration Główka, A.K.; Mikulska, A.A.; of some medications (atazanavir and remdesivir), or their compositions (darunavir/cobicistat and Główka, F.K. -
A Review of Carbamate Derivatives Used As Therapeutic Agents 285 Arh Hig Rada Toksikol 2020;71:285-299
Matošević A, Bosak A. Carbamate group as structural motif in drugs: a review of carbamate derivatives used as therapeutic agents 285 Arh Hig Rada Toksikol 2020;71:285-299 Review DOI: 10.2478/aiht-2020-71-3466 Carbamate group as structural motif in drugs: a review of carbamate derivatives used as therapeutic agents Ana Matošević and Anita Bosak Institute for Medical Research and Occupational Health, Zagreb, Croatia [Received in July 2020; Similarity Check in July 2020; Accepted in December 2020] Due to their very good chemical and proteolytic stability, ability to penetrate cell membranes, and resemblance to a peptide bond, carbamate derivatives have received much attention in recent years and got an important role in modern drug discovery and medicinal chemistry. Today, carbamates make structural and/or functional part of many drugs and prodrugs approved and marketed for the treatment of various diseases such as cancer, epilepsy, hepatitis C, HIV infection, and Alzheimer’s disease. In drugs they can play a role in drug-target interaction or improve the biological activity of parent molecules. In prodrugs they are mainly used to delay first-pass metabolism and enhance the bioavailability and effectiveness of compounds. This brief review takes a look at the properties and use of carbamates in various fields of medicine and provides quick insights into the mechanisms of action for some of them. KEY WORDS: anticonvulsants; antiepileptics; cholinesterase inhibitors; neurodegenerative diseases; prodrugs; protease inhibitors Carbamates are derivatives of carbamic acid, whose 8). By varying the substituents at the amino and carboxyl amino and carboxyl termini are substituted by a variety of termini of the carbamate group, it is possible to modulate structurally diverse alkyl, aryl, or alkyl-aryl substituents their biological and pharmacokinetic properties and and are identified by the presence of the -O-CO-NH- linkage improve their stability (7, 8). -
Stability Study of Cannabidiol in the Form of Solid Powder and Sunflower Oil Solution
pharmaceutics Article Stability Study of Cannabidiol in the Form of Solid Powder and Sunflower Oil Solution Ema Kosovi´c 1,2 , David Sýkora 2 and Martin Kuchaˇr 3,* 1 Institute of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; [email protected] 2 Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; [email protected] 3 Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic * Correspondence: [email protected] Abstract: Stability studies represent an essential component of pharmaceutical development, en- abling critical evaluation of the therapeutic potential of an active pharmaceutical ingredient (API) or a final pharmaceutical product under the influence of various environmental factors. The aim of the present study was to investigate the chemical stability of cannabidiol (CBD) in the form of a solid powder (hereinafter referred to as CBD powder) and also dissolved in sunflower oil. We performed stress studies in accordance with the International Conference on Harmonization (ICH) guidelines, where 5 mg of marketed CBD in the form of a solid powder and in form of oil solution were exposed for 7 and 14, 30, 60, 90, 180, 270, and 365 days to precisely defined temperature and humidity conditions, 25 ◦C ± 2 ◦C/60% RH ± 5% and 40 ◦C ± 2 ◦C/75% RH ± 5% in both open and closed vials in the dark. CBD powder was significantly more stable than CBD in oil solution. Such finding is important because CBD is often administered dissolved in oil matrix in practice due to Citation: Kosovi´c,E.; Sýkora, D.; very good bioavailability. -
Vaccines, Diagnostics, and Treatments): Frequently Asked Questions
Development and Regulation of Medical Countermeasures for COVID-19 (Vaccines, Diagnostics, and Treatments): Frequently Asked Questions June 25, 2020 Congressional Research Service https://crsreports.congress.gov R46427 SUMMARY R46427 Development and Regulation of Medical June 25, 2020 Countermeasures for COVID-19 (Vaccines, Agata Dabrowska Diagnostics, and Treatments): Frequently Analyst in Health Policy Asked Questions Frank Gottron Specialist in Science and In recent months, the Coronavirus Disease 2019 (COVID-19) pandemic has spread globally, with Technology Policy the United States now reporting the highest number of cases of any country in the world. Currently, there are few treatment options available to lessen the health impact of the disease and no vaccines or other prophylactic treatments to curb the spread of the virus. Amanda K. Sarata Specialist in Health Policy The biomedical community has been working to develop new therapies or vaccines, and to repurpose already approved therapeutics, that could prevent COVID-19 infections or lessen Kavya Sekar severe outcomes in patients. In addition, efforts have been underway to develop new diagnostic Analyst in Health Policy tools (i.e., testing) to help better identify and isolate positive cases, thereby reducing the spread of the disease. To this end, Congress has appropriated funds for research and development into new medical countermeasures (MCMs) in several recent supplemental appropriations acts. MCMs are medical products that may be used to treat, prevent, or diagnose conditions associated with emerging infectious diseases or chemical, biological, radiological, or nuclear (CBRN) agents. MCMs include biologics (e.g., vaccines, monoclonal antibodies), drugs (e.g., antimicrobials, antivirals), and medical devices (e.g., diagnostic tests). -
