bioRxiv preprint doi: https://doi.org/10.1101/2021.08.10.455864; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Multiomics reveals the genomic, proteomic and metabolic influences of the histidyl dipeptides on heart Keqing Yan,1 Zhanlong Mei,1 Jingjing Zhao,2,3 Md Aminul Islam Prodhan,4 Detlef Obal,5 Kartik Katragadda, 2,3 Ben Doeling,2,3 David Hoetker,2,3 Dheeraj Kumar Posa,2,3 Liqing He,4 Xinmin Yin,4 Jasmit Shah,6 Jianmin Pan,7 Shesh Rai,7 Pawel Konrad Lorkiewicz,2,3 Xiang Zhang,4 Siqi Li,1 Aruni Bhatnagar, 2,3 and Shahid P. Baba 2,3 1Beijing Institute of Genomics, Chinese Academy of Sciences, Beishan Industrial Zone, Shenzhen, China 2Diabetes and Obesity Center, 3Christina Lee Brown Envirome Institute, 4Department of Chemistry, University of Louisville, Louisville, Kentucky; 5Department of Anesthesiology and Perioperative and Pain Medicine, Stanford University, Palo Alto, California, 6 Department of Medicine, The Aga Khan University, Medical college, Nairobi, Kenya. 7 Biostatistics Shared Facility, University of Louisville Health, Brown Cancer Center, Louisville, Kentucky. Address Correspondence to: Shahid P. Baba, Ph. D Diabetes and Obesity Center CLB Envirome Institute Department of Medicine 580 South Preston Street Delia Baxter Building, Room 421A University of Louisville Louisville, KY 40202 Phone: 502-852-4274 Fax: 502-852-3663 Email:
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.08.10.455864; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.