The Rainbow Trout Sulmo Guirdneri (Rich.) Fishery of Lake Titicaca

Total Page:16

File Type:pdf, Size:1020Kb

The Rainbow Trout Sulmo Guirdneri (Rich.) Fishery of Lake Titicaca J. Fish Biol. (1973) 5, 429-440 The rainbow trout Sulmo guirdneri (Rich.) fishery of Lake Titicaca G. V. EVERETT* Universidud Te'cnica del Altipluno, Puno, Peru (Received 25 February 1972) Rainbow trout were introduced to Lake Titicaca in 1942. A conimercial trout canning operation started in 1961 but terminated in 1970. Data for this study were collected in 1966 and 1967, with the object of examining the life history, biology, and commercial fishery of Titicaca rainbow trout. Trout were caught commercially and experimentally by gillnets in different parts of the lake. Lake Titicaca lies across the border of Peru and Bolivia at 3212 m above sea level. The physico-chemical characteristics of the lake appear ideal for self-sustaining populations of rainbow trout. Growth was constant throughout the year, and was good in relation to growth rates of rainbow trout in other parts of the world. Spawning took place in the tributaries in the winter. Recruitment to the fishery occurs in 7.62 cm stretch mesh gillnets at about 27 cm fork length. The total annual commercial catch increased to 500 metric tons in 1965 before subse- quently decreasing. The simplest explanation for the decline in total catch would be the increase in fishing mortality due to increased fishing effort, although it is possible that the decline in water level has had some effect. It appeared possible that the lake could sustain an annual catch of about 350 tons. I. INTRODUCTION Lake Titicaca lies on an inland drainage plateau which extends across the borders of Peru and Bolivia (Fig. 1). The lake is up to 176 km long, 66 km wide, 3212 m above sea level, and located between the latitudes of 68" 37' and 70" 02'W and longitudes 15" 14' and 16" 35's. Waters of Lago Pequeiio, Pun0 Bay, and the northern part of the lake are less than 20 m deep, but the deepest part of the main lake is 281 m. Four main rivers are tributaries of the lake. The River Ramis has the greatest flow (up to 200m3/sec in February and March) followed in flow rate by the Rivers llave, Escoma, and Coata. The total catchment area is 60 800 km2 and the water surface is 7600 km2. Mean flow of the only outlet, the River Desaguadero, is 20 m3/sec. Evaporation accounts for 95 of the water that leaves the lake. Water level in 1963 was the highest since 1933. Since 1963 the lake level has receded (Table I). Gilson (1964) has described the physical, chemical, and biological characteristics of the lake. Monheiin (1956) has described the hydrology of the lake and its basin. Average annual rainfall is 584 mm with 73 "/o falling in December through March. Monthly mean air temperatures are least in June (5.5"C) and greatest in November (9-S°C), the annual average being (74°C) (Table 11). Lake temperature fluctuates around 12°C (Table 111) and tributary temperatures vary from 4 to 20°C. Waters are slightly alkaline (pH 8) and are high in ionic solutes (788 ppm). Oxygen concentra- tions fluctuate between 4.5 and 5.0 ppm in surface waters of the lake. *Present address: Hunting Technical Services, Borehamwood, Hertfordshire, England. 429 430 G. V. EVERETT 71' 70' 15O 16' 16' PERU 17O 17' 0 80 -krn -.-. International boundary I I 71' 70' 69' FIG.1. Topography of Lake Titicaca. The catfish Trichomycterus rivulatus Valenciennes lives in the lake and its tributaries. All other endemic fish belong to the cyprinid genus Orestias, the largest species of which-0. pentlandi (Val)-reaches about 25 cm fork length. The freshwater pejerrey Basilichthys bonariensis (Girard) (family Atherinidae) escaped into the lake in 1956 and by 1967 was abundant in all parts. The lake trout Sahelinus namaycush (Walb), the brown trout Salmo trutta (L.), and the eastern brook trout Salvelinus fontinalis (Mitchill) were also introduced to the area, but only the brown trout is now common, in the River Ilave. The rainbow trout Salmo gairdneri (Rich.) was brought to the Titicaca region in 1942, and by 1950 was abundant throughout the lake and its tributaries. A cannery opened at Chucuito, Peru, in 1961 and four other canneries have since operated on THE RAINBOW TROUT FISHERY OF LAKE TITICACA 43 I TABLEI. Variation in the water level of Lake Titicaca from the Peruvian Corporation, Arequipa, Peru) Lowest level Highest level A br> Year cm below cm below or above zero gauge* Month zero gauge Month 1951 -145 January - 66 March 1952 -150 December - 71 March 