Addressing the Diversity of Xylodon Raduloides Complex Through Integrative Taxonomy Javier Fernández-López1, M

Total Page:16

File Type:pdf, Size:1020Kb

Addressing the Diversity of Xylodon Raduloides Complex Through Integrative Taxonomy Javier Fernández-López1, M Fernández-López et al. IMA Fungus (2019) 10:2 https://doi.org/10.1186/s43008-019-0010-x IMA Fungus RESEARCH Open Access Addressing the diversity of Xylodon raduloides complex through integrative taxonomy Javier Fernández-López1, M. Teresa Telleria1, Margarita Dueñas1, Andrew W. Wilson2, Mahajabeen Padamsee3, Peter K. Buchanan3, Gregory M. Mueller4 and María P. Martín1* Abstract In this study, the taxonomic diversity of the Xylodon raduloides species complex (Hymenochaetales, Basidiomycota)is examined. Specimens were studied using an integrative taxonomic approach that includes molecular phylogenetic and morphological analyses, and environmental niche comparisons. Four different species were found inside the Xylodon raduloides complex, with a biogeographic distribution pattern bound by geographic regions: Europe, North America, Patagonia, and Australia–New Zealand. Molecular, morphological, and environmental evidences delimit two lineages within this complex: a Northern Hemisphere clade with longer basidiospores and wider ranges in temperature and precipitation tolerance, and a Southern Hemisphere clade with smaller and more spherical basidiospores, and an isothermal and more humid climate preference. The integrative taxonomic approach used in this study demonstrates congruence between data sets and shows how morphological and environmental characteristics contribute to the differentiation of fungal species complexes. By combining various sources of taxonomic information, three new species are described: Xylodon laurentianus, X. novozelandicus, and X. patagonicus. Keywords: Basidiomycota, Biogeography, Corticioid fungi, Environmental niche, Hymenochaetales, Morphological traits, Multilocus phylogeny, New taxa INTRODUCTION environments around the world (Hallenberg 1991). For Corticioid fungi represent a polyphyletic group delimited these reasons, corticioid fungi offer unique opportunities by effused and resupinate basidiomes that usually grow to study speciation and the geographic patterns that re- on dead wood. One descriptor for these fungi is “paint sult from this process. on wood” which accurately characterizes their thin crust The idea that fungi are free from dispersal barriers had of reproductive structures, which are among the most a long tradition, so global distributions were accepted as elementary in Agaricomycetes. Although traditional clas- normal (Lumbsch et al. 2008). Cosmopolitanism or a sification grouped these fungi in a single family, molecu- high similarity index in corticioid fungi distribution pat- lar phylogenetic analyses have identified up to 50 terns have been reported in many studies (Gilbertson different families in at least 11 orders (Larsson 2007). 1980, Ghobad-Nejhad 2011). However, molecular studies Studying the biodiversity of corticioid fungi presents have demonstrated distinct biogeographic patterns re- an opportunity to explore their phylogeny. First, despite lated to hidden biodiversity (Taylor et al. 2006, Knight & their apparent macromorphological homogeneity, ac- Goddard 2015). In this context, the “everything is every- cording to Mueller et al. (2007), there are more than where” hypothesis (Baas Becking 1934) for all fungal 1800 described species, making them a highly diverse groups has given way to the argument that geographic group. Second, they have colonized a broad range of range inferred for a fungal species strongly depends on the nature of the characters used for its delimitation * Correspondence: [email protected] (Taylor et al. 2000). 1Departamento de Micología, Real Jardín Botánico-CSIC, Plaza de Murillo 2, Species concepts in fungi remain an important discus- 28014 Madrid, Spain sion topic (Taylor et al. 2000, Öpik et al. 2016). The Full list of author information is available at the end of the article © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Fernández-López et al. IMA Fungus (2019) 10:2 Page 2 of 20 same species concept is not always applicable across all important role in ecosystem services due to their ability fungal taxa due to the multiple evolutionary processes to alter wood structure and create habitat for other that can lead to fungal speciation (e.g. horizontal gene groups of organisms. As noted by Hibbett et al. (2014), transfer, hybridization, etc.; Giraud et al. 2008). During it is one of the largest genera of wood-rotting fungi, with the last two decades, molecular tools have transformed 162 current legitimate names (Robert et al. 2005; Robert the study of fungal biodiversity. Among all the regions et al. 2013). During the last ten years, six new Xylodon tested in Schoch et al. (2012), the nuclear ribosomal in- species have been described (Ariyawansa et al. 2015, ternal transcribed spacer DNA region (ITS, the fungal Chen et al. 2018, Crous et al. 2018, Viner et al. 2018), barcode) in most cases has the highest resolving power also 59 