Mass Mortality of Fishes in Lake Titicaca (Peru-Bolivia) Associated with the Protozoan Parasite I Chthyophthirius Multifiliis

Total Page:16

File Type:pdf, Size:1020Kb

Mass Mortality of Fishes in Lake Titicaca (Peru-Bolivia) Associated with the Protozoan Parasite I Chthyophthirius Multifiliis r: nsaCiions oJ the America n Fisheries Society 11 7:2 13-217. 1988 c'~OPYright by the American Fisheries Society 1988 Mass Mortality of Fishes in Lake Titicaca (Peru-Bolivia) Associated with the Protozoan Parasite I chthyophthirius multifiliis WA YNE A. WURTSBAUGH limnological investigation, we noted large num­ Department of Fisheries and bers of dead fish floating on the surface of Lake Wildlife/Ecology Center Titicaca, Peru-Bolivia. Here we describe this mass Utah State University mortality of native fishes that was apparently Logan, Utah 84322, USA caused by I. multifiliis. Lake Titicaca is located at an elevation of3,812 RENE ALFARO TAPIA m in an enclosed basin of the Peruvian and Bo­ Instituto del Mar del Peru livian Andes. Despite its tropical location, water Laboratorio Regional de Puno temperatures seldom exceed 17°C. The lake cov­ Apartado 292, Puno, Peru ers 8, I 00 km2 and has a 1,140 km shoreline (Rich­ erson et al. 1986). The fishes and other resources Abstract. - In December 1981 , an epizootic of the pro­ of Lake Titicaca are an important part of the econ­ tozoan parasite Ichthyophthirius multifiliis killed an es­ omy for the one million people living in the basin. timated 18 million killifish Orestias spp. in Lake Titi­ There are 30 native and several introduced fish caca, a high-altitude tropical system. Of the dead fish collected, 93% were adult O. agassii, a commercially species in the Titicaca watershed. The natives are important species that is abundant in the littoral zone. dominated by 28 species of small killifish of the Juvenile Orestias spp., pelagic species, and some other genus Orestias, of which 23 are endemic to the littoral zone fis hes were slightly affected. lchthyophthir­ drainage (Parenti 1984). Rainbow trout Salmo ius multifiliis was probably introduced with exotic fishes gairdneri were introduced into Lake Titicaca in brought to Lake Titicaca in the 1940s and 1950s. 1941 and are now common (Everett 1973). Brown trout S. trutta were stocked in 1939, but presently Resumen. - En deciem bre de 1981 , una epidemia cau­ populate only a tributary stream. Lake trout Sal­ sada por el parasito lchthyophthirius multifiliis mato un estimado de 18 millones de "killifish" del genero velinus namaycush were also introduced between Orestias en el Lago Titicaca (Peru-Bolivia), un sistema 1939 and 1941 , but now are rare or absent (Laba tropical de altura. Adultos de O. agassii, especie de im­ 1979). A final exotic species, the pejerrey Basil­ POrtancia comercial, y abundante en la zona litoral, re­ ichthys bonariensis, a large atherinid from Argen­ presentaron el 93% de los peces muertos colectados. Ju­ tina, was stocked in the basin and became abun­ veniles de Orestias spp., especies pelagicas, y otros peces dant in the lake by 1955 (Alfaro et al. 1982). de la zona litoral no fueron afectados notoriamente. Evi­ dencia limitada sugiere que I. multifiliis fue introducido Cousteau and DioU: (1973) reported seeing large en la cuenca junto con peces exoticos en los anos 1940- numbers of dead Orestias spp. during an expedi­ 1950. tion to Lake Titicaca in 1968, and they noted that fish suffered from "parasites and from furuncu­ Many parasites are inadvertently transported to losis, which was perhaps transmitted by the trout new environments by the introduction of exotic with which the lake was stocked." They did not fi~~es. One organism spread widely by fish is the mention