1953 -151 January - 79 April 1954 -129 January -2 May 1955 - 60 January f 36 April 1956 - 94 December -I- 21 February 1957 -141 December - 64 March 1958 -141 December - 63 April 1959 - 147 December - 76 April 1960 - 76 November - 22 April 1961 - 71 January - 15 May 1962 - 47 January + 57 April 1963 -5 January +I20 April 1964 -2 December + 86 April 1965 - 34 November +44 April 1966 - 83 December -1 March 1967 -129 December - 49 March 1968 -119 January - 51 April 1969 -155 December - 60 April 1970 -163 December - 90 April *Zero gauge, 3212 m above sea level. TABLE11. Air temperatures at Pun0 (data from the Meteorological Service, Lima), 1950 to 1965 Mean Mean Monthly Month maximum minimum mean I“c> (“C) (“C) January 15.3 3.5 8.2 February 15.0 3.8 8.5 March 14.9 3.9 8.4 April 15.0 2.2 8.1 May 14.0 -0.4 6-4 June 13.5 -2.1 5.5 July 13.8 -2.3 6.1 August 14.5 - 1.8 6.7 September 15.0 -0.5 8.0 October 16.6 2.0 9.0 November 16.2 4.8 9.8 December 15.9 3.4 9.6 Mean 15.0 1.4 7.8 432 G. V. EVERETT TABLE111. Seasonal temperature of lake water (Monheim, 1956) Late Annual Summer Winter winter range (“a (“C) (“C) (“C) Mean 13.3 12.9 11.8 1.5 Maximum 15.0 14.8 12.5 2.2 Minimum 11.7 10.5 11.0 1.2 Diurnal range 3.3 4.3 1.5 the lake shore. By 1970 a scarcity of trout had led to closure of all the trout canneries. This paper presents the results of an investigation into the life history, biology, and commercial fishery of rainbow trout in Lake Titicaca. IT. METHODS AND MATERIALS Data were collected from September, 1965, through December 1967. The Chucuito trout hatchery, Puno, Peru, served as centre for the study programme. Rainbow trout were exam- ined from commercial catches in the areas of Huancane, Juli, and Pusi, and from nets set non-commercially in Pun0 Bay at Chucuito and in the lake tributaries. The Huancane area comprised points located within 15 km radius of the mouth of the River Ramis. Pusi is 30 km to the west of the Ramis mouth. The Juli area referred to fishing locations along the western side of the lake. Catches of fishermen in Lago Pcquefio, near Yunguyo, were inspected each month but no trout were caught. Each fishermman set gillnets overnight within 3 km distance of the shore. The nets were of 7.62, 10.15, 12.70 and 15-24cm stretch mesh, and hung by the half to 100 m length and 3 m depth. At the landing location every fifth trout loaded on a vehicle collecting trout for the canneries was examined. This examination took place at least three times per month at each location. No commercial fishing occurred in the closed seasons of June through mid-August in 1965, 1966 and 1967. Data on the monthly commercial catch per unit effort at each loca- tion in 1961 through 1967 were supplied by the cannery manager at Chucuito. The unit of effort at a fishing location was taken as one journey to that location by a cannery vehicle collecting trout. This was the only unit of effort continually recorded since canning opera- tions started, and it is believed to be a reasonably reliable index of fishing effort. Gillnets were set in Puno Bay at Chucuito for ten nights each month from February, 1966 through December, 1967. The nets were 100 m long and 3 m deep, when hung by the half, and made from multifilament twine size 9 and 12. The nets were set at right angles to the shore in water 3 to 4 m deep. Nets of stretch mesh 7.62 and 10.15 cm were set regularly but others of 4.44, 5.08, 6.35, 12-70and 15-24cm were set at less regular intervals. The 4.44 and 5.08 cm nets caught less than 12 rainbow trout throughout the study. A beach seine of 20 m length, 4 m deep (when hung) with 1.90 cm stretch mesh was used for seining the Rivers Ramis, Ilave, and Coata. Sampled trout were weighed whole and gutted, and measured at fork length to the nearest 4 cm below. Individuals of more than 20 cm were sexed. The gut was cut at the oesophagus just posterior to the pectoral girdle, and all viscera removed. Gonads were weighed, and stomach contents analysed. Eggs were hardened in formalin before counting. Scales and otoliths were examined unsuccessfully for growth marks which might be annuli. 111. RESULTS 1. BIOLOGY Two size groups were apparent in the monthly length frequency distributions of trout in Pun0 Bay at Chucuito (Fig. 2). Recruits entered the fishery in February THE RAINBOW TROUT FISHERY OF LAKE TITICACA 433 Huoncane'oreo and Pusi - Chucuito Jonuary 20 - Jonuary 10-- 20 10 Februory 10 - March 30E20 rtl April t March 40.i n 20 10 20 10 m 10 I0 November 10 -,,,, n c December 10 r-l nn I I I I I 20 30 40 50 60 70 Length (crn) FIG.2.
