Quick viewing(Text Mode)

Hyperbolic Cosines and Sines Theorems for the Triangle Formed by Arcs of Intersecting Semicircles on Euclidean Plane

Hyperbolic Cosines and Sines Theorems for the Triangle Formed by Arcs of Intersecting Semicircles on Euclidean Plane

Hindawi Publishing Corporation Journal of Volume 2013, Article ID 920528, 10 pages http://dx.doi.org/10.1155/2013/920528

Research Article Hyperbolic Cosines and Sines Theorems for the Triangle Formed by Arcs of Intersecting Semicircles on Euclidean Plane

Robert M. Yamaleev1,2 1 Joint Institute for Nuclear Research, Laboratory of Information Technology, Street Joliot Curie 6, CP 141980, P.O. Box 141980, Dubna, Russia 2 Universidad Nacional Autonoma de Mexico, Facultad de Estudios Superiores, Avenida 1 Mayo, 54740 CuautitlanΒ΄ Izcalli, MEX, Mexico

Correspondence should be addressed to Robert M. Yamaleev; [email protected]

Received 17 December 2012; Accepted 21 February 2013

Academic Editor: Sujit Samanta

Copyright Β© 2013 Robert M. Yamaleev. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The hyperbolic cosines and sines theorems for the curvilinear triangle bounded by circular arcs of three intersecting are formulated and proved by using the general complex . The method is based on a key formula establishing a relationship between and the cross-ratio. The proofs are carried out on Euclidean plane.

1. Introduction laws of sines-cosines for that triangle are proved by using properties of the MobiusΒ¨ group and the upper half-plane 𝐻. Classically, the models of the hyperbolic plane are regarded In this paper we suggest another way of construction of as based on Euclidean geometry. One starts with a piece of a proofs of the sines-cosines theorems of the Poincaremodel.Β΄ Euclidean plane, a half-plane, or a circular disk and then, in The curvilinear triangle formed by circular arcs is the figure that half-plane or disk the notions of points, lines, distances, of the Euclidean plane; consequently, on the Euclidean plane are defined as things that could be described in terms we have to find relationships antecedent to the sines-cosines of Euclidean geometry [1–3]. The model of the hyperbolic plane is the half-plane model. The underlying space of this hyperbolic laws. Therefore, first of all, we establish these model is the upper half-plane model 𝐻 in the complex plane relationships by making use of axioms of the Euclidean plane, 𝐢,definedtobe only. Secondly, we proove that these relationships can be formulated as the hyperbolic sine-cosine theorems. For that 𝐻={π‘§βˆˆπΆ:Im (𝑧) >0} . (1) purpose we refer to the general complex calculus and within its framework establish a relationship between exponential (π‘₯, 𝑦) In coordinates thelineelementisdefinedas function and the cross-ratio. In this way the hyperbolic 1 emerges on Euclidean plane in a natural way. 𝑑𝑠2 = (𝑑π‘₯2 +𝑑𝑦2). 𝑦2 (2) The paper is organized as follows. In Section 2 akey formula connecting the hyperbolic calculus with the cross- The geodesics of this space are semicircles centered on the π‘₯- ratio is established. By employing the key formula and the axis and vertical half-lines. The geometrical properties of the Pythagoras theorem the elements of the right-angled triangle figures on the half-plane are studied by considering quantities are expressed as functions of the hyperbolic trigonometry. In invariant under an action of the general MobiusΒ¨ group,which Section 3 we explore Euclidian properties of the curvilinear consists of compositions of MobiusΒ¨ transformations and triangle bounded by circular arcs of three intersecting semi- reflections4 [ ]. The curvilinear triangle formed by circular circles. Two main relationships connecting three intersecting arcs of three intersecting semicircles is one of the principal semicircles are established. In Section 4,weprovethetheo- figures of the upper half-plane model 𝐻. The hyperbolic rem of cosines for the curvilinear triangle bounded by the 2 Journal of Mathematics

𝐡 𝐿1 This formula we denominate as the key formula and use it 𝐿2 in order to introduce hyperbolic trigonometry on Euclidean 𝐡 II(a) plane. Notice that the argument of the exponential function 𝐡󳰀 is proportional to the difference between the numerator and σ³°€σ³°€ 𝐡 the denominator, 𝑋1 βˆ’π‘‹2 =π‘₯1 βˆ’π‘₯2, and this difference does σ³°€σ³°€ 𝐴 not depend on the parameter πœ™. 𝐿 𝐴󳰀 𝐴 𝐢 2.2. Elements of Right-Angled Triangle as Functions of a Hyper- Figure 1: of the hypothenuse of the right angled triangle. bolic Trigonometry. Let 󳡻𝐴𝐡𝐢 bearight-angledtrianglewith right at 𝐢. Denote the sides by π‘Ž,,thehypotenuseby 𝑏 𝑐, and the angles opposite to π‘Ž, 𝑏, 𝑐 by 𝐴, 𝐡, 𝐢, correspondingly. circular arcs. In Section 5, the hyperbolic law of sines and Traditionally interrelations between angles and sides of a second hyperbolic law of cosines are derived on the basis of triangle are described by the trigonometry via periodical the main relationships between these semicircles. sine-cosine functions. The periodical functions of the circular angles are defined via the ratios 2. Hyperbolic Trigonometry in 𝑏 𝑏 sin 𝐡= , tan 𝐡= . (10) Euclidean Geometry 𝑐 π‘Ž 2.1. Trigonometry Induced by General Complex Algebra. The Notice that these two ratios are functions of the same angle 𝐡 simplest generalization of the complex algebra, denominated .Onmakinguseofformula(9)weareabletointroducethe as General Complex Algebra, is defined by unique generator e hyperbolic trigonometry besides the circular trigonometry. satisfying the quadratic equation [5] Define the following relationships: 𝑐+π‘Ž e2 βˆ’π‘e +𝑏 =0, = (2πœ‰) . 1 0 (3) π‘βˆ’π‘Ž exp (11) where coefficients 𝑏0,𝑏1 are given by real positive numbers 2 From this equation it follows that and 𝑏 βˆ’4𝑏0 >0. 1 π‘Ž π‘Ž The following Euler formula holds true: = (πœ‰) , = (πœ‰) . 𝑐 tanh 𝑏 sinh (12) exp (eπœ™) =𝑔0 (πœ™) + e𝑔1 (πœ™) . (4) In this way we arrive to the following interrelations between

Denote by π‘₯1,π‘₯2 βˆˆπ‘…rootsofthequadraticequation(3). circular and : The Euler formula (4) is decomposed into two independent π‘Ž 𝑏 1 equations: cos 𝐡= = tanh (πœ‰) , tan 𝐡= = . (13) 𝑐 π‘Ž sinh (πœ‰) exp (π‘₯π‘˜πœ™) =𝑔0 (πœ™) +π‘₯π‘˜π‘”1 (πœ™) , π‘˜=1,2, (5) Now let us introduce the following geometrical motion; 𝑔 namely, change position of the point 𝐴 along the line 𝐴𝐢 from which one may find explicit formulae for -functions. 𝑏 𝑐 These functions are linear combinations of the exponential (see, Figure 1). Then, the sides and will change while the side π‘Ž will not change. Since the length π‘Ž is a constant of this functions exp(π‘₯π‘˜πœ™), π‘˜=1,2. Geometrical interpretation of the general complex algebra is done in [6]. evolution, in agreement with key formula (9)werewrite(11) Form the following ratio as follows: 𝑐+π‘Ž = exp (2π‘Žπœ™) , (14) π‘₯2 βˆ’π·(πœ™) π‘βˆ’π‘Ž exp ((π‘₯2 βˆ’π‘₯1)πœ™)= , (6) π‘₯1 βˆ’π·(πœ™) that is, the argument of exponential function is proportional π‘Ž πœ‰=π‘Žπœ™ πœ™ where to : ,where is a parameter of the evolution. Formulae in (13) are rewritten as 𝑔0 (πœ™) 𝐷(πœ™)=βˆ’ . (7) π‘Ž 𝑏 1 𝑔1 (πœ™) cos 𝐡= = tanh (π‘Žπœ™) , tan 𝐡= = . (15) 𝑐 π‘Ž sinh (π‘Žπœ™) Introduce a pair of variables 𝑋1, 𝑋2 by From these formulas it is derived that π‘‹π‘˜ (πœ™) =π‘˜ π‘₯ βˆ’π·(πœ™), π‘˜=1,2. (8) cot 𝐡=sinh (π‘Žπœ™) , (16) Then,6 ( ) is written as follows: or, 𝑋 (πœ™) ((𝑋 βˆ’π‘‹ )πœ™)= 2 . 𝐡 exp 2 1 (9) tan = exp (βˆ’π‘Žπœ™) . (17) 𝑋1 (πœ™) 2 Journal of Mathematics 3

𝑃2

𝑁 𝐢1

𝑃1 𝐢2

σ³°€ 𝐴 𝐴 𝐾1 𝐡 𝐾2

Figure 2: Semicircle and lines tangent to the semicircle.