what parasites were observed. Villwock Ciliated protozoan Ichthyophthirius multifiJiis, (1972) also suggested that the introduction of an COmmonly referred to as Ich (Hoffinan 1970). This unspecified "sporozoen" parasite to Titicaca had ~Site penetrates the skin and gill epithelium of killed endemic fishes, but he provided no sup­ Sh ti and causes mortalities when rates of infesta­ porting data. s:: are high (Amlacher 1970). Hoffman and ubert (I984) consider it to be the most dan- Methods egerous . fr es h water parasite. of cultured fishes, but To estimate the extent of the mortality, we sam­ r:;ZOotics of I. multifiliis in wild fishes are only pled dead and dying fish in Puno Bay (Figure 1) 19;~Y reported (Elser 1955; Allison and Kelly on 28 December 1981. Seven transect sites were ). In December 1981, during the course ofa chosen haphazardly (without regard to fish den- 214 NOTES 69°W 16° 5 16°S oi _ 10 20 _ 30 km WW ~W FIGURE I.-Map of Lake Titicaca showing the areas where fish parasitized by Ichthyophthirius multifiliis" collected in Puno Bay (A, B) or were observed near the town of Desaguadero (C). sity) in two sections of the bay. On each transect Most of the fish observed were blown a~ of 100-200 m, we counted and sampled dead and the emergent vegetation. Consequently, to estfJ moribund fish within 5 m of each side of the boat. mate the lake-wide mortality, we calculated the Six of the transect paths were perpendicular to the number of dead fish counted per meter of shoro­ edge of the reed community (Scirpus tat ora) that line sampled, and extrapolated this to the borders much of the lake. The seventh transect line of the entire lake basin. Because we sarnPl- 1 was parallel to the reeds so that the fish that had only a small area of the lake, our estimate may washed up against the vegetation could be sam­ quite biased. Nevertheless, because the CO,'l£"'''­ pled. The fish collected were identified by refer­ was observed in two distant portions of the enceto Tchernavin (1944)and Parenti (1984). The (see below), we made the lake-wide estimate parasites on the fish were excised, and were iden­ demonstrate the potential magnitude of the tified by reference to Richenbach-Klinke (1973). kill. Fish standard lengths were measured and con­ verted to wet weights with length-weight regres­ Results and Discussion sions developed by H. Trevino (lnstituto del Mar, The fish mortality was first noticed in Puna unpublished data). on 22 December 1981 , and it continued at NOTES 215 TABLE I.-Total numbers of dead fishes collected on seven transects in Puno Bay (Lake Titicaca) on 28 December 1981 , and the estimated lake-wid.e mortality during the epizootic of lchthyophthirius multifiliis. The juveniles of all species of Oresllas are pooled Into one group. Fish collected from Puno Bay Estimated lake-wide mortality Mean number/ m of Mean Numbers Mass Species Total % of total shoreline (SE) weight (g) (millions) (tonnes) Oreslias agassii 3,574 93.0 14.44 (4.00) 11.7 16.5 193 O. /lllIlIeri 24 0.6 0.34 (0.12) 12.7 0.4 4 O./lIlells 113 2.9 0.30 (0.32) 12.0 0.3 4 O. a/blls 23 0.6 0.20 (0. 15) 8.9 0.2 2 O. o/il'acells 80 2. 1 0.16 (0.01) 3.2 0.2 I Orpslias spp. juveniles 10 0.3 0.01 (0. 11) 2.0 0.01 < 0.1 O. ispi (adult) I 0.0 0.01 (0.01) 3.2 0.01 <0. 1 Basilichlhys bonariensis 15 0.5 0.09 (0.07) 11.6 0.1 I until our survey of 28 December. We also ob­ a small pelagic species that is probably the most served dead fish on 24 December 1981 near the abundant fish in the lake (Alfaro et al. 1982). Be­ town of Desaguadero, 130 Ian to the south ofPuno cause the life cycle of I. multifiliis includes a ben­ Bay. Consequently, the epizootic lasted at least 6 thic cyst from which the mobile infective stages d and extended over much of the lake. All of the develop, it is not surprising that pelagic fishes such fish were heavily infected with I. mutifiliis: one as O. ispi were rare in our collections. 