Recommended publications
  • A Taxonomic Revision of the Andean Killifish Genus Orestias (Cyprinodontiformes, Cyprinodontidae)
    A TAXONOMIC REVISION OF THE ANDEAN KILLIFISH GENUS ORESTIAS (CYPRINODONTIFORMES, CYPRINODONTIDAE) I.VNNE R. PARENT] BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 178 : ARTICLE 2 NEW YORK : 1984 A TAXONOMIC REVISION OF THE ANDEAN KILLIFISH GENUS ORESTIAS (CYPRINODONTIFORMES, CYPRINODONTIDAE) LYNNE R. PARENTI Research Associate, Department of Ichthyology American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 178, article 2, pages 107-214, figures 1-72, tables 1-12 Issued May 9, 1984 Price: $8.40 a copy Copyright © American Museum of Natural History 1984 ISSN 0003-0090 CONTENTS Abstract 110 Introduction 110 Acknowledgments 113 Abbreviations 114 Note on Materials and Methods 115 Relationships of Killifishes of the Tribe Orestiini 116 Phylogenetic Analysis 122 Squamation and Neuromast Pattern 123 Hyobranchial Apparatus 126 Fins 129 Chromosomes 130 Sexual Dimorphism and Dichromatism 131 Jaw and Jaw Suspensorium 133 Skull 134 Meristic Characters 135 Morphometric Characters 146 Explanation of Synapomorphy Diagrams 150 Key to Orestias Species 160 Systematic Accounts 165 Genus Orestias Valenciennes 165 Orestias cuvieri Valenciennes 167 Orestias pentlandii Valenciennes 168 Orestias ispi Lauzanne 169 Orestias forgeti Lauzanne 170 Orestias mulleri Valenciennes 171 Orestias gracilis, New Species 172 Orestias crawfordi Tchernavin 173 Orestias tutini Tchernavin 174 Orestias incae Garman 174 Orestias luteus Valenciennes 175 Orestias rotundipinnis, New Species 176 Orestias farfani, New Species 178 Orestias
    [Show full text]
  • 2011-2015 Center for Genome Regulation (CGR)
    FONDAP CENTERS OF EXCELLENCE IN RESEARCH PROGRAM FINAL FIVE YEAR REPORT 2011-2015 Center for Genome Regulation (CGR) 1 FONDAP CENTERS OF RESEARCH PROGRAM FINAL REPORT FIRST FIVE-YEAR PERIOD FONDAP CENTER FOR GENOME REGULATION (CGR) Guidelines: ​ The report should be written following the format specified hereafter. Both a printed (report and excel spreadsheets) and an electronic version must be sent to the following address: PROGRAMA CENTROS DE EXCELENCIA FONDAP CONICYT Moneda 1375, Floor 9 Santiago E-mail: [email protected] ​ Phone: (56 – 2) 2435 43 27 For future inquiries, please contact: María Eugenia Camelio FONDAP Program Interim Director E-mail: [email protected] 2 I. PRESENTATION PERIOD COVERED: From: January 2011 To: June 2015 ​ NAME OF THE CENTER CODE FONDAP Center for Genome Regulation 15 09 00 07 DIRECTOR OF THE CENTER E-MAIL SIGNATURE Dr. Miguel L Allende [email protected] DEPUTY DIRECTOR E-MAIL SIGNATURE [email protected] Dr. Martín Montecino SPONSORING INSTITUTION Universidad de Chile SPONSORING INSTITUTION E-MAIL SIGNATURE REPRESENTATIVE Prof. Víctor Cifuentes (Dean) [email protected] ASSOCIATED INSTITUTION(S) (if applicable) ​ Pontificia Universidad Católica de Chile, Universidad Andrés Bello CENTER WEBSITE ADDRESS www.genomacrg.cl DATE: 10/7/15 ​ 3 II. EXECUTIVE SUMMARY Five years ago, the FONDAP Center for Genome Regulation (CGR) set for itself a list of strategic and scientific objectives that would significantly change the landscape of Chilean genomic science and biological research. At the midpoint of the projected 10­year period in which these goals were to be accomplished, we can say that we are in the presence of a completely new scenario.