Install the triangle 󳡻𝐴𝐡𝐢 in such a way that the side 𝑏= In this way, we have established connection of formula (17) 𝐴𝐢 lies on the line 𝐿,andthesideπ‘Ž=𝐡𝐢is perpendicular to with the main formula of (19). this line at the point 𝐢 In Figure 1 the line 𝐴𝐡 movesinsuchawaythatcutsline σΈ€  σΈ€ σΈ€  2.3. Rotational Motion of a Line Tangent to the Semicircle. The 𝐿 at points 𝐴, 𝐴 , 𝐴 , and so forth. Now, let us recall the concept of the circular angle in Euclidean plane is intimately problemofparallellinesingeometry[7]. Let the ray 𝐴𝐡 tend relatedtothefigureofacircleandtomotionofapointalong to a definite limiting position; in Figure 1 this position is given the circumference. The hyperbolic angle is also related to the 𝐿 𝐴 𝐿 by line 1.Asthepoint moves along line away from point because of a motion along the circumference coherence 𝐢 there are two possibilities to consider. with the motion along the [9]. C (1) In Euclidean geometry, the angle between lines 𝐿1 and Consider semicircle (Figure 2) with end-points and π‘₯ 𝐡 𝐾 𝐾 𝐡𝐢 is equal to right angle. the center on -axis. Denote by the center and by 1, 2 the end-points of the semicircle. Through end-points of the (2) The hypothesis of hyperbolic geometry is that this semicircle, 𝐾1, 𝐾2 erect the lines parallel to vertical axis, π‘Œ- angleislessthantherightangle. axis. Draw a line tangent to the semicircle at the point 𝐢; The most fundamental formula of the hyperbolic geom- this line crosses π‘₯-axis at the point 𝐴 and intersects with the Ξ (π‘Ž) etry is the formula connecting the angle of parallelism vertical lines at points 𝑃1 and 𝑃2. Draw a line parallel to π‘Œ-axis and the length π‘Ž of the perpendicular from the given point from the center 𝐡 which crosses C at the top point 𝑁. to the given line. In order to establish those relationships Denote by π‘Ÿ radius of the circle, so that π‘Ÿ=𝐡𝑁=𝐡𝐢and the concept of horocycles, some circles with center and axis π‘Ÿ=𝐾1𝐾2.Denoteby𝐡 the angle ∠𝐴𝐡𝐢.Thetriangle󳡻𝐴𝐡𝐢 at infinity, was introduced [8]. The great theorem which is a right triangle, so that enables one to introduce the circular functions, sines, and (𝐴𝐡)2 βˆ’ (𝐴𝐢)2 =π‘Ÿ2. cosinesofanangleisthatthegeometryofshortestlines (21) (horocycles) traced on horosphere is the same as plane Consider rotational motion of the line tangent to the semi- Euclidean geometry. The function connecting the angle of circle at the point C.InFigure 2,twopositionsofthislineare π‘Ž σΈ€  parallelism with the distance is given by given by lines 𝐴 𝐢2 and 𝐴𝐢1. When the point 𝐢runs from π‘Ž Ξ  (π‘Ž) end point 𝐾1 to the top-point 𝑁,thepoint𝐴 runs along π‘₯- (βˆ’ )= . (18) 𝐾 exp πœ… tan 2 axis from point 1 to infinity. During this motion the triangle π‘₯ πœ™ K =1/πœ™ formed by the line tangent to the semicircle, the -axis and Now, we introduce the value inverse to by and the radius of the circle remains to be right angled. This is rewrite (17)intheform exactly the case considered in Section 2.2,consequently,we π‘Ž 𝐡 can apply formula (13). According to (13)wewrite exp (βˆ’ )=tan . (19) K 2 π‘Ÿ π‘Ÿ 𝐴𝐡 =π‘Ÿ coth (π‘Ÿπœ™) = ,𝐴𝐢1 = =π‘Ÿtan 𝐡. Let the point 𝐴 run away from the point 𝐢 to infinity. The cos 𝐡 sinh (π‘Ÿπœ™) following two cases can be considered. (22) (1) πœ™ K tends to zero, and tends to infinity; then the angle Since 󳡻𝐴𝐡𝐢1 ∼󳡻𝐴𝐾1𝑃1,wehave 𝐡 will tend to right angle. 𝑃1𝐾1 π‘Ÿ ThisistrueinEuclideanplane. = = sinh (π‘Ÿπœ™) , (23) 𝐴𝐾1 𝐴𝐢1 (2) Suppose that πœ™,andK and the angle 𝐡 go to some limited values, 𝑃1𝐾1 =𝐴𝐾1 sinh (π‘Ÿπœ™) = (𝐴𝐡 βˆ’π‘Ÿ) sinh (π‘Ÿπœ™) (24) lim K =πœ…, lim 𝐡=Ξ (π‘Ž) . π΄πΆσ³¨€β†’βˆž (20) =π‘Ÿexp (βˆ’π‘Ÿπœ™)2 ,𝑃 𝐾2 =π‘Ÿexp (π‘Ÿπœ™) . 4 Journal of Mathematics

On the basis of obtained formulae the following relationships to use formula (27). Consider arc ⌣𝐢1𝐢2 isdefinedinthe between circular and hyperbolic trigonometric functions are first quadrant of the semicircle with end-points at 𝐢1 and 𝐢2. established: The arc ⌣𝐢1𝐢2 can be presented as difference of two arcs, 1 both originated from the top of the semicircle: (𝐡) = , (𝐡) = (π‘Ÿπœ™) , sin (π‘Ÿπœ™) cot sinh cosh (25) ⌣𝐢1𝐢2 =⌣ 𝑁𝐢1βˆ’βŒ£π‘πΆ2. (30) cos (𝐡) = tanh (π‘Ÿπœ™) . Denote by π‘Ž1, π‘Ž2 the angles formed by radiuses 𝐡𝐢1 and 𝐡𝐢2 with π‘₯-axis, correspondingly, where 𝐡 is a center of the If we make the point 𝐢 tend to the top of semicircle 𝑁,the circle. Denote the hyperbolic angle corresponding to the arcs hyperbolic angle πœ™ will tend to zero. When the point 𝐢 tends βŒ£π‘πΆπ‘˜, π‘˜=1,2by πœ‰(π‘πΆπ‘˜), π‘˜=1,2.Thenthefunctions to end-point 𝐾1, the hyperbolic angle tends to infinity. Thus, the hyperbolic angle is measured from the point 𝑁,thetopof cosh πœ‰(𝑁𝐢1), cosh πœ‰(𝑁𝐢2), the semicircle. Consider two different positions of the tangent (31) line, corresponding to two positions 𝐢1, 𝐢2, with hyperbolic sinh πœ‰(𝑁𝐢1), sinh πœ‰(𝑁𝐢2) angles πœ™2 and πœ™1. According to key formula (6)wewrite are expressed via circular trigonometric functions according π‘₯2 βˆ’π·2 exp ((π‘₯2 βˆ’π‘₯1)πœ™2)= , to formulae (25): π‘₯1 βˆ’π·2 (26) 1 1 π‘₯ βˆ’π· πœ‰(𝑁𝐢 )= , πœ‰(𝑁𝐢 )= , ((π‘₯ βˆ’π‘₯ )πœ™ )= 2 1 . cosh 1 cosh 2 exp 2 1 1 sin π‘Ž1 sin π‘Ž2 π‘₯1 βˆ’π·1 (32) sinh πœ‰(𝑁𝐢1)=cot π‘Ž1, sinh πœ‰(𝑁𝐢2)=cot π‘Ž2. The hyperbolic angle πœ™2 corresponds to the arc βŒ£π‘πΆ2,and πœ™ βŒ£π‘πΆ the hyperbolic angle 1 corresponds to the arc 1.Then Then, by taking into account additional formulae wesupposethatthedifferenceinthehyperbolicanglesπœ™2 βˆ’πœ™1 will correspond to the arc ⌣𝐢2𝐢1.From(26)itfollowsthat cosh πœ‰(𝐢1𝐢2)= cosh πœ‰(𝑁𝐢1) cosh πœ‰(𝑁𝐢2)

