Youtube API V3 Rule Set Documentation

Total Page:16

File Type:pdf, Size:1020Kb

Youtube API V3 Rule Set Documentation YouTube API v3 Rule Set Documentation Table Of Contents YouTube API v3 ...................................................................................................................................1 Scope ..............................................................................................................................................1 Disclaimer .......................................................................................................................................2 Overview ........................................................................................................................................2 Prerequisites ...................................................................................................................................2 Installation ......................................................................................................................................2 Import Error Templates ...............................................................................................................2 Import the Rule Set .....................................................................................................................2 Configuration ..................................................................................................................................3 Extract Meta Data ...........................................................................................................................3 Get Title/Description ...................................................................................................................3 Get Uploader/Channel ................................................................................................................4 Get Thumbnails ...........................................................................................................................4 Filters Based on Meta Data .............................................................................................................4 Filter By Category ........................................................................................................................4 Filter By Keywords.......................................................................................................................4 Filter By Uploader/Channel .........................................................................................................4 Filter By Video ID .........................................................................................................................5 Filter By DLP Acceptable Use .......................................................................................................5 Fail-Open Error Handler ..................................................................................................................5 Troubleshooting ..............................................................................................................................5 Scope This document is a short whitepaper which comes along with a rule set for McAfee Web Gateway. The document describes how to import the associated rule set into a default McAfee Web Gateway policy. Disclaimer This rule set along with all of its associated files and documents is provided on an as-is basis. McAfee will not take any responsibilities for problems, outages or any other issues resulting from using this rule set, or any of the files associated. Please be careful when importing the rule set into your existing policy. Make sure you understood what the rule set is supposed to do and verified it does not interfere with any other rules that currently exist within your configuration. Many values used within the rules are example values and will most likely not fit your environment. Always make sure that you have changed examples to real-life values. Overview YouTube offers a publically accessible API which allows access to a YouTube videos Meta information such as uploader, category or similar. Recently Version 3 of the API has been released which might supersede previous implementations using the older API. This rule set utilizes Version 3 to lookup Categories and Uploader/Channel names in order to provide some additional filter capabilities to MWG. It uses external list calls to poll the API servers and writes the results into custom HTTP headers which are usable from within the rule engine. Prerequisites Compared to the previous API the API v3 requires a user to obtain an API key which is used to identify who is querying the API. Every API has a specific quota which defined how many requests against the API can be done. More details can be found at https://developers.google.com/youtube/v3/getting-started. Please note that McAfee and/or the product McAfee Web Gateway don’t have any control about the API itself (in regards to availability) and/or the quota. In case you exceed the quota for your API key it may be required to talk to YouTube/Google to increase the available quota for your key. Additionally the API now heavily utilizes JSON, so a version of McAfee Web that has JSON Support Gateway is required. Installation Import Error Templates Before you import the rule set itself it is required to import the error templates. 