    [Show full text]
  • An Updated List of Taxonomy, Distribution and Conservation Status (Teleostei: Cyprinodontoidea)
    Iran. J. Ichthyol. (March 2018), 5(1): 1–29 Received: January 5, 2018 © 2018 Iranian Society of Ichthyology Accepted: March 1, 2018 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v5i1.267 http://www.ijichthyol.org Review Article Cyprinodontid fishes of the world: an updated list of taxonomy, distribution and conservation status (Teleostei: Cyprinodontoidea) Hamid Reza ESMAEILI1*, Tayebeh ASRAR1, Ali GHOLAMIFARD2 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran. 2Department of Biology, Faculty of Sciences, Lorestan University, 6815144316 Khorramabad, Iran. Email: [email protected] Abstract: This checklist aims to list all the reported cyprinodontid fishes (superfamily Cyprinodontoidea/pupfishes) of the world. It lists 141 species in 8 genera and 4 families. The most diverse family is Cyprinodontidae (54 species, 38%), followed by Orestiidae (45 species, 32%), Aphaniidae (39 species, 28%), and Cubanichthyidae (3 species, 2%). Among 141 listed species, 73 (51.8%) species are Not Evaluated (NE), 15 (10.6%) Least Concern (LC), 9 (6.4%) Vulnerable (VU), 3 (2.1%) Data Deficient (DD), 11 (7.8%) Critically Endangered (CR), 4 (2.8%) Near Threatened (NT), 18 (12.8%) Endangered (EN), 3 (2.1%) Extinct in the Wild (EW) and 5 (3.5%) Extinct of the Red List of IUCN. They inhabit in the fresh, brackish and marine waters of the United States, Middle America, the West Indies, parts of northern South America, North Africa, the Mediterranean Anatolian region, coastal areas of the Persian Gulf and Makran Sea (Oman Sea), the northern Arabian Sea east to Gujarat in India, and some endorheic basins of Iran, Pakistan and the Arabian Peninsula.
    [Show full text]
  • Small-Scale Fisheries in Latin America: Management Models and Challenges
    Small-scale fisheries in Latin America: Management Models and Challenges Alpina Begossi Fisheries and Food Institute (fifo) & Capesca (lepac-preac) & cmu, (unicamp), Brazil [email protected] Abstract The theme of the mare 2009 Conference, ‘Living with Uncertainty and Adapting to Change’, is well suited to Latin American reality when thinking of the uncertainties of fisheries and the economically poor livelihoods of people in riverine and coastal areas. Currently, there are multiple pressures on those liveli- hoods, many of which come from imposed conservation restrictions by govern- mental environmental agencies or by industrial fishing. Artisanal fishing in Latin America is economically important, since it contributes to about a half of national catches for most countries, and it guarantees the subsistence and protein intake of riverine and coastal livelihoods. In order to manage aquatic resources in Latin America, attention to its particularities is needed, including an understanding of the: 1) local level of communities; 2) their geographic dispersion; 3) pre-existing local rules regarding the use of resources; 4) lack of data on aquatic resources; 5) significant body of available local ecological knowledge; and, 6) current levels of poverty and social needs. Moreover, this study addresses the absence of data on natural resources in most Latin American countries, and as a consequence, the problem of detecting overfishing which has been one obstacle in the man- agement of natural resources. Considering those aspects, different approaches to co-management are highlighted in this study, since they are useful for the under- standing of the different contexts where co-management is developed. Historical accounts by fishermen are much needed in fisheries that lack a baseline: such relevance increases the importance of participatory approaches in management and the necessity to rely on the use of local knowledge.