14-cm O. agassii was covered with more than We have observed low mortalities of fishes in 1,800 protozoans. A secondary infection of an the lake during the wann season (November-Jan­ unidentified fungus was also present on some uary) in other years, but the cause of the major fish , but there were no other obvious pathological epizootic in 1981 is unclear. Often, unusually high symptoms. or low temperatures cause stress that can precip­ The epizootic killed large numbers of fish. On itate diseases in fish (Snieszko 1974). Offshore sur­ the 260 m of shoreline surveyed, we observed face temperatures in the middle of Puno Bay at 3,840 dead fish , primarily Orestias spp. (Table 1). the time of the outbreak were 15-17°C, and the The lake-wide estimate of fish mortality was 18 diurnal temperatures in the shallow littoral vege­ million individuals and 206 tonnes. However, tation probably exceeded this. These temperatures these figures could have underestimated the total could have contributed to the epizootic, because impact, because moribund fish may have sunk to I. multifiliis reproduces rapidly between 12-27°C the bottom of the lake, making them unavailable (Bauer et al. 1973). Nevertheless, it is unlikely that to our sampling technique. temperature alone triggered the disease, because We observed seven species of fish infected with temperatures in the bay during the outbreak were the parasite, but 93% of the fish collected were comparable to those observed in the summers of adult O. agassii (Table 1). This species is among 1980-1981 and 1982-1983 (Vincent et al. 1986), the most abundant of the littoral zone fishes when only limited mortalities were noted. (Loubens et al. 1984; Trevino et al. 1984), and it Another potential stressor that could have pre­ constitutes 70% of the fish yield in Lake Titicaca cipitated the disease was the spawning activity of (Alfaro et a1.
Recommended publications
  • Salt Lakes and Pans
    SCIENCE FOCUS: Salt Lakes and Pans Ancient Seas, Modern Images SeaWiFS image of the western United States. The features of interest that that will be discussed in this Science Focus! article are labeled on the large image on the next page. (Other features and landmarks are also labeled.) It should be no surprise to be informed that the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was designed to observe the oceans. Other articles in the Science Focus! series have discussed various oceanographic applications of SeaWiFS data. However, this article discusses geological features that indicate the presence of seas that existed in Earth's paleohistory which can be discerned in SeaWiFS imagery. SeaWiFS image of the western United States. Great Salt Lake and Lake Bonneville The Great Salt Lake is the remnant of ancient Lake Bonneville, which gave the Bonneville Salt Flats their name. Geologists estimate that Lake Bonneville existed between 23,000 and 12,000 years ago, during the last glacial period. Lake Bonneville's existence ended abruptly when the waters of the lake began to drain rapidly through Red Rock Pass in southern Idaho into the Snake River system (see "Lake Bonneville's Flood" link below). As the Earth's climate warmed and became drier, the remaining water in Lake Bonneville evaporated, leaving the highly saline waters of the Great Salt Lake. The reason for the high concentration of dissolved minerals in the Great Salt Lake is due to the fact that it is a "terminal basin" lake; water than enters the lake from streams and rivers can only leave by evaporation.