π‘₯2 βˆ’π·2 π‘₯1 βˆ’π·1 (π‘₯ βˆ’π‘₯ )(πœ™ βˆ’πœ™ )= , βˆ’ sinh πœ‰(𝑁𝐢1) sinh πœ‰(𝑁𝐢2), exp 2 1 2 1 π‘₯ βˆ’π· π‘₯ βˆ’π· 1 2 2 1 (27) (33) sinh πœ‰(𝐢1𝐢2)= sinh πœ‰(𝑁𝐢1) cosh πœ‰(𝑁𝐢2) π·π‘˜ =𝐷(πœ™π‘˜) , π‘˜ = 1, 2. βˆ’ cosh πœ‰(𝑁𝐢1) sinh πœ‰(𝑁𝐢2), It is seen, in the right-hand side we have the cross-ratio. Now, let recall definition of the distance between two points of the we get hyperbolic trigonometric functions of the arcs with geodesic line in the Poincaremodel.LetΒ΄ 𝑧, 𝑀 ∈𝐻, and let arbitrary end-points on the semicircle expressed via periodic 𝑧 𝑀 𝑧 1 and 1 be end points of a geodesic line passing through trigonometric functions: and 𝑀. Then the distance between these points is defined by formula 1βˆ’ π‘Ž π‘Ž πœ‰(𝐢 𝐢 )= cos 1 cos 2 , 𝜌(𝑧 ,𝑧 )= (𝑧 ,𝑧 ;𝑧 ,𝑧 ), cosh 1 2 1 3 log 1 2 3 4 (28) sin π‘Ž1 sin π‘Ž2 (34a) π‘Ž βˆ’ π‘Ž where πœ‰(𝐢 𝐢 )=cos 1 cos 2 . sinh 1 2 π‘Ž π‘Ž 𝑧 βˆ’π‘§ 𝑧 βˆ’π‘§ sin 1 sin 2 (𝑧 ,𝑧 ;𝑧 ,𝑧 ):= 2 1 4 3 1 2 3 4 𝑧 βˆ’π‘§ 𝑧 βˆ’π‘§ (29) 4 1 2 3 Compare with analogous formula from Poincaremodel([Β΄ 3], formula (1.2.6)) given by is the cross-ratio. Comparing (29)with(27)wecometothe 𝑧 =π‘₯ 𝑧 =π‘₯ 𝑧 =𝐷 following correspondence: 2 2, 4 1, 1 2, |π‘§βˆ’π‘€|2 𝑧3 =𝐷1. Notice, however, in our construction π·π‘˜, π‘˜=1,2 cosh 𝜌 (𝑧,) 𝑀 =1+ . (34b) 2 Im (𝑧) Im (𝑀) are projections of 𝑧1, 𝑧3 on 𝑋-axis. The semicircle C is the geodesic line, and π‘₯1, π‘₯2 are end-points of the geodesic line. Two complex numbers

3. Relationships between Elements of Three 𝑧=V0 +𝑖V,𝑀=𝑀0 +𝑖𝑀 (35) Intersecting Semicircles are related to the radius of the semicircle and the angles π‘Ž1,π‘Ž2 3.1. Hyperbolic Cosine-Sine Functions of Arcs of the Semicircle. by The key formula (6) admits to define hyperbolic trigonomet- ric functions of the arcs originated from the top 𝑁 of the V =π‘Ÿsin π‘Ž2, V0 =π‘Ÿcos π‘Ž2, semicircle C. In order to determine trigonometric functions (36) 𝑀=π‘Ÿ π‘Ž ,𝑀=π‘Ÿ π‘Ž . of the arcs with arbitrary end-points on the semicircle we have sin 1 0 sin 1 Journal of Mathematics 5

𝐴 Then, 𝐢

𝐡 cos 𝛼=cos 𝑏1 cos 𝑐1 + sin 𝑏1 sin 𝑐1, (40a)

cos 𝛽=cos π‘Ž2 cos 𝑐2 βˆ’ sin π‘Ž2 sin 𝑐2, (40b)

𝑂𝑐 π‘‚π΅β„Žπ΄ β„Žπ΅ β„ŽπΆ π‘‚π‘Ž cos 𝛿=βˆ’cos 𝑏2 cos π‘Ž1 + sin 𝑏2 sin π‘Ž1, (40c) Figure 3: Triangle formed by arcs of intersecting semicircles. sin 𝛼=sin 𝑏1 cos 𝑐1 βˆ’ cos 𝑏1 sin 𝑐1, (41a)

sin 𝛽=sin π‘Ž2 cos 𝑐2 + cos π‘Ž2 sin 𝑐2, (41b) Then, 𝛿= 𝑏 π‘Ž + 𝑏 π‘Ž . 2 sin sin 2 cos 1 cos 2 sin 1 (41c) 1βˆ’cos π‘Ž1 cos π‘Ž2 π‘Ÿ βˆ’ V0𝑀0 cosh πœ‰(𝐢1𝐢2)= = sin π‘Ž1 sin π‘Ž2 𝑀V Denote distances between centers by (V βˆ’π‘€ )2 + (V βˆ’π‘€)2 𝑂 =𝑂𝑂 ,𝑂=𝑂𝑂 ,𝑂=𝑂𝑂 . =1+ 0 0 = 𝜌 (𝑧,) 𝑀 . 𝑐𝑏 𝑐 𝑏 π‘π‘Ž 𝑏 π‘Ž π‘Žπ‘ π‘Ž 𝑐 (42) 2𝑀V cosh (37) The theorem of sines employed for triangles 𝑂𝑐𝐴𝑂𝑏, π‘‚π‘πΆπ‘‚π‘Ž, π‘‚π‘π΅π‘‚π‘Ž gives six relations of type 3.2. Relationships between Elements of the Triangle Bounded by Arcs of the Intersecting Semicircles. In Figure 3 three sin 𝛼 sin 𝑐1 sin 𝑏1 intersecting semicircles with centers installed on horizontal = = , (43a) 𝑂𝑐𝑏 π‘Ÿπ‘ π‘Ÿπ‘ axis at the points π‘‚π‘Ž, 𝑂𝑏,and𝑂𝑐 are presented. Intersections 󳡻𝐴𝐡𝐢̃ ⌣ of the semicircles form triangle bounded by the arcs sin 𝛿 sin π‘Ž1 sin 𝑏2 𝐡𝐢, ⌣ 𝐴𝐡, ⌣𝐴𝐢 = = , . For each arc we can put in correspondence 𝑂 π‘Ÿ π‘Ÿ (43b) the hyperbolic angle. Denote the hyperbolic angles by π‘Ž, 𝑏,, 𝑐 π‘π‘Ž 𝑏 π‘Ž π‘Ž, 𝑏, 𝑐 ⌣ where consecutively will correspond to the arcs sin 𝛽 sin 𝑐2 sin π‘Ž2 𝐡𝐢, ⌣ 𝐴𝐢, ⌣𝐴𝐡 = = . (43c) . π‘‚π‘Žπ‘ π‘Ÿπ‘Ž π‘Ÿπ‘ Connect vertices of the triangle with centers of the circle π‘Ž 𝑏 𝑐 π‘˜=1,2 by corresponding radiuses. Denote by π‘˜, π‘˜, π‘˜, the From these relations the first set of main relationships follows. angles bounded by the radiuses and π‘₯-axis, where π‘Ž1 >π‘Ž2 >0, 𝑏1 >𝑏2 >0, 𝑐1 >𝑐2 >0.Bymakinguseof(34a) define Relation 1. Consider hyperbolic cosine-sine functions corresponding to bounding segments: π‘Ÿπ‘Ž sin π‘Ž1 =π‘Ÿπ‘ sin 𝑏2,π‘Ÿπ‘ sin 𝑐2 =π‘Ÿπ‘Ž sin π‘Ž2, (44) π‘Ÿπ‘ sin 𝑐1 =π‘Ÿπ‘ sin 𝑏1. 1βˆ’cos π‘Ž1 cos π‘Ž2 cos π‘Ž1 βˆ’ cos π‘Ž2 cosh π‘Ž= , sinh π‘Ž= , sin π‘Ž1 sin π‘Ž2 sin π‘Ž1 sin π‘Ž2 From the draught in Figure 3 it is seen that (38a) π‘‚π‘Žπ‘ =π‘‚π‘π‘Ž +𝑂𝑐𝑏, (45) 1βˆ’cos 𝑏1 cos 𝑏2 cos 𝑏1 βˆ’ cos 𝑏2 cosh 𝑏= , sinh 𝑏= , sin 𝑏1 sin 𝑏2 sin 𝑏1 sin 𝑏2 where (38b) π‘‚π‘Žπ‘ =π‘Ÿπ‘ cos 𝑐2 +π‘Ÿπ‘Ž cos π‘Ž2,π‘‚π‘π‘Ž =π‘Ÿπ‘Ž cos π‘Ž1 +π‘Ÿπ‘ cos 𝑏2. 1βˆ’cos 𝑐1 cos 𝑐2 cos 𝑐1 βˆ’ cos 𝑐2 cosh 𝑐= , sinh 𝑐= . (46) sin 𝑐1 sin 𝑐2 sin 𝑐1 sin 𝑐2 (38c) Hence,