    [Show full text]
  • The Fish of Lake Titicaca
    Author's personal copy Journal of Archaeological Science 37 (2010) 317–327 Contents lists available at ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas The fish of Lake Titicaca: implications for archaeology and changing ecology through stable isotope analysis Melanie J. Miller a, Jose´ M. Capriles b, Christine A. Hastorf a,* a Department of Anthropology, University of California at Berkeley, 232 Kroeber Hall, Berkeley, CA 94720-3710, USA b Department of Anthropology, Washington University in St. Louis, One Brookings Drive C.B. 1114, St. Louis, MO 63130, USA article info abstract Article history: Research on past human diets in the southern Lake Titicaca Basin has directed us to investigate the Received 23 May 2009 carbon and nitrogen stable isotopes of an important dietary element, fish. By completing a range of Received in revised form analyses on modern and archaeological fish remains, we contribute to two related issues regarding the 18 September 2009 application of stable isotope analysis of archaeological fish remains and in turn their place within human Accepted 22 September 2009 diet. The first issue is the potential carbon and nitrogen isotope values of prehistoric fish (and how these would impact human dietary isotopic data), and the second is the observed changes in the fish isotopes Keywords: through time. Out of this work we provide quantitative isotope relationships between fish tissues with Prehistoric fish use Paleoecology of Lake Titicaca and without lipid extraction, and a qualitative analysis of the isotopic relationships between fish tissues, South America allowing archaeologists to understand these relationships and how these values can be applied in future Carbon research.
    [Show full text]
  • Fish Types Inventoried After 25 April 1944 (Pisces) 231-286 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; Download
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 2011 Band/Volume: 034 Autor(en)/Author(s): Neumann Dirk Artikel/Article: Type Catalogue of the Ichthyological Collection of the Zoologische Staatssammlung München. Part II: Fish types inventoried after 25 April 1944 (Pisces) 231-286 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 34 2 231-286 München, Dezember 2011 ISSN 0341-8391 Type Catalogue of the Ichthyological Collection of the Zoologische Staatssammlung München. Part II: Fish types inventoried after 25 April 1944 (Pisces) Dirk Neumann Neumann, D. 2011. Type Catalogue of the Ichthyological Collection of the Zoo- logische Staatssammlung München. Part II: Fish types inventoried after 25 April 1944 (Pisces). Spixiana 34 (2): 233-288. Part I of the ichthyological type catalogue of the ZSM (Neumann 2006) reviewed the historic “Old Collection”, of which types were apparently lost in the Second World War. Part II refers to type material physically available in ZSM, including historic types saved and re-inventoried. Rebuilding the ichthyological collection after the war, Otto Schindler received with the so-called “Kähsbauer Donations” historic fish specimens from the Naturhistorisches Museum Wien (NMW). Among them are types from the Natterer and Thayer expeditions to Brazil, from the Hase- man expeditions to South America and from Steindachner’s late Brazil expedition in 1903. As far as possible, exchanged specimens were critically reviewed, traced to original lots and compared with NMW acquisition entries for unambiguous identification. Additional historic type material was recovered from the “Zoologi- sche Präparatesammlung der Ludwig-Maximilians-Universität München” (ZPLMU), i.