    [Show full text]
  • The Endemic Gastropod Fauna of Lake Titicaca: Correlation Between
    The endemic gastropod fauna of Lake Titicaca: correlation between molecular evolution and hydrographic history Oliver Kroll1, Robert Hershler2, Christian Albrecht1, Edmundo M. Terrazas3, Roberto Apaza4, Carmen Fuentealba5, Christian Wolff1 & Thomas Wilke1 1Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Germany 2National Museum of Natural History, Smithsonian Institution, Washington, D.C. 3Facultad de Ciencias Biologicas, Universidad Nacional del Altiplano, Puno, Peru 4Instituto de Ecologıa,´ Universidad Mayor de San Andres, La Paz, Bolivia 5Departamento de Zoologia, Universidad de Concepcion, Chile Keywords Abstract Altiplano, Heleobia, molecular clock, phylogeography, species flock. Lake Titicaca, situated in the Altiplano high plateau, is the only ancient lake in South America. This 2- to 3-My-old (where My is million years) water body has had Correspondence a complex history that included at least five major hydrological phases during the Thomas Wilke, Department of Animal Ecology Pleistocene. It is generally assumed that these physical events helped shape the evo- and Systematics, Justus Liebig University lutionary history of the lake’s biota. Herein, we study an endemic species assemblage Giessen, Heinrich Buff Ring 26–32 (IFZ), 35392 in Lake Titicaca, composed of members of the microgastropod genus Heleobia,to Giessen, Germany. Tel: +49-641-99-35720; determine whether the lake has functioned as a reservoir of relic species or the site Fax: +49-641-99-35709; of local diversification, to evaluate congruence of the regional paleohydrology and E-mail: [email protected] the evolutionary history of this assemblage, and to assess whether the geographic distributions of endemic lineages are hierarchical. Our phylogenetic analyses in- Received: 17 February 2012; Revised: 19 April dicate that the Titicaca/Altiplano Heleobia fauna (together with few extralimital 2012; Accepted: 23 April 2012 taxa) forms a species flock.
    [Show full text]
  • A Taxonomic Revision of the Andean Killifish Genus Orestias (Cyprinodontiformes, Cyprinodontidae)
    A TAXONOMIC REVISION OF THE ANDEAN KILLIFISH GENUS ORESTIAS (CYPRINODONTIFORMES, CYPRINODONTIDAE) I.VNNE R. PARENT] BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 178 : ARTICLE 2 NEW YORK : 1984 A TAXONOMIC REVISION OF THE ANDEAN KILLIFISH GENUS ORESTIAS (CYPRINODONTIFORMES, CYPRINODONTIDAE) LYNNE R. PARENTI Research Associate, Department of Ichthyology American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 178, article 2, pages 107-214, figures 1-72, tables 1-12 Issued May 9, 1984 Price: $8.40 a copy Copyright © American Museum of Natural History 1984 ISSN 0003-0090 CONTENTS Abstract 110 Introduction 110 Acknowledgments 113 Abbreviations 114 Note on Materials and Methods 115 Relationships of Killifishes of the Tribe Orestiini 116 Phylogenetic Analysis 122 Squamation and Neuromast Pattern 123 Hyobranchial Apparatus 126 Fins 129 Chromosomes 130 Sexual Dimorphism and Dichromatism 131 Jaw and Jaw Suspensorium 133 Skull 134 Meristic Characters 135 Morphometric Characters 146 Explanation of Synapomorphy Diagrams 150 Key to Orestias Species 160 Systematic Accounts 165 Genus Orestias Valenciennes 165 Orestias cuvieri Valenciennes 167 Orestias pentlandii Valenciennes 168 Orestias ispi Lauzanne 169 Orestias forgeti Lauzanne 170 Orestias mulleri Valenciennes 171 Orestias gracilis, New Species 172 Orestias crawfordi Tchernavin 173 Orestias tutini Tchernavin 174 Orestias incae Garman 174 Orestias luteus Valenciennes 175 Orestias rotundipinnis, New Species 176 Orestias farfani, New Species 178 Orestias
    [Show full text]
  • Phylogenomics of the Hyalella Amphipod Species-Flock of The
    www.nature.com/scientificreports OPEN Phylogenomics of the Hyalella amphipod species‑fock of the Andean Altiplano Francesco Zapelloni1,3, Joan Pons2,3, José A. Jurado‑Rivera1, Damià Jaume2 & Carlos Juan1,2* Species diversifcation in ancient lakes has enabled essential insights into evolutionary theory as they embody an evolutionary microcosm compared to continental terrestrial habitats. We have studied the high‑altitude amphipods of the Andes Altiplano using mitogenomic, nuclear ribosomal and single‑ copy nuclear gene sequences obtained from 36 Hyalella genomic libraries, focusing on species of the Lake Titicaca and other water bodies of the Altiplano northern plateau. Results show that early Miocene South American lineages have recently (late Pliocene or early Pleistocene) diversifed in the Andes with a striking morphological convergence among lineages. This pattern is consistent with the ecological opportunities (access to unoccupied resources, initial relaxed selection on ecologically‑ signifcant traits and low competition) ofered by the lacustrine habitats established after the Andean uplift. Lakes with an uninterrupted history of more than 100,000 years (ancient lakes) may be considered as natural laboratories for evolutionary research as they constitute hotspots of aquatic animal speciation and phenotypic diversity1. Changes in lake size and episodes of desiccation are considered to be critical factors in the speciation and extinction of lake faunas, with the creation of new habitats afer lake expansions as the primary driver of intra-lake diversifcation2–4. For instance, cichlid radiations in the East African Lakes seem to have been trig- gered by lake expansions afer periods of intense desiccation, with the surviving species flling up empty niches afer lake reflling2.