Theusualnotionoftheangleisusedthatis,theangle 𝑂𝑐𝑏 =π‘Ÿπ‘ cos 𝑐2 +π‘Ÿπ‘Ž cos π‘Ž2 βˆ’π‘Ÿπ‘Ž cos π‘Ž1 βˆ’π‘Ÿπ‘ cos 𝑏2. (47) between two curves is defined as an angle between their tangent lines. Let the angles 𝛼, 𝛽, 𝛿 be angles at the verteices From vertices of 󳡻𝐴𝐡𝐢̃ erect lines perpendicular to horizon- 𝐴, 𝐡, 𝐢 , correspondingly. For these angles we can define thier tal line intersect with π‘₯-axis at points β„Žπ΄,β„Žπ΅,β„ŽπΆ, correspond- proper cosine and sine functions. The angles of the triangle ingly. From Figure 3 we find that Μƒ 󳡻𝐴𝐡𝐢 𝛼, 𝛽,𝛿 arecloselyrelatedtoanglesπ‘Ž1,π‘Ž2,𝑏1,𝑏2,𝑐1,𝑐2. From Figure 3 we find the following relationships between 𝑂𝑐𝑏 =π‘‚π‘β„Žπ΄ βˆ’β„Žπ΄π‘‚π‘ =π‘Ÿπ‘ cos 𝑐1 βˆ’π‘Ÿπ‘ cos 𝑏1. (48) them: By equating (47)with(48) we arrive to another main 𝛽=π‘Ž2 +𝑐2,𝛿=πœ‹βˆ’π‘Ž1 βˆ’π‘2,𝛼=𝑏1 βˆ’π‘1. (39) relationship between radii and angles. 6 Journal of Mathematics

Relation 2. One has Denote the segments projections of sides of 󳡻𝐴𝐡𝐢̃ on π‘₯-axis by P(𝐴𝐢)𝐴 =β„Ž β„ŽπΆ, P(𝐴𝐡)𝐴 =β„Ž β„Žπ΅, P(𝐡𝐢)𝐡 =β„Ž β„ŽπΆ.From π‘Ÿπ‘ cos 𝑐1 βˆ’π‘Ÿπ‘ cos 𝑏1 =π‘Ÿπ‘ cos 𝑐2 +π‘Ÿπ‘Ž cos π‘Ž2 βˆ’π‘Ÿπ‘Ž cos π‘Ž1 (49) Figure 3 it is seen that βˆ’π‘Ÿ 𝑏 . 𝑏 cos 2 P (𝐴𝐢) = P (𝐴𝐡) + P (𝐡𝐢) , (57) We will effect a simplification by using the following where designations: P (𝐡𝐢) =𝑀01 βˆ’ V01, P (𝐴𝐢) =𝑀02 βˆ’ V02, π‘Ÿπ‘Ž cos π‘Ž1 =𝑀01,π‘Ÿπ‘Ž sin π‘Ž1 =𝑀1, (58) P (𝐴𝐡) =𝑀03 βˆ’ V03. π‘Ÿπ‘Ž cos π‘Ž2 = V01,π‘Ÿπ‘Ž sin π‘Ž2 = V1, 4. Hyperbolic Law of Cosines I for the Triangle π‘Ÿπ‘ cos 𝑏1 =𝑀02,π‘Ÿπ‘ sin 𝑏1 =𝑀2, (50) Formed by Intersection of Three Semicircles π‘Ÿπ‘ cos 𝑏2 = V02,π‘Ÿπ‘ sin 𝑏2 = V2, The main aim of this section is to prove the hyperbolic law π‘Ÿ 𝑐 =𝑀 ,π‘Ÿπ‘ =𝑀, 𝑐 cos 1 03 𝑐 sin 1 3 theorem of cosines I for the triangle 󳡻𝐴𝐡𝐢̃ formed by arcs of intersecting semicircles with centers installed on π‘₯-axis π‘Ÿπ‘ cos 𝑐2 = V03,π‘Ÿπ‘ sin 𝑐2 = V3. (Figure 3). This law is given by the following set of equations: In these designations formulae (40a), (40b), (40c)and(41a), cosh 𝑐=cosh π‘Ž cosh π‘βˆ’sinh π‘Ž sinh 𝑏 cos 𝛿, (41b), (41c) are written as follows: cosh 𝑏=cosh π‘Ž cosh π‘βˆ’sinh 𝑐 sinh π‘Ž cos 𝛽, (59) π‘Ÿπ‘π‘Ÿπ‘ sin 𝛼=𝑀2𝑀03 βˆ’π‘€02𝑀3, (51a) cosh π‘Ž=cosh 𝑐 cosh π‘βˆ’sinh 𝑐 sinh 𝑏 cos 𝛼. π‘Ÿπ‘π‘Ÿπ‘ cos 𝛼=𝑀02𝑀03 +𝑀2𝑀3, Theorem 3 (theorem of cosines I). The following equation π‘Ÿ π‘Ÿ 𝛽=V V + V V , π‘Ž 𝑐 sin 1 03 01 3 for elements of the triangle 󳡻𝐴𝐡𝐢̃ formed by arcs of three (51b) intersecting semicircles holds true π‘Ÿπ‘Žπ‘Ÿπ‘ cos 𝛽=V01V03 βˆ’ V1V3, cosh 𝑐=cosh π‘Ž cosh π‘βˆ’sinh π‘Ž sinh 𝑏 cos 𝛿, (60) π‘Ÿπ‘Žπ‘Ÿπ‘ sin 𝛿=V2𝑀01 + V02𝑀1, (51c) 𝑐, π‘Ž, 𝑏, π‘Ž, 𝑏, 𝛿 π‘Ÿ π‘Ÿ 𝛿=V 𝑀 βˆ’ V 𝑀 . where cosh cosh cosh sinh sinh cos are defined by π‘Ž 𝑏 cos 2 1 02 01 formulae (51a), (51b), (51c)-(52). Formulae (38a), (38b), (38c) for hyperbolic sines and cosines Proof. Square both sides of Relation 2 to obtain are rewritten as follows: 2 2 2 2 (𝑀 βˆ’ V ) =(𝑀 βˆ’ V ) +(𝑀 βˆ’ V ) π‘Ÿ βˆ’π‘€01V01 𝑀 βˆ’ V 03 03 02 02 01 01 π‘Ž= π‘Ž , π‘Ž=π‘Ÿ 01 01 , (61) cosh 𝑀 V sinh π‘Ž 𝑀 V 1 1 1 1 βˆ’2(𝑀02 βˆ’ V02)(𝑀01 βˆ’ V01) 2 π‘Ÿπ‘ βˆ’π‘€02V02 𝑀02 βˆ’ V02 andevaluatethisequalitybytakingintoaccountformulae cosh 𝑏= , sinh 𝑏=π‘Ÿπ‘ , (52) 𝑀2V2 𝑀2V2 (51a), (51b), (51c)-(52).Firstofall,evaluatetheleft-handside of this equation as follows: 2 π‘Ÿ βˆ’π‘€03V03 𝑀 βˆ’ V 𝑐= 𝑐 , 𝑐=π‘Ÿ 03 03 . (𝑀 βˆ’ V )2 = V2 +𝑀2 βˆ’2V 𝑀 cosh 𝑀 V sinh 𝑐 𝑀 V 03 03 03 03 03 03 3 3 3 3 (62) 2 2 2 2 In the designations equations of Relation 1 are written as = V03 +𝑀03 βˆ’2π‘Ÿπ‘ +2(π‘Ÿπ‘ βˆ’ V03𝑀03),