    [Show full text]
  • Diet Composition and Prey Selection of Telmatobius Macrostomus, the Junín Giant Frog
    Vol. 32: 117–121, 2017 ENDANGERED SPECIES RESEARCH Published February 7 doi: 10.3354/esr00785 Endang Species Res OPENPEN ACCESSCCESS NOTE Diet composition and prey selection of Telmatobius macrostomus, the Junín giant frog Andrew S. Watson1,*, Austin L. Fitzgerald1, Oscar J. Damián Baldeón2 1Peace Corps Community-Based Environmental Management Program, Surco, Lima, Peru 2Servicio Nacional de Áreas Naturales Protegidas por el Estado del Perú, Reserva Nacional de Junín, Junín, Peru ABSTRACT: This study describes the diet composition and prey selection of the Endangered Junín giant frog Telmatobius macrostomus, endemic to the central Andes of Peru. Prey items were recovered by forced regurgitation of stomach contents through gastric lavage. Top prey taxa in all samples (n = 9) consisted of a snail (Mollusca: Gastropoda: Hygrophila: Physidae; 78% frequency of occurrence) and an amphipod (Arthropoda: Malacostraca: Amphipoda: Hyalellidae; 56% fre- quency of occurrence). T. macrostomus appeared to select snails (family Physidae) and mayflies (family Baetidae) from the available prey in the environment. No vertebrate species were found in the stomach contents. Only 9 adults were found during this study (survey effort = 8.9 person-hours per frog), suggesting that adults of this species are rare and/or difficult to find. Although our sam- ple size is limited, and the results need to be interpreted with caution, these findings provide important basic ecological data that can prove useful in the conservation of this species. KEY WORDS: Junín giant
    [Show full text]
  • Mass Mortality of Fishes in Lake Titicaca (Peru-Bolivia) Associated with the Protozoan Parasite I Chthyophthirius Multifiliis
    r: nsaCiions oJ the America n Fisheries Society 11 7:2 13-217. 1988 c'~OPYright by the American Fisheries Society 1988 Mass Mortality of Fishes in Lake Titicaca (Peru-Bolivia) Associated with the Protozoan Parasite I chthyophthirius multifiliis WA YNE A. WURTSBAUGH limnological investigation, we noted large num­ Department of Fisheries and bers of dead fish floating on the surface of Lake Wildlife/Ecology Center Titicaca, Peru-Bolivia. Here we describe this mass Utah State University mortality of native fishes that was apparently Logan, Utah 84322, USA caused by I. multifiliis. Lake Titicaca is located at an elevation of3,812 RENE ALFARO TAPIA m in an enclosed basin of the Peruvian and Bo­ Instituto del Mar del Peru livian Andes. Despite its tropical location, water Laboratorio Regional de Puno temperatures seldom exceed 17°C. The lake cov­ Apartado 292, Puno, Peru ers 8, I 00 km2 and has a 1,140 km shoreline (Rich­ erson et al. 1986). The fishes and other resources Abstract. - In December 1981 , an epizootic of the pro­ of Lake Titicaca are an important part of the econ­ tozoan parasite Ichthyophthirius multifiliis killed an es­ omy for the one million people living in the basin. timated 18 million killifish Orestias spp. in Lake Titi­ There are 30 native and several introduced fish caca, a high-altitude tropical system. Of the dead fish collected, 93% were adult O. agassii, a commercially species in the Titicaca watershed. The natives are important species that is abundant in the littoral zone. dominated by 28 species of small killifish of the Juvenile Orestias spp., pelagic species, and some other genus Orestias, of which 23 are endemic to the littoral zone fis hes were slightly affected.
    [Show full text]
  • Non-Invasive Ancient DNA Protocol for Fluid-Preserved Specimens and Phylogenetic Systematics of the Genus Orestias (Teleostei: Cyprinodontidae)
    Zootaxa 3640 (3): 373–394 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3640.3.3 http://zoobank.org/urn:lsid:zoobank.org:pub:5D86BB42-FB1A-4873-9349-B5B225060F65 Non-invasive ancient DNA protocol for fluid-preserved specimens and phylogenetic systematics of the genus Orestias (Teleostei: Cyprinodontidae) YARELI ESQUER GARRIGOS1,6, BERNARD HUGUENY1, KELLIE KOERNER1,2, CARLA IBAÑEZ1,3, CELINE BONILLO4, PATRICE PRUVOST1, ROMAIN CAUSSE1, CORINNE CRUAUD5 & PHILIPPE GAUBERT1 1UMR BOREA, Département Milieux et Peuplements Aquatiques MNHN - CNRS 7208 - IRD 207 - UPMC, Muséum National d'His- toire Naturelle, 43 rue Cuvier, 75231 Paris, France 2Current address: Charter School of the Dunes, 860 N Lake Street, Gary, IN 46403, USA 3Instituto de Ecología – Unidad de Limnología, Universidad Mayor de San Andrés, Campus Universitario Cota cota C.27 s/n, La Paz, Bolivia 4UMS Outils et méthodes de la systématique intégrative CNRS 2700, Département Systématique & Evolution, Muséum national d’His- toire naturelle, 57 rue Cuvier, 75005 Paris, France 5Genoscope. Centre National de Sequençage, 2 rue Gaston Crémieux, CP5706, 91057 Evry Cedex, France 6Corresponding author. E-mail: [email protected] Abstract Specimens stored in museum collections represent a crucial source of morphological and genetic information, notably for taxonomically problematic groups and extinct taxa. Although fluid-preserved specimens of groups such as teleosts may constitute an almost infinite source of DNA, few ancient DNA protocols have been applied to such material. In this study, we describe a non-invasive Guanidine-based (GuSCN) ancient DNA extraction protocol adapted to fluid-preserved spec- imens that we use to re-assess the systematics of the genus Orestias (Cyprinodontidae: Teleostei).