1.) Find the “Template Editor”, for example by editing any of the existing Block Actions 2.) Click the “Import” button 3.) Point to the ZIP file which came with the rule set and contains the templates 4.) Resolve any conflict 5.) Close the template editor Import the Rule Set 1.) Access the McAfee Web Gateway Web Interface (UI) 2 2.) Open the “Policy” tab 3.) Find an appropriate location for the rule set, for example between URL Filter and AV rule sets 4.) Select “Add -> Top Level Rule Set -> Import Rule Set from Library” 5.) Click the “Import from file” button in the lower left corner of the new window 6.) Select the rule set from the file you have download 7.) Solve all conflicts by “refer to existing” objects 8.) Done! Configuration Because the YouTube API requires a personalized API key now the rule set will not work but immediately exit unless you provide MWG with your API key: In the parent rule set “Youtube API v3” you will have to put your API key into a user-defined property. If the key is not provided, the server will deny all API requests. This will result into problems when looking up the videos Meta data. Extract Meta Data There are several Meta objects MWG will extract. The rules responsible for the extraction are located in the parent rule set “Get Meta Information Via Youtube API”. They will be described below. Get Category McAfee Web Gateway will try to extract the category ID from the API response. In API version 3 the category is no longer provided as a string but as a numerical identifier (which optionally can be translated into a string, see below). Translate Category ID In order to translate the category ID (numerical value) into a readable value (for example “Autos & Vehicles”) McAfee Web Gateway can initiate another call to the API. This setting has a cache setting of 24 hours as categories usually do not change on a regular interval. If you do not want to utilize categorization in your policy you can disable both rule sets. If you are happy with category IDs only you can disable the “Translate Category ID” rule set. This will save some of your available quota, however it will make category handling more inconvenient. Get Title/Description This rule set is responsible for grabbing the videos title and description. Both can be used to search for specific keywords you would like to filter or to mark up the block template with the videos title and/or description, which can be helpful for users. If you do not want to filter based on title or description you can disable this rule set. 3 Get Uploader/Channel In case you want to restrict access to specific uploaders/channels you can add the allowed and/or blocked uploaders to a list. McAfee Web Gateway will fetch a videos uploader via the API call and make it available for filtering. If you do not want to filter based on Uploader/Channel you can disable this rule set. Get Thumbnails This rule set can most likely be disabled. The default block templates contain a thumbnail of the video, which is grabbed here. Filters Based on Meta Data The rule set comes with several examples which use the extracted Meta data in order to enforce a specific policy. Filter By Category This will allow you to set up a “Allow only these categories” or a “Allow all but these categories” policy. You will have to fill the category ID or category name (if translation is enabled, see above) into the associated lists. If you watch a video in the browser you can find the category name in the video description: You can find the correct category ID by accessing the list of ID <-> category name mappings by making a browser call to the API: https://www.googleapis.com/youtube/v3/videoCategories?part=snippet&regionCode=us If you are unable to see the result because there is no quote left please add your API key to the URL by adding “&key=<your API key>” to the end of the URL. Filter By Keywords This rule set will allow you to add a very simple keyword filter based on wildcard found in a videos title or description. Please note that the list requires wildcard expressions, so in case you want to search for the word “naked” in the title or description, please type “*naked*” into the list. You can also apply regular expressions. Filter By Uploader/Channel This rule set will allow you
Recommended publications
  • Identity and Representation on the Neoliberal Platform of Youtube
    Identity and Representation on the Neoliberal Platform of YouTube Andra Teodora Pacuraru Student Number: 11693436 30/08/2018 Supervisor: Alberto Cossu Second Reader: Bernhard Rieder MA New Media and Digital Culture University of Amsterdam Table of Contents Introduction ............................................................................................................................................ 2 Chapter 1: Theoretical Framework ........................................................................................................ 4 Neoliberalism & Personal Branding ............................................................................................ 4 Mass Self-Communication & Identity ......................................................................................... 8 YouTube & Micro-Celebrities .................................................................................................... 10 Chapter 2: Case Studies ........................................................................................................................ 21 Methodology ............................................................................................................................. 21 Who They Are ........................................................................................................................... 21 Video Evolution ......................................................................................................................... 22 Audience Statistics ...................................................................................................................