Comparisons of Food and Drug Administration and European
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector VALUE IN HEALTH 15 (2012) 1108–1118 Available online at www.sciencedirect.com journal homepage: www.elsevier.com/locate/jval Health Policy Analyses Comparisons of Food and Drug Administration and European Medicines Agency Risk Management Implementation for Recent Pharmaceutical Approvals: Report of the International Society for Pharmacoeconomics and Outcomes Research Risk Benefit Management Working Group Yvonne Lis, PhD1, Melissa H. Roberts, MS2, Shital Kamble, PhD3, Jeff J. Guo, PhD4, Dennis W. Raisch, PhD5,* 1PAREXEL International, Uxbridge, UK; 2Lovelace Clinic Foundation Research, Albuquerque, New Mexico, USA; 3Quintiles-Outcome, Rockville, MD, USA; 4College of Pharmacy, University of Cincinnati Medical Center, Cincinnati, OH, USA; 5College of Pharmacy, University of New Mexico, Albuquerque, NM, USA ABSTRACT Objective: 1) To compare the Food and Drug Administration’s (FDA’s) requirements not included in RMPs were patient medication guides Risk Evaluation and Mitigation Strategies (REMS) and European (100% of the drugs), provider communication plans (38%), and routine Medicines Agency’s (EMA’s) Risk Management Plan (RMP) guidances monitoring of REMS (66%). RMP requirements not included in REMS and 2) to compare REMS and RMPs for specific chemical entities and were specific adverse event reporting (45% of the drugs), prospective biological products. Methods: FDA, EMA, and pharmaceutical com- registry studies (34%), prospective epidemiology studies (24%), addi- pany Web sites were consulted for details pertaining to REMS and tional trial data (28%), and Summary of Product Characteristics RMPs. REMS requirements include medication guides, communication contraindications (76%). Conclusions: Both REMS and RMPs provide plans, elements to ensure safe use, implementation systems, and positive guidance for identification, monitoring, and minimization of specified assessment intervals. -
Risk Assessment and Risk Mitigation Review(S)
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 212839Orig1s000 RISK ASSESSMENT and RISK MITIGATION REVIEW(S) Division of Risk Management (DRISK} Office of Medication Error Prevention and Risk Management (OMEPRM} Office of Surveillance and Epidemiology (OSE} Center for Drug Evaluation and Research (CDER) Application Type NOA Application Number 212839 PDUFA Goal Date November 21, 2019 OSE RCM # 2018-2560 Reviewer Name(s) Lindsey W. Crist, PharmD, BCPS Team Leader Donella Fitzgerald, PharmD Deputy Division Director Jamie Wilkins, PharmD Review Completion Date November 19, 2019 Subject Evaluation of Need for a REMS Established Name Cenobamate Trade Name Xcopri Name of Applicant SK Life Science, Inc Therapeutic Class Antiepileptic Formulation(s) Tablets for oral use: 12.5 mg, 25 mg, 50 mg, 100 mg, 150 mg and 200 mg Dosing Regimen Initial Dosage Week 1and2 12.S mg once daily Titrat ion Regimen Week 3 and 4 2S mg once daily Week s and 6 SO mg once daily Week 7 and 8 100 mg once daily Week 9and10 1SO mg once daily Maintenance Dosage Week 11 and thereafter 200 mg once daily Maximum Dosage If needed based on clinical response 400 mg once daily and tolerability, may increase by SO mg once daily every two weeks 1 Reference ID 4522028 Table of Contents EXECUTIVE SUMMARY ......................................................................................................................................................... 3 1 Introduction .................................................................................................................................................................... -
New Drugs Are Not Enough‑Drug Repositioning in Oncology: an Update
INTERNATIONAL JOURNAL OF ONCOLOGY 56: 651-684, 2020 New drugs are not enough‑drug repositioning in oncology: An update ROMINA GABRIELA ARMANDO, DIEGO LUIS MENGUAL GÓMEZ and DANIEL EDUARDO GOMEZ Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina Received August 15, 2019; Accepted December 16, 2019 DOI: 10.3892/ijo.2020.4966 Abstract. Drug repositioning refers to the concept of discov- 17. Lithium ering novel clinical benefits of drugs that are already known 18. Metformin for use treating other diseases. The advantages of this are that 19. Niclosamide several important drug characteristics are already established 20. Nitroxoline (including efficacy, pharmacokinetics, pharmacodynamics and 21. Nonsteroidal anti‑inflammatory drugs toxicity), making the process of research for a putative drug 22. Phosphodiesterase-5 inhibitors quicker and less costly. Drug repositioning in oncology has 23. Pimozide received extensive focus. The present review summarizes the 24. Propranolol most prominent examples of drug repositioning for the treat- 25. Riluzole ment of cancer, taking into consideration their primary use, 26. Statins proposed anticancer mechanisms and current development 27. Thalidomide status. 28. Valproic acid 29. Verapamil 30. Zidovudine Contents 31. Concluding remarks 1. Introduction 2. Artesunate 1. Introduction 3. Auranofin 4. Benzimidazole derivatives In previous decades, a considerable amount of work has been 5. Chloroquine conducted in search of novel oncological therapies; however, 6. Chlorpromazine cancer remains one of the leading causes of death globally. 7. Clomipramine The creation of novel drugs requires large volumes of capital, 8. Desmopressin alongside extensive experimentation and testing, comprising 9. Digoxin the pioneer identification of identifiable targets and corrobora- 10. -