    [Show full text]
  • 2011-2015 Center for Genome Regulation (CGR)
    FONDAP CENTERS OF EXCELLENCE IN RESEARCH PROGRAM FINAL FIVE YEAR REPORT 2011-2015 Center for Genome Regulation (CGR) 1 FONDAP CENTERS OF RESEARCH PROGRAM FINAL REPORT FIRST FIVE-YEAR PERIOD FONDAP CENTER FOR GENOME REGULATION (CGR) Guidelines: ​ The report should be written following the format specified hereafter. Both a printed (report and excel spreadsheets) and an electronic version must be sent to the following address: PROGRAMA CENTROS DE EXCELENCIA FONDAP CONICYT Moneda 1375, Floor 9 Santiago E-mail: [email protected] ​ Phone: (56 – 2) 2435 43 27 For future inquiries, please contact: María Eugenia Camelio FONDAP Program Interim Director E-mail: [email protected] 2 I. PRESENTATION PERIOD COVERED: From: January 2011 To: June 2015 ​ NAME OF THE CENTER CODE FONDAP Center for Genome Regulation 15 09 00 07 DIRECTOR OF THE CENTER E-MAIL SIGNATURE Dr. Miguel L Allende [email protected] DEPUTY DIRECTOR E-MAIL SIGNATURE [email protected] Dr. Martín Montecino SPONSORING INSTITUTION Universidad de Chile SPONSORING INSTITUTION E-MAIL SIGNATURE REPRESENTATIVE Prof. Víctor Cifuentes (Dean) [email protected] ASSOCIATED INSTITUTION(S) (if applicable) ​ Pontificia Universidad Católica de Chile, Universidad Andrés Bello CENTER WEBSITE ADDRESS www.genomacrg.cl DATE: 10/7/15 ​ 3 II. EXECUTIVE SUMMARY Five years ago, the FONDAP Center for Genome Regulation (CGR) set for itself a list of strategic and scientific objectives that would significantly change the landscape of Chilean genomic science and biological research. At the midpoint of the projected 10­year period in which these goals were to be accomplished, we can say that we are in the presence of a completely new scenario.