    [Show full text]
  • Youtube Comments As Media Heritage
    YouTube comments as media heritage Acquisition, preservation and use cases for YouTube comments as media heritage records at The Netherlands Institute for Sound and Vision Archival studies (UvA) internship report by Jack O’Carroll YOUTUBE COMMENTS AS MEDIA HERITAGE Contents Introduction 4 Overview 4 Research question 4 Methods 4 Approach 5 Scope 5 Significance of this project 6 Chapter 1: Background 7 The Netherlands Institute for Sound and Vision 7 Web video collection at Sound and Vision 8 YouTube 9 YouTube comments 9 Comments as archival records 10 Chapter 2: Comments as audience reception 12 Audience reception theory 12 Literature review: Audience reception and social media 13 Conclusion 15 Chapter 3: Acquisition of comments via the YouTube API 16 YouTube’s Data API 16 Acquisition of comments via the YouTube API 17 YouTube API quotas 17 Calculating quota for full web video collection 18 Updating comments collection 19 Distributed archiving with YouTube API case study 19 Collecting 1.4 billion YouTube annotations 19 Conclusions 20 Chapter 4: YouTube comments within FRBR-style Sound and Vision information model 21 FRBR at Sound and Vision 21 YouTube comments 25 YouTube comments as derivative and aggregate works 25 Alternative approaches 26 Option 1: Collect comments and treat them as analogue for the time being 26 Option 2: CLARIAH Media Suite 27 Option 3: Host using an open third party 28 Chapter 5: Discussion 29 Conclusions summary 29 Discussion: Issue of use cases 29 Possible use cases 30 Audience reception use case 30 2 YOUTUBE
    [Show full text]
  • From Ranking Algorithms to New Media Technologies 2018, Vol
    Article Convergence: The International Journal of Research into From ranking algorithms to New Media Technologies 2018, Vol. 24(1) 50–68 ª The Author(s) 2017 ‘ranking cultures’: Investigating Reprints and permission: sagepub.co.uk/journalsPermissions.nav the modulation of visibility DOI: 10.1177/1354856517736982 in YouTube search results journals.sagepub.com/home/con Bernhard Rieder University of Amsterdam, the Netherlands Ariadna Matamoros-Ferna´ndez Queensland University of Technology, Australia O` scar Coromina Universitat Auto`noma de Barcelona, Spain Abstract Algorithms, as constitutive elements of online platforms, are increasingly shaping everyday sociability. Developing suitable empirical approaches to render them accountable and to study their social power has become a prominent scholarly concern. This article proposes an approach to examine what an algorithm does, not only to move closer to understanding how it works, but also to investigate broader forms of agency involved. To do this, we examine YouTube’s search results ranking over time in the context of seven sociocultural issues. Through a combination of rank visualizations, computational change metrics and qualitative analysis, we study search ranking as the distributed accomplishment of ‘ranking cultures’. First, we identify three forms of ordering over time – stable, ‘newsy’ and mixed rank morphologies. Second, we observe that rankings cannot be easily linked back to popularity metrics, which highlights the role of platform features such as channel subscriptions in processes of visibility distribution. Third, we find that the contents appearing in the top 20 results are heavily influenced by both issue and platform vernaculars. YouTube-native content, which often thrives on controversy and dissent, systematically beats out mainstream actors in terms of exposure.
    [Show full text]
  • Cloud Computing
    Cloud Computing K10347_FM.indd 1 7/8/09 4:20:38 PM K10347_FM.indd 2 7/8/09 4:20:38 PM Cloud Computing Implementation, Management, and Security John W. Rittinghouse James F. Ransome Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business K10347_FM.indd 3 7/8/09 4:20:38 PM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-1-4398-0680-7 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers.
    [Show full text]
  • Report WHY IS YOUTUBE BROADCASTING CLIMATE MISINFORMATION to MILLIONS?
    Why is YouTube Broadcasting Climate Misinformation to Millions? YouTube is driving its users to climate misinformation and the world’s most trusted brands are paying for it. 15/01/2020 - Avaaz Report WHY IS YOUTUBE BROADCASTING CLIMATE MISINFORMATION TO MILLIONS? YouTube is driving its users to climate misinformation and the world’s most trusted brands are paying for it. 15/01/2020 “Climate change is one of the most significant global “There is no evidence that CO2 emissions are challenges of our time, and continued greenhouse gas the dominant factor [in climate change].” emissions pose an existential threat to humanity.” Richard Lindzen in Climate Change: What Do Scientists Say? -A video being promoted by YouTube’s algorithm with 1.9 million views Google 2019 Environmental Report Contents Executive Summary 8 I. How YouTube Promotes Climate Misinformation 14 • The instrumental role of the algorithm 16 II. Climate Misinformation Videos on YouTube & the Global Brands Advertising on Them 20 Recommendations for YouTube to Act Immediately 40 • Detox YouTube’s Algorithm 43 • Correct the Record 45 Recommendations for Companies 46 Annexes 50 • Annex 1: Methodology for Part I 50 • Annex 2: Methodology for Part II 52 • Annex 3: Table - Climate Misinformation Videos Analyzed for Part II 53 • Annex 4: Full List of Brands Found by Avaaz on Climate Misinformation Videos 54 • Annex 5: Further Examples of Advertisements Running on Climate Misinformation Videos 56 • Glossary 62 • Acknowledgment: The Necessity of Having a Fact-Based Discussion on Climate Change while also Defending Freedom of Expression 64 6 7 Executive Summary Climate misinformation threatens the health and safety of our societies and our planet.