Endocannabinoid Stimulated Release of Nitric Oxide and Its Mitochondrial
A tica nal eu yt c ic a a m A r a c t Stefano et al., Pharm Anal Acta 2015, 6:6 h a P Pharmaceutica Analytica Acta DOI: 10.4172/2153-2435.1000378 ISSN: 2153-2435 Review Article Open Access Endocannabinoid Stimulated Release of Nitric Oxide and its Mitochondrial Influence Triggering Vascular Pathology George B Stefano*, Erin Quinn and Richard M Kream MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY 11735, USA Abstract Endocannabinoids, and their respective receptors, are involved in a host of cellular regulatory activities. In part, some of these mediated effects occur by way of stimulating constitutive nitric oxide release. This occurs in endothelia, certain white blood cells, microglia, and in similar invertebrate tissues, demonstrating that this is a conserved chemical messenger system. This endocannabinoid chemical messenger system, coupled to constitutive nitric oxide release, also appears to exert regulatory effects on mitochondrial energy associated processes, further substantiating its primordial history. In this regard, it appears to offer some beneficial actions in the occurrence of reperfusion injury and stroke. The mechanism envisioned is one initiated via a hypoxic event, which does not restore normalcy, then progresses to a pro-inflammatory state, and the resultant chronic condition manifests itself in a specific disorder. This fits nicely into a vascular-associated origin for Alzheimer’s Disease, whereby the pro- inflammatory state encompasses vessels that have endothelial gaps, providing for a compromised blood brain barrier, beta amyloid deposition, and enhanced white blood cell trafficking. In time, due to the physical progression of the events, Alzheimer’s Disease occurs. -
Drug Development and Clinical Trials 101
DRUG DEVELOPMENT AND CLINICAL TRIALS 101 March 27, 2021 A Resource of PWSA | USA | pwsausa.org DISCOVERY - PHASE 1 Dean S. Carson, PhD, Saniona, Inc. A Resource of PWSA | USA | pwsausa.org DRUG DISCOVERY AND DEVELOPMENT Why is it important? • Rare hormone producing tumor of the anterior pituitary gland • Cabergoline, an ergot derivative, is a potent dopamine D2 receptor agonist that blocks pituitary production of prolactin • Ergot is a fungus that grows on rye and related plants, and produces alkaloids that can cause ergotism in humans and animals that eat the contaminated grain • Painful seizures, mania, psychosis, headaches, nausea, vomiting A Resource of PWSA | USA | pwsausa.org 3 PHARMACOLOGY • Pharmacology is the science of how • Clinical Pharmacology applies the basic drugs and biologics act on biological science and principles of pharmacology to systems and how the system responds to the practice of medicine the drug Basic science Translational pharmacology Clinical practice Doctors, pharmacists, dentists, veterinarians use the information discovered from pharmacology to select the best medications to treat patients A Resource of PWSA | USA | pwsausa.org 4 MECHANISM OF ACTION • Modern drug discovery is a mechanism • What are the known consequences of that driven field mechanism in a disease state? ie. • Nearly all new experimental therapeutics potential efficacy have a defined mechanism-of-action and • What are the known consequences of that most have companion diagnostics allowing mechanism in healthy systems? ie. researchers to -
Research and Development in the Pharmaceutical Industry
Research and Development in the Pharmaceutical Industry APRIL | 2021 At a Glance This report examines research and development (R&D) by the pharmaceutical industry. Spending on R&D and Its Results. Spending on R&D and the introduction of new drugs have both increased in the past two decades. • In 2019, the pharmaceutical industry spent $83 billion dollars on R&D. Adjusted for inflation, that amount is about 10 times what the industry spent per year in the 1980s. • Between 2010 and 2019, the number of new drugs approved for sale increased by 60 percent compared with the previous decade, with a peak of 59 new drugs approved in 2018. Factors Influencing R&D Spending. The amount of money that drug companies devote to R&D is determined by the amount of revenue they expect to earn from a new drug, the expected cost of developing that drug, and policies that influence the supply of and demand for drugs. • The expected lifetime global revenues of a new drug depends on the prices that companies expect to charge for the drug in different markets around the world, the volume of sales they anticipate at those prices, and the likelihood the drug-development effort will succeed. • The expected cost to develop a new drug—including capital costs and expenditures on drugs that fail to reach the market—has been estimated to range from less than $1 billion to more than $2 billion. • The federal government influences the amount of private spending on R&D through programs (such as Medicare) that increase the demand for prescription drugs, through policies (such as spending for basic research and regulations on what must be demonstrated in clinical trials) that affect the supply of new drugs, and through policies (such as recommendations for vaccines) that affect both supply and demand.