    [Show full text]
  • Lake Titicaca
    Lake Basin Management Initiative Experience and Lessons Learned Brief Lake Titicaca Mario Francisco Revollo Vargas* Maximo Liberman Cruz Alberto Lescano Rivero 1. Description Drought and floods are the natural hazards that have the greatest environmental, social and eco- nomic impact on the Bolivian-Peruvian high plateau (altiplano) which includes the hydrological basin of Lake Titicaca, the Desaguadero River, Lake Poopo and the Salt Lake of Coipasa, collec- tively designated by the acronym TDPS. Through good management, the system can be regulated in benefit of the people who live in the region. Territorial Scope The project area (Figure 1) includes the hydrological basins of Lake Titicaca, the Desaguadero River, and lakes Poopo and Salar de Coipasa (TDPS system). The TDPS system is located in parts of Peru, Bolivia and Chile, spread between latitude 14° 03' to 20° 00' South and between longitude 66° 21' to 71° 07' West. The total area of the system is 143,900 km2 and includes the sub-region Puno in Peru and the departments of La Paz and Oruro in Bolivia. The basins included in the TDPS system have the following characteristics: Lake Titicaca This paper was presented at the Lake Basin Management Initiative 2 Regional Workshop for Europe, Central Asia and the Americas catchment area: 56,270 km 2 held at Saint Michaelʼs College in Vermont, USA, 18-21 June - average lake area: 8,400 km 2003. The workshop was organized by LakeNet in cooperation with SMC and the International Lake Environment Committee medium altitude: 3,810 m above sea level 3 with funding from the Global Environment Facility, U.S.
    [Show full text]
  • Lake Titicaca
    III. PALEOHYDROLOGY IIL1. A 20,000 years paleohydrological record from Lake Titicaca DENIS WIRRMANN, JEAN-PIERRE YBERT and PHILIPPE MOURGUIART The Bolivian Altiplano is an endorheic basin which extends from 16° to 20° S. Lat. and from 65° to 69°W. Long., with altitudes ranging from 3700 to 4600 metres, covering 200,000 km2 between the Western and Eastern Cordilleras which are 6500 m high (Fig. 1). From north to south, three major lacustrine areas occupy this high plateau: 2 - Lake Titicaca at 3809 metres above sea level, covering 8562 km ; 2 - Lake Poopo at 3686 m.a.s.l. covering 2530 km ; - Coipasa-Uyuni, a group of dry salt lakes, covering 11 ,000 km2 at 3653 m.a.s.l. Over the last 1.8 million years these basins have registered episodes of greatly enlarged lake areas. According to Lavenu et al. (1984) and to Servant and Fontes (1978, 1984), the Pleistocene record of Titicaca lake level fluctu­ ations can be summarised as follows: - during the Early Pleistocene the paleolake Mataro rose with a water level established at 140 metres above the present level. This stage is related to the end of the Calvario glaciation (Servant, 1977) and the corresponding deposits are recognisable mainly at the NW edge of the basin; - the paleolake Cabana occurred during the middle Pleistocene with a water level established at 90 metres above the present Lake Titicaca level: the associated sediments are present on the eastern and western shores of the basin; - then with the retreat of the Sorata glaciation (Servant, 1977) the Ballivian stage occurred with
    [Show full text]
  • An Updated List of Taxonomy, Distribution and Conservation Status (Teleostei: Cyprinodontoidea)
    Iran. J. Ichthyol. (March 2018), 5(1): 1–29 Received: January 5, 2018 © 2018 Iranian Society of Ichthyology Accepted: March 1, 2018 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v5i1.267 http://www.ijichthyol.org Review Article Cyprinodontid fishes of the world: an updated list of taxonomy, distribution and conservation status (Teleostei: Cyprinodontoidea) Hamid Reza ESMAEILI1*, Tayebeh ASRAR1, Ali GHOLAMIFARD2 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran. 2Department of Biology, Faculty of Sciences, Lorestan University, 6815144316 Khorramabad, Iran. Email: [email protected] Abstract: This checklist aims to list all the reported cyprinodontid fishes (superfamily Cyprinodontoidea/pupfishes) of the world. It lists 141 species in 8 genera and 4 families. The most diverse family is Cyprinodontidae (54 species, 38%), followed by Orestiidae (45 species, 32%), Aphaniidae (39 species, 28%), and Cubanichthyidae (3 species, 2%). Among 141 listed species, 73 (51.8%) species are Not Evaluated (NE), 15 (10.6%) Least Concern (LC), 9 (6.4%) Vulnerable (VU), 3 (2.1%) Data Deficient (DD), 11 (7.8%) Critically Endangered (CR), 4 (2.8%) Near Threatened (NT), 18 (12.8%) Endangered (EN), 3 (2.1%) Extinct in the Wild (EW) and 5 (3.5%) Extinct of the Red List of IUCN. They inhabit in the fresh, brackish and marine waters of the United States, Middle America, the West Indies, parts of northern South America, North Africa, the Mediterranean Anatolian region, coastal areas of the Persian Gulf and Makran Sea (Oman Sea), the northern Arabian Sea east to Gujarat in India, and some endorheic basins of Iran, Pakistan and the Arabian Peninsula.