π‘₯:=𝑀2 =𝑀3,𝑦:=V1 = V3,𝑧:=𝑀1 = V2. (53) where 2π‘Ÿ2 =𝑀2 +𝑀2 + V2 + V2. Equations (43a), (43b), (43c)–(46) are rewritten as follows: 𝑐 03 3 03 3 (63) Use (63)andwrite(62) as follows: 𝑂𝑐𝑏 =𝑀03 βˆ’π‘€02,π‘‚π‘Žπ‘ = V03 + V01, (54) 2 2 2 2 2 2 2 2 2 V03 +𝑀03 βˆ’2π‘Ÿπ‘ = V03 +𝑀03 βˆ’(𝑀03 +𝑀3 + V03 + V3) π‘‚π‘π‘Ž =𝑀01 + V02. (64) 2 2 Correspondingly, Relation 2 takes the form =βˆ’(𝑀3 + V3).

𝑀03 βˆ’π‘€02 = V03 + V01 βˆ’π‘€01 βˆ’ V02. (55) Equation (61) takes the following form: 2 2 2 2 2 This expresses the fact that π‘‚π‘π‘Ž is a sum of 𝑂𝑐𝑏 and π‘‚π‘π‘Ž.Notice βˆ’(π‘€βŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸ3 + V3) +2(π‘Ÿπ‘ βˆ’ V03𝑀03)=(𝑀02 βˆ’ V02) +(𝑀01 βˆ’ V01) that (55)canberewrittenalsoinanotherequivalentform namely, βˆ’2(𝑀02 βˆ’ V02)(𝑀01 βˆ’ V01). 𝑀03 βˆ’ V03 =𝑀02 βˆ’ V02 βˆ’ (𝑀01 βˆ’ V01) . (56) (65) Journal of Mathematics 7

The underlined term passes to the right-hand side of the Replace the underlined term of (69)by(72), and pass equation. Then in the left-hand side remains the expression expression containing sines and cosines to the left-hand side oftheobtainedequation.Asaresult,wecometothefollowing 2(π‘Ÿ2 βˆ’ V 𝑀 )=2V 𝑀 𝑐. 𝑐 03 03 3 3 cosh (66) equation: V 𝑀 Dividing both sides of the obtained equation by 3 3,weget 2 cosh π‘βˆ’2cos 𝛿 sinh 𝑏 sinh π‘Ž

1 2 2 2 2 1 2 2 2 2 cosh 𝑐= (𝑀3 + V3 +(V02 βˆ’π‘€02) +(V01 βˆ’π‘€01) = {V 𝑀 (𝑀 + V +(𝑀 βˆ’ V ) V3𝑀3 2 1 2 1 02 02 𝑀2V2𝑀1V1 (73) 2 βˆ’2 (V02 βˆ’π‘€02)(V01 βˆ’π‘€01)), +(𝑀01 βˆ’ V01) )βˆ’2V02𝑀01 (67) Γ—(𝑀02 βˆ’V02)(𝑀01 βˆ’V01)} according to Relation 1 𝑀3 =𝑀2, V3 = V1.Theserelations make true the following equation By applying the elementary algebra one may show that (see, 1 1 1 [10]) = V2𝑀1. (68) 𝑀3V3 𝑀2V2 𝑀1V1 2 2 2 2 V2𝑀1 (𝑀2 + V1 +(𝑀02 βˆ’ V02) +(𝑀01 βˆ’ V01) ) On making use this formula in the right-hand side of (67)we come to the following equation: βˆ’2V02𝑀01 (𝑀02 βˆ’ V02)(𝑀01 βˆ’ V01) (74) 1 1 =2(π‘Ÿ2 βˆ’ V 𝑀 )(π‘Ÿ2 βˆ’ V 𝑀 ). 2 cosh 𝑐= π‘Ž 01 01 𝑏 02 02 𝑀2V2 𝑀1V1

2 2 2 2 Thus, in the right-hand side73 of( )wehave Γ—{V2𝑀1 (𝑀3 + V3 +(V02 βˆ’π‘€02) +(V01 βˆ’π‘€01) )} 1 2 2 1 1 2 (π‘Ÿ βˆ’ V 𝑀 )(π‘Ÿ βˆ’ V 𝑀 ) , 𝑀 V V 𝑀 π‘Ž 01 01 𝑏 02 02 (75) βˆ’2 V2𝑀1 (V02 βˆ’π‘€02)(V01 βˆ’π‘€01). 1 1 2 2 βŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸβŸπ‘€2V2 𝑀1V1 which according to formulae (52)isnothingelsethan (69) 2 cosh π‘Ž cosh 𝑏. Evaluate now the underlined term, which we firstly write as (76) follows: By using it in (73) we arrive to the following equation: 1 1 2(V02 βˆ’π‘€02)(V01 βˆ’π‘€01) V2𝑀1 2 π‘βˆ’2 π‘Ž 𝑏=2 𝛿 π‘Ž 𝑏. 𝑀2V2 𝑀1V1 cosh cosh cosh cos sinh sinh (77) (70) V 𝑀 π‘Ÿ (V βˆ’π‘€ ) π‘Ÿ (V βˆ’π‘€ ) =2 2 1 𝑏 02 02 π‘Ž 01 01 . π‘Ÿ π‘Ÿ 𝑀 V 𝑀 V π‘Ž 𝑏 2 2 1 1 5. Hyperbolic Laws of Sines and Cosines II From the second equation of (51c)wehave The main task of this section is to prove hyperbolic law V2𝑀1 V02𝑀01 (theorem) of sines,whichisgivenbytheformulae = cos 𝛿+ . (71) π‘Ÿπ‘Žπ‘Ÿπ‘ π‘Ÿπ‘Žπ‘Ÿπ‘ sinh π‘Ž sinh 𝑏 sinh 𝑐 = = , (78) By making use of (71)in(70), evaluate (70) as follows: sin 𝛼 sin 𝛽 sin 𝛿 V 𝑀 π‘Ÿ (V βˆ’π‘€ ) π‘Ÿ (V βˆ’π‘€ ) 2 2 1 𝑏 02 02 π‘Ž 01 01 and the hyperbolic law (theorem) of cosines II given by the π‘Ÿπ‘Žπ‘Ÿπ‘ 𝑀2V2 𝑀1V1 formulae π‘Ÿ (V βˆ’π‘€ ) π‘Ÿ (V βˆ’π‘€ ) V02𝑀01 𝑏 02 02 π‘Ž 01 01 cos 𝛿=βˆ’cos 𝛼 cos π›½βˆ’sin 𝛼 sin 𝛽 cosh 𝑐, (79) =2(cos 𝛿+ ) π‘Ÿπ‘Žπ‘Ÿπ‘ 𝑀2V2 𝑀1V1 cos 𝛽=βˆ’cos 𝛼 cos π›Ώβˆ’sin 𝛼 sin 𝛿 cosh 𝑏, (80) π‘Ÿπ‘ (V02 βˆ’π‘€02) π‘Ÿπ‘Ž (V01 βˆ’π‘€01) =2cos 𝛿 cos 𝛼=βˆ’cos 𝛽 cos π›Ώβˆ’sin 𝛿 sin 𝛽 cosh π‘Ž. (81) 𝑀2V2 𝑀1V1 (V βˆ’π‘€ ) (V βˆ’π‘€ ) βˆ’2V 𝑀 02 02 01 01 5.1. Hyperbolic Theorem of Sines and Its Geometrical Interpre- 02 01 𝑀 V 𝑀 V 2 2 1 1 tation on Euclidean Plane (V βˆ’π‘€ ) (V βˆ’π‘€ ) =2 𝛿 π‘Ž π‘βˆ’2V 𝑀 02 02 01 01 . Theorem 4. Theratiosofprojectionsofthesidesoftriangle cos sinh sinh 02 01 Μƒ 𝑀2V2 𝑀1V1 󳡻𝐴𝐡𝐢 on π‘₯-axis to corresponding distances between centers of (72) the semicircles are equal to each other. 8 Journal of Mathematics