    [Show full text]
  • Basin of Lake Titicaca Method to Evaluate Fish Patterns of Distribution and Abundance in Erick Loayza1*, Arnaud Bertrand2,3,4, Jean Guillard5, Luis La the Lago Menor
    Loayza E, et al. J Aquac Fisheries 2020, 4: 034 DOI: 10.24966/AAF-5523/100034 HSOA Journal of Aquaculture & Fisheries Research Article and the main highest Great Lake. This is especially notorious in the First Hydroacoustic Assessment Bolivian sector of its shallow Lago Menor sub-basin. Lago Menor is deteriorated by the combination of multiple contaminations (do- of Fish Abundance and mestic, industrial and mining) from untreated wastewater discharged from the urban area of El Alto, indiscriminate overfishing, and climate Distribution in the Shallow Sub- change. These threats particularly affect the native Andean killifish genus Orestias, the ecology and dynamics of which require in-depth studies with non-invasive techniques. Here, we use hydroacoustic basin of Lake Titicaca method to evaluate fish patterns of distribution and abundance in Erick Loayza1*, Arnaud Bertrand2,3,4, Jean Guillard5, Luis La the Lago Menor. Hydroacoustic data were collected during the 2015 Cruz6, Anne Lebourges-Dhaussy7, Gary Vargas3 and Xavier rainy season (November) with vertical beaming at 120 kHz along Lazzaro1,8,9 transects that sum a total length of 140 km. Our results showed that the proxy of fish biomass was linked to Lago Menor bathymetry. Fur- 1 Unidad de Ecología Acuática, Instituto de Ecología (IE), Carrera de Bi- thermore, the vertical fish biomass proxy was steady from 3 to 20 m. ología-Facultad de Ciencias Puras y Naturales, Universidad Mayor de San This pilot study provides the first image of fish, mostlyOrestias spp., Andrés (UMSA), La Paz, Bolivia distribution and opens future studies to deepen knowledge on their 2Institut de Recherche pour le Développement (IRD), MARBEC, Université ecology and ethology, and regular monitoring of their population and de Montpellier, CNRS, Ifremer, Sète, France stock for the fisheries assessment in Lake Titicaca.