    [Show full text]
  • Small-Scale Fisheries in Latin America: Management Models and Challenges
    Small-scale fisheries in Latin America: Management Models and Challenges Alpina Begossi Fisheries and Food Institute (fifo) & Capesca (lepac-preac) & cmu, (unicamp), Brazil [email protected] Abstract The theme of the mare 2009 Conference, ‘Living with Uncertainty and Adapting to Change’, is well suited to Latin American reality when thinking of the uncertainties of fisheries and the economically poor livelihoods of people in riverine and coastal areas. Currently, there are multiple pressures on those liveli- hoods, many of which come from imposed conservation restrictions by govern- mental environmental agencies or by industrial fishing. Artisanal fishing in Latin America is economically important, since it contributes to about a half of national catches for most countries, and it guarantees the subsistence and protein intake of riverine and coastal livelihoods. In order to manage aquatic resources in Latin America, attention to its particularities is needed, including an understanding of the: 1) local level of communities; 2) their geographic dispersion; 3) pre-existing local rules regarding the use of resources; 4) lack of data on aquatic resources; 5) significant body of available local ecological knowledge; and, 6) current levels of poverty and social needs. Moreover, this study addresses the absence of data on natural resources in most Latin American countries, and as a consequence, the problem of detecting overfishing which has been one obstacle in the man- agement of natural resources. Considering those aspects, different approaches to co-management are highlighted in this study, since they are useful for the under- standing of the different contexts where co-management is developed. Historical accounts by fishermen are much needed in fisheries that lack a baseline: such relevance increases the importance of participatory approaches in management and the necessity to rely on the use of local knowledge.
    [Show full text]
  • The Fish of Lake Titicaca
    Author's personal copy Journal of Archaeological Science 37 (2010) 317–327 Contents lists available at ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas The fish of Lake Titicaca: implications for archaeology and changing ecology through stable isotope analysis Melanie J. Miller a, Jose´ M. Capriles b, Christine A. Hastorf a,* a Department of Anthropology, University of California at Berkeley, 232 Kroeber Hall, Berkeley, CA 94720-3710, USA b Department of Anthropology, Washington University in St. Louis, One Brookings Drive C.B. 1114, St. Louis, MO 63130, USA article info abstract Article history: Research on past human diets in the southern Lake Titicaca Basin has directed us to investigate the Received 23 May 2009 carbon and nitrogen stable isotopes of an important dietary element, fish. By completing a range of Received in revised form analyses on modern and archaeological fish remains, we contribute to two related issues regarding the 18 September 2009 application of stable isotope analysis of archaeological fish remains and in turn their place within human Accepted 22 September 2009 diet. The first issue is the potential carbon and nitrogen isotope values of prehistoric fish (and how these would impact human dietary isotopic data), and the second is the observed changes in the fish isotopes Keywords: through time. Out of this work we provide quantitative isotope relationships between fish tissues with Prehistoric fish use Paleoecology of Lake Titicaca and without lipid extraction, and a qualitative analysis of the isotopic relationships between fish tissues, South America allowing archaeologists to understand these relationships and how these values can be applied in future Carbon research.