Μƒ Proof. Projections of the sides of 󳡻𝐴𝐡𝐢 are given by formulae Having these formulae we may present the projection Pπ‘π‘Ž as follows P𝑏𝑐 =π‘Ÿπ‘Ž cos π‘Ž1 βˆ’π‘Ÿπ‘Ž cos π‘Ž2, Pπ‘π‘Ž =π‘Ÿπ‘ cos 𝑏1 βˆ’π‘Ÿπ‘ cos 𝑏2, Pπ‘Žπ‘ =π‘Ÿπ‘ cos 𝑏1 βˆ’π‘Ÿπ‘ cos 𝑏2 Pπ‘Žπ‘ =π‘Ÿπ‘ cos 𝑐1 βˆ’π‘Ÿπ‘ cos 𝑐2. (82) βˆ’π‘‚2 +π‘Ÿ2 βˆ’π‘Ÿ2 𝑂2 βˆ’π‘Ÿ2 +π‘Ÿ2 = 𝑐𝑏 𝑐 𝑏 βˆ’ π‘π‘Ž π‘Ž 𝑏 2𝑂 2𝑂 Distances between centers of the circles have been defined as 𝑐𝑏 π‘π‘Ž (90) (see, (46)and(47)) 2 2 2 2 2 2 βˆ’π‘‚π‘π‘π‘‚π‘π‘Ž +π‘Ÿπ‘ π‘‚π‘π‘Ž βˆ’π‘Ÿπ‘ π‘‚π‘π‘Ž βˆ’π‘‚π‘π‘Žπ‘‚π‘π‘ +π‘Ÿπ‘Žπ‘‚π‘π‘ βˆ’π‘Ÿπ‘ 𝑂𝑐𝑏 𝑂 =π‘Ÿ 𝑐 +π‘Ÿ π‘Ž ,𝑂=π‘Ÿ π‘Ž +π‘Ÿ 𝑏 , = π‘π‘Ž 𝑐 cos 2 π‘Ž cos 2 π‘π‘Ž π‘Ž cos 1 𝑏 cos 2 2π‘‚π‘π‘π‘‚π‘π‘Ž 𝑂 =π‘Ÿ 𝑐 βˆ’π‘Ÿ 𝑏 , 𝑐𝑏 𝑐 cos 1 𝑏 cos 1 The first ratio is presented as follows: (83) P βˆ’π‘‚ 𝑂 (𝑂 +𝑂 )+π‘Ÿ2𝑂 βˆ’π‘Ÿ2 (𝑂 βˆ’π‘‚ )+π‘Ÿ2𝑂 π‘π‘Ž = 𝑐𝑏 π‘π‘Ž 𝑐𝑏 π‘π‘Ž 𝑐 π‘π‘Ž 𝑏 π‘π‘Ž 𝑐𝑏 π‘Ž 𝑐𝑏 Pπ‘π‘Ž = P𝑏𝑐 + Pπ‘Žπ‘,π‘‚π‘π‘Ž =𝑂𝑏𝑐 +π‘‚π‘Žπ‘. (84) π‘‚π‘π‘Ž 2π‘‚π‘π‘π‘‚π‘π‘Žπ‘‚π‘π‘Ž Relation 1 given by the set of equations βˆ’π‘‚ 𝑂 (𝑂 )+π‘Ÿ2𝑂 βˆ’π‘Ÿ2 (𝑂 )+π‘Ÿ2𝑂 = 𝑐𝑏 π‘π‘Ž π‘π‘Ž 𝑐 π‘π‘Ž 𝑏 π‘π‘Ž π‘Ž 𝑐𝑏 . π‘Ÿπ‘Ž sin π‘Ž1 =π‘Ÿπ‘ sin 𝑏2,π‘Ÿπ‘ sin 𝑐2 =π‘Ÿπ‘Ž sin π‘Ž2, 2𝑂 𝑂 𝑂 (85) 𝑐𝑏 π‘π‘Ž π‘π‘Ž (91) π‘Ÿπ‘ sin 𝑐1 =π‘Ÿπ‘ sin 𝑏1 raises to the second power, Now, in the same way let us calculate the next ratio, namely, P /𝑂 2 2 2 2 2 2 𝑏𝑐 𝑏𝑐. Formula for the projection is evaluated as follows: π‘Ÿπ‘Ž βˆ’π‘Ÿπ‘Žcos π‘Ž1 =π‘Ÿπ‘ βˆ’π‘Ÿπ‘ cos 𝑏2, P =π‘Ÿ π‘Ž βˆ’π‘Ÿ π‘Ž 2 2 2 2 2 2 𝑏𝑐 π‘Ž cos 1 π‘Ž cos 2 π‘Ÿπ‘ βˆ’π‘Ÿπ‘ cos 𝑐2 =π‘Ÿπ‘Ž βˆ’π‘Ÿπ‘Žcos π‘Ž2, (86) 𝑂2 βˆ’π‘Ÿ2 +π‘Ÿ2 𝑂2 βˆ’π‘Ÿ2 +π‘Ÿ2 2 2 2 2 2 2 = π‘π‘Ž 𝑏 π‘Ž βˆ’ π‘π‘Ž 𝑐 π‘Ž π‘Ÿ βˆ’π‘Ÿ 𝑐1 =π‘Ÿ βˆ’π‘Ÿ 𝑏1. 𝑐 𝑐 cos 𝑏 𝑏 cos 2π‘‚π‘π‘Ž 2π‘‚π‘Žπ‘ 2 Then, square distances π‘‚π‘–π‘˜,𝑖,π‘˜=π‘Ž,𝑏,𝑐and use (86). We get 2 2 2 2 ((𝑂 π‘π‘Žπ‘‚π‘Žπ‘(π‘‚π‘π‘Ž βˆ’π‘‚π‘π‘Ž)βˆ’π‘Ÿπ‘ π‘‚π‘Žπ‘ +π‘Ÿπ‘Žπ‘‚π‘Žπ‘)+π‘Ÿπ‘ π‘‚π‘π‘Ž βˆ’π‘Ÿπ‘Žπ‘‚π‘π‘Ž) 2 2 2 2 2 = . π‘‚π‘π‘Ž =π‘Ÿπ‘ cos 𝑐2 +π‘Ÿπ‘Žcos π‘Ž2 +2π‘Ÿπ‘π‘Ÿπ‘Ž cos 𝑐2 cos π‘Ž2, 2π‘‚π‘Žπ‘π‘‚π‘π‘Ž 2 2 2 2 2 (92) π‘‚π‘π‘Ž =π‘Ÿπ‘Žcos π‘Ž1 +π‘Ÿπ‘ cos 𝑏2 +2π‘Ÿπ‘Žπ‘Ÿπ‘ cos π‘Ž1 cos 𝑏2, (87) βˆ’π‘‚ =𝑂 βˆ’π‘‚ 2 2 2 2 2 By taking into account equation 𝑐𝑏 π‘π‘Ž π‘Žπ‘,weget 𝑂𝑐𝑏 =π‘Ÿπ‘ cos 𝑐1 +π‘Ÿπ‘ cos 𝑏1 βˆ’2π‘Ÿπ‘π‘Ÿπ‘ cos 𝑐1 cos 𝑏1. 2 2 2 (π‘‚π‘π‘Žπ‘‚π‘Žπ‘π‘‚π‘π‘ βˆ’π‘Ÿπ‘ π‘‚π‘Žπ‘ +π‘Ÿπ‘Žπ‘‚π‘π‘ +π‘Ÿπ‘ π‘‚π‘π‘Ž) Combine (86)with(87); in this way we come to the following P = . (93) 𝑏𝑐 2𝑂 𝑂 system of equations: π‘Žπ‘ π‘π‘Ž 2 2 2 (π‘Ž) π‘‚π‘π‘Ž =π‘Ÿπ‘ βˆ’π‘Ÿπ‘Ž +2π‘Ÿπ‘Ž cos π‘Ž2π‘‚π‘Žπ‘, Next, let us calculate the ratio (88a) 2 2 2 2 2 2 (𝑏) 𝑂 =π‘Ÿ βˆ’π‘Ÿ +2π‘Ÿ 𝑐 𝑂 , P (π‘‚π‘π‘Žπ‘‚π‘Žπ‘ (𝑂𝑐𝑏)βˆ’π‘Ÿπ‘ π‘‚π‘Žπ‘ +π‘Ÿπ‘Ž (𝑂𝑐𝑏)+π‘Ÿπ‘ π‘‚π‘π‘Ž) π‘π‘Ž π‘Ž 𝑐 𝑐 cos 2 π‘Žπ‘ 𝑏𝑐 = . (94) 𝑂 2𝑂 𝑂 𝑂 2 2 2 𝑏𝑐 π‘Žπ‘ π‘π‘Ž 𝑏𝑐 (π‘Ž) π‘‚π‘π‘Ž =π‘Ÿπ‘Ž βˆ’π‘Ÿπ‘ +2π‘Ÿπ‘ cos 𝑏2π‘‚π‘π‘Ž, (88b) 2 2 2 This expression coincides with91 ( ); hence, (𝑏) π‘‚π‘π‘Ž =π‘Ÿπ‘ βˆ’π‘Ÿπ‘Ž +2π‘Ÿπ‘Ž cos π‘Ž1π‘‚π‘π‘Ž, P𝑏𝑐 Pπ‘Žπ‘ 2 2 2 = . (95) (π‘Ž) 𝑂𝑐𝑏 =π‘Ÿπ‘ βˆ’π‘Ÿπ‘ +2π‘Ÿπ‘ cos 𝑐1𝑂𝑐𝑏, 𝑂𝑏𝑐 π‘‚π‘Žπ‘ (88c) 2 2 2 (𝑏) 𝑂𝑐𝑏 =π‘Ÿπ‘ βˆ’π‘Ÿπ‘ βˆ’2π‘Ÿπ‘ cos 𝑏1𝑂𝑐𝑏. By taking into account (84), we arrive to desired relations