    [Show full text]
  • ECOMORFOLOGÍA Y ECOLOGÍA ALIMENTARIA DEL GÉNERO ORESTIAS (Pisces CYPRINODONTIFORMES) EN LA PUNA XEROFÍTICA DE LA PROVINCIA DE SUD LÍPEZ, POTOSÍ BOLIVIA
    UNIVERSIDAD MAYOR DE SAN ANDRÉS FACULTAD DE CIENCIAS PlTRAS y NATURALES CARRERA DE BIOLOGÍA TESIS DE GRADO PARA OPTAR AL TÍTULO DE LICENCIATURA EN BIOLOGÍA ECOMORFOLOGÍA y ECOLOGÍA ALIMENTARIA DEL GÉNERO ORESTIAS (pISCES CYPRINODONTIFORMES) EN LA PUNA XEROFÍTICA DE LA PROVINCIA DE SUD LÍPEZ, POTOSÍ BOLIVIA Postulante: Alexander Armando Flores Arzabe Tutor: M. Se. JulioPinto Mendieta. Asesor Científico: Ph. D. Carla Ibañez Luna. LA PAZ - BOLIVIA 2013 UNIVERSIDAD MAYOR DE SAN ANDRES FACULTAD DE CIENCIAS PURAS Y NATURALES CARRERA DE BIOLOGIA Ecomoñología y ecología alimentaria del género Orestias (pisces Cyprinodontiformes) en la puna xerofítica de la provincia de Sud Lípez, Potosí Bolivia. TUTOR M. Se. Julio Pinto Mendieta ASESOR CIENTÍFICO Ph. D. Carla Ibañez Luna TRJBUNAL EVALUADOn M.Sc. Mabel Maldonado TRIBUNAL EVALUADOR Ph. D. Darío Achá Cordero JEFE DE CARRERA Lic. Esther Valenzuela C. LA PAZ - BOLIVIA 2013 Este trabajo va dedicado con mucho cariño a Silvia, Noél, Holiver y Natalia. Por ser mi principalfuente de motivación e incentivo. "Nuestra recompensa se encuentra en el esfuerzo y no en el resultado. Un esfuerzo total es una victoria completa". Mahatma Gandhi 2 AGRADECIMIENTOS En primer lugar quiero sgr'.lJ-U"'Cf a Csria 1t\1ñ.~.L por ccnstiruirse en un ;i0-'~Q tUn~L,cntil en 1\\\ f\)n"~\"'n rrot~'S\0.t~U, ~l-"y,mJ.'0tt\~ tj.1tgibk ~ il\t;llt~ltol~ll'l~tt~, con ~\ fin J-~ promover mi intelectualidad. Al mismo tiempo quiero agradecer al IRD (Instituto de Investigavción para el Desarrollo) por ser la principal institución en proporcionar incentivo económico para este trabajo. A Fernando Villarte, del Servicio Nacional de Áreas Protegidas (SERNAP), por facilitar la gestión de ingreso a la Reserva Nacional de Fauna Andina Eduardo Avaroa (REA).
    [Show full text]
  • Los Peces Del Lago Titicaca: Características, Problemática De Conservación Y Propuesta De Protección
    LOS PECES DEL LAGO TITICACA: CARACTERÍSTICAS, PROBLEMÁTICA DE CONSERVACIÓN Y PROPUESTA DE PROTECCIÓN Adolfo de Sostoa. Universidad de Barcelona Mario Monroy. Universidad de Barcelona RIQUEZA DE PECES DEL ALTIPLANO El altiplano andino posee una reducida diversidad íctica debido a razones históricas y ecológicas con sólo tres géneros de especies de peces nativas, Orestias, Astroblepus y Trichomycterus, y un total de unas 58 especies LOS PECES DEL ALTIPLANO ANDINO •El género Orestias (carachis) es autóctono de los lagos de gran altitud y de los ríos de los Andes del Perú, Bolivia y Chile. Pero más de la mitad de las 45 especies de Orestias son originarias de la cuenca del LagoTiticaca y 23 de ellas sólo se conocen en el Lago. •Se han descrito dos especies de Trichomycterus (suchis y mauris) en el Lago Titicaca. LA FAUNA DE PECES DEL LAGO TITICACA La ictiofauna nativa del Lago Titicaca está representada principalmente por dos géneros: Orestias y Trichomycterus, siendo el primero el más diverso. Algunas especies del género Orestias fueron descritas en el siglo XIX y reconocidas por Valenciennes (1846). a b c d e Especies del género Trichomycterus citadas históricamente en el Lago Dos especies de Titicaca. dicho género han sido citadas en el Lago Titicaca desde los primeros estudios faunísticos : T. dispar y T. rivulatus (Tschudi 1845, Cuvier y Valenciennes 1846). Aunque existe una gran controversia sobre su validez que este estudio ayuda a clarificar 2: T. rivulatus, 5: T. dispar. Modificado de Eigenmann (1918) Pl. XLV ESTUDIO GENÉTICO DE LAS ESPECIES ÍCTICAS NATIVAS DEL LAGO TITICACA. CARACTERIZACIÓN Y ESTRUCTURA POBLACIONAL Adolfo de Sostoa Ignacio Doadrio C.
    [Show full text]