    [Show full text]
  • Lake Titicaca (Peru-Bolivia)
    THE LIMNOLOGY OF LAKE TITICACA (PERU-BOLIVIA), A Large, High A1 titude Tropical Lake Peter J. Richerson Division of hv.1:ronmentaL Studies ard Institute of EcoZogy Universi* of CaLi,com?ia, Wis Carl Widmer ELbert Cove12 College Uniuer~ityof the PackjYc Stock ton, CaZ-ifimCc Timothy Ki ttel Dfviston of ,%~irortwntatStudies and Ee"coZogy Graduate Group University of California, Davis Institute of Ecology Pub? ication #14, June, 1979 - - esta sincera - Dedicamos monograffa a1 pueblo del Altiplano, con una gratitud profunda y par su ayuda y pacimcia para con nosotros, y a nuestros colegas del Instituto del Mar del * Perb y de la Unjversidad Nacional Tgcnica del A1 tiplano, sin cuya colaboraci6n continua no hubiera sido posible este trabajo. Estamos concientes de que estas personas viven, estudian y enfrentan su realidad para transformarla y enr-iquecerla acorde con el proceso peruano nacional actual. Querems ofre- cer esta monograffa corn nuestra propia contribuci611, aun limitada, de participacidn en ese proceso. The authors are grateful for the financial support provided by the National Geographic Society, the Faresta Institute for Ocean and Mountain Studies, the University of Cal ifornia (through a Rockefel 1er Foundation institutional development grant), the Jastro-Shiel ds Scholarship Comi ttee and the University sf the RacifSc. Widmer was supported by an Organ- ization of American States fellowship and Richerson was partly supported by National Sci- ence EMS during this study. -\ Foundation grants GA-34099 and 75-14273 We are a1 so indebted - to the Instituto del Mar del PerG, the Universidad Nacional Tecnica del A1 tiplano, the Ser- - vf cio Nacional de Meteorelogfa e Midrol ogfa, and to individual s including Victoria Val cgr- cel , Roger Srni th, Fl orentino Tito, Gerald Fisher , John Me1 ack , dswal do Zea , Linda Thorpe , Tim Long, Mayne Wurtsbaugh, Kenso Kawahira, Leigh Speichinger, Fathers Patrick, Eugene and John, and Sister Margaret.
    [Show full text]
  • Evaluation Multicritere Des Techniques De Gestion a La
    11e Colloque GEOFCAN 20 et 21 novembre 2018, Antony CONTRIBUTION OF TIME-DOMAIN ELECTROMAGNETICS (TDEM) TO THE KNOWLEDGE OF LAKE TITICACA AQUIFER SYSTEMS, BOLIVIA GABRIELA P. FLORES AVILÉS 1,a, MARC DESCLOITRES 1, CELINE DUWIG 1, ANATOLY LEGCHENKO 1, ÁLVARO SORUCO 2, MAYRA PÉREZ 2, WALDO MEDINACELI 3 1Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, IGE, 38000 Grenoble, France, [email protected] 2 University Mayor of San Andres (UMSA), La Paz, Bolivia 3 Ministerio de Medio Ambiente y Agua (Ministry of Water and Environment of Bolivia), La Paz, Bolivia ABSTRACT The increasing demand for water in Bolivia implies a better knowledge of the resources. The aim of this study is to provide the first insight of hydrogeological functioning of a major aquifer between La Paz-El Alto cities and Lake Titicaca. A total of 171 TDEM geophysical soundings, hydrogeological and hydro-geochemical measurements were acquired, and correlated with geological, borehole lithology and topographic information. The results allowed identifying two multilayered aquifer systems (Piedmont and Lacustrine) and the geometry of the different geological layers. The TDEM method proved to be an appropriate method since the results showed a consistent picture of the hydrogeological functioning of the Katari and Lago Menor Aquifer systems. RÉSUMÉ La demande accrue en eau de surface et souterraine en Bolivie implique une meilleure connaissance des ressources. Le but de cette étude est de donner les premières indications sur le fonctionnement des aquifères entre les villes de La-El Alto et le lac Titicaca. 171 sondages géophysiques TDEM et des mesures hydrogeologiques et hydrochimiques ont été mis en œuvre et corrélés avec des informations géologiques (logs de forage) et topographiques.
    [Show full text]