From these equations the cosines of the angles π‘Ž1,π‘Ž2,𝑏1,𝑏2, P𝑏𝑐 Pπ‘Žπ‘ Pπ‘Žπ‘ 𝑐 ,𝑐 = = . (96) 1 2 are expressed: 𝑂𝑏𝑐 π‘‚π‘Žπ‘ π‘‚π‘Žπ‘ 𝑂2 βˆ’π‘Ÿ2 +π‘Ÿ2 𝑂2 βˆ’π‘Ÿ2 +π‘Ÿ2 π‘π‘Ž 𝑏 π‘Ž = π‘Ž , π‘π‘Ž 𝑐 π‘Ž = π‘Ž , 2π‘Ÿ 𝑂 cos 1 2π‘Ÿ 𝑂 cos 2 Inthesequelcomebacktodesignationsintroducedin π‘Ž π‘π‘Ž π‘Ž π‘Žπ‘ Section 3. In these designations (96) is written as follows: 2 2 2 2 2 2 𝑂𝑐𝑏 βˆ’π‘Ÿπ‘ +π‘Ÿπ‘ π‘‚π‘π‘Ž βˆ’π‘Ÿπ‘Ž +π‘Ÿπ‘ 𝑀 βˆ’ V 𝑀 βˆ’ V 𝑀 βˆ’ V = 𝑐 , = 𝑐 , (89) 01 01 02 02 03 03 2π‘Ÿ 𝑂 cos 1 2π‘Ÿ 𝑂 cos 2 = = . (97) 𝑐 𝑐𝑏 𝑐 π‘Žπ‘ 𝑀03 βˆ’π‘€02 V03 + V01 𝑀01 + V02 2 2 2 2 2 2 βˆ’π‘‚π‘π‘ +π‘Ÿπ‘ βˆ’π‘Ÿπ‘ π‘‚π‘π‘Ž βˆ’π‘Ÿπ‘Ž +π‘Ÿπ‘ Theorem 5. 󳡻𝐴𝐡𝐢̃ = cos 𝑏1, = cos 𝑏2. Thesidesandtheanglesoftriangle satisfy 2π‘Ÿπ‘π‘‚π‘π‘ 2π‘Ÿπ‘π‘‚π‘π‘Ž (78). Journal of Mathematics 9

Proof. By using formulas (38a), (38b), and (38c)forsinhπ‘Ž, We obtain 𝑏 𝑐 𝛼 sinh ,sinh and formulas (41a), (41b), and (41c)forsin , 1 2 2 2 1 2 2 2 sin 𝛽,sin𝛿,wewrite: cos 𝛼 cos 𝛽= (π‘Ÿπ‘ +π‘Ÿπ‘ βˆ’π‘‚π‘π‘) (π‘Ÿπ‘ +π‘Ÿπ‘Ž βˆ’π‘‚π‘Žπ‘) 2π‘Ÿπ‘π‘Ÿπ‘ 2π‘Ÿπ‘Žπ‘Ÿπ‘ π‘Ÿ (𝑀 βˆ’ V ) π‘₯(𝑀 βˆ’π‘€ ) 1 sinh π‘Ž π‘Ž 01 01 03 02 = = : 4π‘Ÿ π‘Ÿ π‘Ÿ2 sin 𝛼 𝑦𝑧 π‘Ÿπ‘π‘Ÿπ‘ 𝑏 π‘Ž 𝑐 𝑀 βˆ’ V π‘₯𝑦𝑧 Γ—(𝑂2 𝑂2 βˆ’(𝑂2 +𝑂2 )π‘Ÿ2 βˆ’π‘‚2 π‘Ÿ2 βˆ’π‘‚2 π‘Ÿ2). = 01 01 , 𝑐𝑏 π‘Žπ‘ 𝑐𝑏 π‘Žπ‘ 𝑐 𝑐𝑏 π‘Ž π‘Žπ‘ 𝑏 𝑀03 βˆ’π‘€02 π‘Ÿπ‘Žπ‘Ÿπ‘π‘Ÿπ‘ (102) 𝑏 𝑀 βˆ’ V 𝑦(V + V ) 𝑀 βˆ’ V π‘₯𝑦𝑧 sinh = 02 02 : 03 01 = 02 02 , By using (100)and(102) calculate the difference sin 𝛽 π‘Ÿπ‘π‘₯𝑧 π‘Ÿπ‘Žπ‘Ÿπ‘ V03 + V01 π‘Ÿπ‘Žπ‘Ÿπ‘π‘Ÿπ‘ sin 𝛼 sin 𝛽 cosh π‘βˆ’cos 𝛼 cos 𝛽 𝑀 βˆ’ V 𝑧(𝑀 + V ) 𝑀 βˆ’ V π‘₯𝑦𝑧 sinh 𝑐 03 03 01 02 03 03 1 = : = . = (4𝑂 𝑂 π‘Ÿ2 βˆ’π‘‚2 𝑂2 βˆ’(𝑂2 +𝑂2 )π‘Ÿ2 sin 𝛿 π‘Ÿπ‘π‘¦π‘₯ π‘Ÿπ‘π‘Ÿπ‘Ž 𝑀01 + V02 π‘Ÿπ‘Žπ‘Ÿπ‘π‘Ÿπ‘ 2 π‘Žπ‘ 𝑐𝑏 𝑐 𝑐𝑏 π‘Žπ‘ 𝑐𝑏 π‘Žπ‘ 𝑐 4π‘Ÿπ‘Žπ‘Ÿπ‘π‘Ÿπ‘ (98) 1 +𝑂2 π‘Ÿ2 +𝑂2 π‘Ÿ2)βˆ’ 𝑐𝑏 π‘Ž π‘Žπ‘ 𝑏 2 It is seen that these equations contain a common factor which 4π‘Ÿπ‘π‘Ÿπ‘Žπ‘Ÿπ‘ is symmetric with respect to π‘Ž, 𝑏, 𝑐 and π‘₯, 𝑦,. 𝑧 Multiply all Γ—(+𝑂2 𝑂2 βˆ’(𝑂2 +𝑂2 )π‘Ÿ2 βˆ’π‘‚2 π‘Ÿ2 βˆ’π‘‚2 π‘Ÿ2) equations of (97) by this factor. We arrive to (78). 𝑐𝑏 π‘Žπ‘ 𝑐𝑏 π‘Žπ‘ 𝑐 𝑐𝑏 π‘Ž π‘Žπ‘ 𝑏 1 Theorem 6. Thesidesandtheanglesoftriangle󳡻𝐴𝐡𝐢̃ satisfy = (π‘Ÿ2 +π‘Ÿ2 βˆ’π‘‚2 )= 𝛿. 2π‘Ÿ π‘Ÿ π‘Ž 𝑏 π‘Žπ‘ cos the following equation: 𝑏 π‘Ž (103) 𝛿= 𝛼 𝛽 π‘βˆ’ 𝛼 𝛽. cos sin sin cosh cos cos (99) Thus, we got (99).