    [Show full text]
  • Video Content Release Waiver Site Form Youtube
    Video Content Release Waiver Site Form Youtube Sometimes unpursued Harlan locoes her humors unrepentingly, but sparid Inglebert bilging unctuously or devaluing deviously. Plotted Gregorio manures his oviboses deranging mischievously. Lento Randolph horsewhipped some bromelia and chipped his chelates so securely! Comcast AT&T this Service Expansions Fee Waivers. You continue create video content available to your TEDx event. Placed on your website that deters thieves from stealing your content. Music contract Form Release Forms. Make sure will get acid in writing whenever possible advantage taking photographs or video of stress you can complete a model release on Some examples of. Submit videos that showcase innovative ways to support kids impacted by. Tax News FTBcagov. FAQs on Photos and Videos under FERPA Protecting. Kelly signed a release waiver Laita gives to dislocate his subjects that states. Photography-Video Consent Waiver Release and. YouTube moderators are being forced to crunch a statement. The risks associated with using your content really well outside to disclaim your liability. There are receiving text messages you shall be used with this change from this prevents you sure that storytime is appropriate based on video release applies. Alternate Synonyms for weaver craftsman artisan journeyman artificer weaverbird weaver finch oscine oscine bird. Op-Ed Contributors Letters Sunday Review Video Opinion. United states of liability, this article below instructions to know or mobile alert, youtube video content release waiver form, at this agreement shall use. However to remember there could allow some parts of caution Site start working properly. In Pittsburgh The PghKids Mister Rogers' Neighborhood Sweater Drive had been EXTENDED from December 26 thro.
    [Show full text]
  • BY Galen Stocking, Patrick Van Kessel, Michael Barthel, Katerina Eva Matsa and Maya Khuzam
    FOR RELEASE SEPTEMBER 28, 2020 BY Galen Stocking, Patrick van Kessel, Michael Barthel, Katerina Eva Matsa and Maya Khuzam FOR MEDIA OR OTHER INQUIRIES: Katerina Eva Matsa, Associate Director, Journalism Research Galen Stocking, Senior Computational Social Scientist Hannah Klein, Communications Manager Andrew Grant, Communications Associate 202.419.4372 www.pewresearch.org RECOMMENDED CITATION Pew Research Center, September, 2020, “Many Americans Get News on YouTube, Where News Organizations and Independent Producers Thrive Side by Side” 1 PEW RESEARCH CENTER About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It does not take policy positions. The Center conducts public opinion polling, demographic research, content analysis and other data-driven social science research. It studies U.S. politics and policy; journalism and media; internet, science and technology; religion and public life; Hispanic trends; global attitudes and trends; and U.S. social and demographic trends. All of the Center’s reports are available at www.pewresearch.org. Pew Research Center is a subsidiary of The Pew Charitable Trusts, its primary funder. © Pew Research Center 2020 www.pewresearch.org 2 PEW RESEARCH CENTER Terminology [FORMAT AS DROPDOWN BOX W/LINK] This study explores the landscape of news on YouTube through a survey of YouTube news consumers alongside an analysis of the most popular YouTube channels that produce news and the videos published by a subset of these channels. Here are some definitions of key terms used throughout this report: ▪ YouTube news consumers: Those who said they get news from YouTube in a Pew Research Center survey of U.S.
    [Show full text]
  • Ruhr-Universität Bochum Hans Bouchard ([email protected])
    Virtual spaces and cultural transformations: Deconstructing YouTube Rewind Hans Bouchard ([email protected]) Ruhr-Universität Bochum Romanisches Seminar What is YouTube Rewind? Aim and methods What is YouTube? What does YouTube want to be? YouTube Rewind is YouTubes year review and fea- Analysis of: tures a special video production “Celebrating the vide- os, people, music and moments that defined 2018”, as videos and metadata of the top trending (global) playlists (2010-2018) well as a list of top videos (global and selected coun- elements of representation on the platform (categories, views e.g.) tries) and statistics (since 2010). spatial configuration and changes on the platform It is a self-representation and self-fashioning following professional and “classic” media vs. “broadcast yourself” metric criteria (views) as well as a remix/convergence cultural production, that was continued starting form Imagining YouTube: metrics and myths 2012. Therefore, it constitutes a perfectly manageable relation between metrics, infrastructure and cultural practices set of data that follows the redactional criteria of the Data and tools platform, itself combining spatial and cultural practices Wayback Machine (Internet Archive) with data. YouTube API However, the recent Rewind was not met with positive response from the YouTube community, showing a certain discon- nect between the platform and user. This led to several “alternative” versions of the YouTube Rewind by various content Music ≠ music: YouTube categories and professional content creators, including one of the largest channels (PewDiePie) as well as being the most disliked video on the platform! Categories on YouTube: Categories play an important role on YouTube in order to distribute the content accordingly.
    [Show full text]
  • Assessing Threat Posted to Video CAPTCHA by OCR-Based Attacks
    Assessing Threat Posed to Video CAPTCHA by OCR-Based Attacks by Alex Canter A Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science Supervised by Dr. Richard Zanibbi Department of Computer Science B. Thomas Golisano College of Computing and Information Sciences Rochester Institute of Technology Rochester, New York June 2013 ii The project “Assessing Threat Posed to Video CAPTCHA by OCR-Based Attacks” by Alex Canter has been examined and approved by the following Examination Committee: Dr. Richard Zanibbi Associate Professor Project Committee Chair Dr. Zack Butler Associate Professor Dr. Stephanie Ludi Associate Professor iii Acknowledgments I would like to thank and acknowledge the members of the DPRL at R.I.T. for their continued support and friendship throughout my work. In particular, I am grateful to Francisco Alvaro, Lei Hu, David Stalnaker, and Siyu Zhu for taking time out of their own work to aid my own. I would like to thank my committee members, Dr. Richard Zanibbi, Dr. Zack Butler and Dr. Stephanie Ludi, for their time and patience with regards to my work. I extend my sincere gratitude and appreciation to my project advisor, Dr. Richard Zanibbi, for his invaluable guidance, support, time, and understanding (and tolerance) this past year. Lastly, I thank my parents for their perseverance in dealing with me for the last 24 years. It really is quite a feat. iv Contents Acknowledgments ::::::::::::::::::::::::::::::::: iii 1 Introduction ::::::::::::::::::::::::::::::::::: 1 2 Background ::::::::::::::::::::::::::::::::::: 3 2.1 CAPTCHA . 3 2.2 Video CAPTCHA . 5 2.3 Video Understanding Approach .