Proof. Evaluate the first term of the right-hand side of (99) The other two equations, (80)and(81), are proved by making use of (43a), (43b), and (43c): analogously.

1 𝛼 𝛽 𝑐= 𝑂 𝑂 (1 βˆ’ 𝑐 𝑐 ) 6. Concluding Remarks sin sin cosh π‘Ÿ π‘Ÿ π‘π‘Ž 𝑐𝑏 cos 1 cos 2 π‘Ž 𝑏 Wehave proved three hyperbolic cosine-sine theorems for the 1 triangular formed by arcs of three intersecting semicircles by = π‘‚π‘π‘Žπ‘‚π‘π‘ π‘Ÿπ‘Žπ‘Ÿπ‘ using only elements of the Euclidean geometry. This geomet- rical figure is one of the basic figures of the PoincaremodelofΒ΄ 𝑂2 βˆ’π‘Ÿ2 +π‘Ÿ2 𝑂2 βˆ’π‘Ÿ2 +π‘Ÿ2 Γ—(1βˆ’ 𝑐𝑏 𝑏 𝑐 π‘π‘Ž π‘Ž 𝑐 ) hyperbolic geometry. Conventionally, in the textbooks on the 2π‘Ÿπ‘π‘‚π‘π‘ 2π‘Ÿπ‘π‘‚π‘Žπ‘ PoincareΒ΄ model of hyperbolic geometry these theorems are proved by employing invariance properties of the cross-ratio 1 1 with respect to MobiusΒ¨ group transformations. In that case = π‘‚π‘Žπ‘π‘‚π‘π‘ βˆ’ π‘‚π‘Žπ‘π‘‚π‘π‘ π‘Ÿπ‘Žπ‘Ÿπ‘ π‘Ÿπ‘Žπ‘Ÿπ‘ one remains with the impression that the hyperbolic cosine- sine theorems are consequences of a special structure of the 𝐻 𝑂2 βˆ’π‘Ÿ2 +π‘Ÿ2 𝑂2 βˆ’π‘Ÿ2 +π‘Ÿ2 Γ—( 𝑐𝑏 𝑏 𝑐 π‘Žπ‘ π‘Ž 𝑐 ) half-plane.Wehaveshownthatthehyperbolictrigonometry 2π‘Ÿπ‘π‘‚π‘π‘ 2π‘Ÿπ‘π‘‚π‘Žπ‘ as well as periodic trigonometry arises on Euclidean plane in anaturalway. 1 = (4𝑂 𝑂 π‘Ÿ2 βˆ’π‘‚2 𝑂2 The method of parametrization of the mass-shell equa- 2 π‘Žπ‘ 𝑐𝑏 𝑐 𝑐𝑏 π‘π‘Ž 4π‘Ÿπ‘Žπ‘Ÿπ‘π‘Ÿπ‘ tion via the hyperbolic angle, the ,iswidelyusedinthe relativistic physics [4]. The quadratic equation (3)isclosely βˆ’(𝑂2 +𝑂2 )π‘Ÿ2 +𝑂2 π‘Ÿ2 +𝑂2 π‘Ÿ2). 𝑐𝑏 π‘π‘Ž 𝑐 𝑐𝑏 π‘Ž π‘Žπ‘ 𝑏 related to the mass-shell equation (100) 2 2 2 2 𝑝0 βˆ’π‘ =π‘šπ‘ , (104) 𝛼 𝛽 Now calculate the product cos cos by using the following where π‘šπ‘ plays the role of radius of the semicircle 2π‘šπ‘2 =π‘₯ βˆ’ formulae: π‘₯1. Within the framework of the present method we come to the following parametrization of energy momentum of the 1 𝛼= (π‘Ÿ2 +π‘Ÿ2 βˆ’π‘‚2 ), relativistic particle [11]: cos 2π‘Ÿ π‘Ÿ 𝑐 𝑏 𝑐𝑏 𝑏 𝑐 π‘šπ‘ (101) 𝑝0 =π‘šπ‘coth (π‘šπ‘πœ™) ,𝑝= , 0β‰€πœ™<∞. 1 2 2 2 sinh (π‘šπ‘πœ™) cos 𝛽=βˆ’ (π‘Ÿπ‘ +π‘Ÿπ‘Ž βˆ’π‘‚π‘Žπ‘). 2π‘Ÿπ‘Žπ‘Ÿπ‘ (105) 10 Journal of Mathematics

In this way, the method developed in this paper may be used in order to give a new geometrical interpretation of rapidity widely used in relativistic physics (see, e.g., [12] and references therein).

References

[1] S. Stahl, The PoincareΒ΄ Half-Plane, Jones and Bartlett, Boston, Mass, USA, 1993. [2] J. W. Anderson, Hyperbolic Geometry, Springer, London, UK, 1999. [3] S. Katok, Fuchsian Groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill, USA, 1992. [4] A. A. Ungar, β€œHyperbolic trigonometry and its application in the Poincareballmodelofhyperbolicgeometry,”´ Computers & Mathematics with Applications,vol.41,no.1-2,pp.135–147,2001. [5]R.M.Yamaleev,β€œMulticomplexalgebrasonpolynomialsand generalizedHamiltondynamics,”Journal of Mathematical Anal- ysis and Applications,vol.322,no.2,pp.815–824,2006. [6] R.M.Yamaleev,β€œGeometricalinterpretationofgeneralcomplex algebra and its application in relativistic mechanics,” Advances in Applied Clifford Algebras,vol.17,no.2,pp.281–305,2007. [7]V.F.Kagan,Foundations of Geometry. Part I., Gostekhizdat, Moscow, Russia, 1949. [8]N.J.Lobatschewsky,β€œEtudesgeomΒ΄ etriquesΒ΄ sur la theorieΒ΄ de paralleles,` suivis d’un extrait de la correspondance de Gauss et de Schumacher,”in MemoiresΒ΄ de la SocietΒ΄ eΒ΄ des sciences physiques et naturelles de Bordeaux,G.J.Hoauel,Ed.,vol.4,SociΒ¨ etΒ΄ edesΒ΄ sciences physiques et naturelles de Bordeaux, Bordeaux, France, 1866. [9] G. Dattoli and M. Del Franco, β€œHyperbolic and circular trigonometryand application to ,” In press, http://arxiv.org/abs/1002.4728 . [10] R. M. Yamaleev, β€œHyperbolic cosines and sinestheorem for the triangle formed by intersections of three semicircles on Euclidean plane,” In press, http://arxiv.org/abs/1104.5135 . [11] R. M. Yamaleev, β€œNew representation for energy-momentum and its applications to relativistic dynamics,” Physics of Atomic Nuclei,vol.74,no.12,pp.1775–1782,2011. [12] N. A. Chernikov, β€œLobachevsky geometry and relativistic mechanics,” Physics of Atomic Nuclei,vol.4,no.3,pp.774–809, 1973. Advances in Advances in Journal of Journal of Operations Research Decision Sciences Applied Mathematics Algebra Probability and Statistics Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

The Scientific International Journal of World Journal Differential Equations Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Submit your manuscripts at http://www.hindawi.com

International Journal of Advances in Combinatorics Mathematical Physics Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Journal of Journal of Mathematical Problems Abstract and Discrete Dynamics in Complex Analysis Mathematics in Engineering Applied Analysis Nature and Society Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

International Journal of Journal of Mathematics and Mathematical Discrete Mathematics Sciences

Journal of International Journal of Journal of Function Spaces Stochastic Analysis Optimization Hindawi Publishing Corporation Hindawi Publishing Corporation Volume 2014 Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014