    [Show full text]
  • Automated App Categorization Using API Analysis
    Automated App Categorization using API analysis JI ZHOU MSc Business Analytics Department of Computer Science University College London Sep, 2016 1 Abstract App store is a center location for users to discover, to download and to install apps with only a few clicks. Categorizing mobile apps according to their functionalities has many benefits to both users and developers. Placing apps into the proper categories can help users to quickly discover and explore the desired apps. It can also help app developers to analysis the potential features and technical trends within the same domain. Unfortunately, existing categorizations are ineffective because apps are assigned to some categories arbitrarily by developers. To help developers choose the right categories, we propose an API-based app categorization approach in this project. This approach automatically clusters apps based on the API calls extracted from the APK files. We empirically evaluated this approach against the state of the art description-based categorization approach using 10,020 real apps downloaded from the Google Play store. We use k-means to cluster 9,980 apps and unify parameters for attribute and model selections. We evaluated the quality of the results based on the Silhouette Coefficient, Adjusted Rand Index and Adjusted Mutual Information metrics. The result shows that our approach achieved two times higher Silhouette scores and as well as improved the other quality metrics. As far as we know, this is the first paper to prove that APIs are a good attribute for app clustering by comparing it against app descriptions, which provides a much lower granularity way for automatically app categorization.
    [Show full text]
  • A Data-Driven Analysis of Video Game Culture and the Role of Let's Plays in Youtube
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 12-18-2018 1:00 PM A Data-Driven Analysis of Video Game Culture and the Role of Let's Plays in YouTube Ana Ruiz Segarra The University of Western Ontario Supervisor Suárez, Juan-Luis The University of Western Ontario Graduate Program in Hispanic Studies A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Arts © Ana Ruiz Segarra 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Digital Humanities Commons, Leisure Studies Commons, Other Languages, Societies, and Cultures Commons, Social and Cultural Anthropology Commons, and the Sociology of Culture Commons Recommended Citation Ruiz Segarra, Ana, "A Data-Driven Analysis of Video Game Culture and the Role of Let's Plays in YouTube" (2018). Electronic Thesis and Dissertation Repository. 5934. https://ir.lib.uwo.ca/etd/5934 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Video games have become an important part of the global popular cultures that are connecting broader audiences of all ages around the world. A recent phenomenon that has lasted almost ten years is the creation and upload of gaming-related videos on YouTube, where Let’s Plays have a considerable presence. Let’s Plays are videos of people playing video games, usually including the game footage and narrated by the players themselves.
    [Show full text]
  • Quaring Youtube Comments and Creations: an Analysis of Black Web Series Through the Politics of Production, Performance, and Pl
    Quaring YouTube Comments and Creations: An Analysis of Black Web Series through the Politics of Production, Performance, and Pleasure by Faithe J Day A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Communication Studies) in the University of Michigan 2018 Doctoral Committee: Assistant Professor Andre L. Brock, Chair Assistant Professor Aymar J. Christian, Northwestern University Professor Robin R. Means-Coleman, Texas A&M University Professor Lisa Nakamura Assistant Professor Candace M. Moore, Carleton College Faithe J. Day [email protected] ORCID iD: 0000-0002-1770-5897 Ⓒ​ Faithe J. Day 2018 DEDICATION This dissertation is dedicated to my department, my committee, and the many friends and family who have helped me along the way. ii TABLE OF CONTENTS DEDICATION ii ABSTRACT vii CHAPTER I. Introduction: Theory and Methods 1 Background 1 The Burden of Blackness: On Representation and Stereotypes 3 Quare Shared Recognition and Black Web Series 9 Interventions and Significance 12 Research Questions 14 Research Design and Methods 16 Ethnography of the YouTube Platform 16 Discourse Analysis of Commenting Communities 19 Chapter Outline and Overview 22 II. From Cool to Quare: Awkward Black Girl and the Production of YouTube Content 25 Using YouTube: Social Media and Video Sharing 26 Television and the Study of Production 29 Fandom and the Production of Black YouTube Web Series 32 YouTube Users: From Viewers and Audience to Community and Counterpublic 35 iii From One Awkward Black Girl to Another: Examining the Creator 41 The Struggles of an Awkward Black Life: Textual Analysis 46 Quare is to Awkward as Black is to Queer 51 Negotiating (Dis)Identification: Analyzing Series Comments 54 Oppositional Readings of ABG 57 The Role of Fandom in Counterpublics 63 Conclusion 65 III.
    [Show full text]