combinations made (Hjortstam & Ryvarden for discrimination between closely related species. Even 2009, Riebesehl & Langer 2017, Chen et al. 2018) and so, taxonomic/systematic studies benefit by including two new names were proposed (Hjortstam & Ryvarden other genetic regions (Balasundaram et al. 2015). Fungal 2009, Riebesehl & Langer 2017). species concepts have evolved through time (Cai et al. Xylodon raduloides (Riebesehl & Langer 2017), previ- 2011) and mycologists have benefited from the develop- ously known as Schizopora radula (Hallenberg 1983), ment of genealogical concordance phylogenetic species has been widely reported. It is widespread in Europe, recognition (GCPSR) for describing fungal diversity and the Canary Islands (Hallenberg 1983, 1991, Langer (Taylor et al. 2000). Molecular data have provided a de- 1994, Ryvarden & Gilbertson 1994, Melo et al. 2007, tailed view of previously hidden fungal diversity, enab- Ryvarden & Melo 2014), and is also known from North ling better use of traditional species recognition America (Hallenberg 1983, Langer 1994, Zhou et al. methods in morphology or mating compatibility to un- 2016), South America (Langer 1994, Greslebin & Raj- mask this cryptic fungal diversity (Giraud et al. 2008). chenberg 2003, Gorjón & Hallenberg 2013, Martínez & The implementation of GCPSR has revealed the pres- Nakasone 2014), temperate Asia (Langer 1994, Hallen- ence of hidden diversity in several complexes of corti- berg 1983), and Australasia (McKenzie et al. 2000, Pau- cioid fungi where morphological species recognition lus et al. 2000). approaches failed (e.g. Serpula himantiodes, Carlsen et In a broad phylogenetic study of the genus Schizopora al. 2011). However, with the increase of DNA regions (now included in Xylodon), some degree of genetic isola- used to estimate phylogenies, many researchers have ar- tion between populations of X. raduloides was detected, gued the need to consider processes that could lead to also supported by intercompatibility studies (Paulus et discordance among gene phylogenies, that is, differences al. 2000). The worldwide geographic distribution of X. between gene-trees and species-trees (Edwards 2009; raduloides, along with available molecular data, sug- Heled & Drummond 2010). The use of different models, gested it could be a species complex with the true diver- such as the coalescent theory (Kingman 1982) that al- sity reflecting biogeography. In this study, the diversity lows gene tree heterogeneity, have been successfully ap- and biogeographic relationships in X. raduloides are ad- plied for fungal species delimitation (e.g. Hyphoderma dressed using an integrative taxonomic approach (Dayrat paramacaronesicum, Martín et al. 2018). 2005). Our aim is to achieve a comprehensive under- The search for evidence in addition to molecular phylo- standing of the taxonomic diversity of the complex genetic data has emerged as a goal for species delimitation through the use of multiple sources of evidence (multi- (Wiens 2007). Interest has increased in ecological traits as locus species coalescent phylogeny, morphological char- characters for species identification in many organisms acters, and environmental equivalence analysis). (Rissler & Apodaca 2007). The combination of phyloge- netics and niche modeling methodologies has proven use- ful in studying the mechanisms that shape biogeographic MATERIALS AND METHODS patterns (Raxworthy et al. 2007,Marskeetal.2012). With Taxon sampling and morphological studies the development of GIS-based and cartographic ap- A total of 39 vouchers of Xylodon raduloides (Table 1) proaches, the comparison of environmental niches has were obtained from four fungaria (CFMR, MA-Fungi, been proposed to study such evolutionary processes as NY, and PDD), cultures of the Forest Products Labora- sympatric speciation and niche conservatism (Warren et tory (USDA), and ICMP culture collection (World Data al. 2008, Broennimann et al. 2012, Ahmadzadeh et al. Center for Microorganism 2011). Specimens from Hui- 2013). Due to the paucity of detectable macromorphologi- nay (Los Lagos Region, Chile) were
Recommended publications
  • 2020031311055984 5984.Pdf
    Mycoscience 60 (2019) 184e188 Contents lists available at ScienceDirect Mycoscience journal homepage: www.elsevier.com/locate/myc Short communication Xylodon kunmingensis sp. nov. (Hymenochaetales, Basidiomycota) from southern China * Zhong-Wen Shi a, Xue-Wei Wang b, c, Li-Wei Zhou b, Chang-Lin Zhao a, a College of Biodiversity Conservation and Utilisation, Southwest Forestry University, Kunming, 650224, PR China b Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China c University of Chinese Academy of Sciences, Beijing, 100049, PR China article info abstract Article history: A new wood-inhabiting fungal species, Xylodon kunmingensis, is proposed based on morphological and Received 28 November 2018 molecular evidences. The species is characterized by an annual growth habit, resupinate basidiocarps Received in revised form with cream to buff hymenial, odontioid surface, a monomitic hyphal system with generative hyphae 28 January 2019 bearing clamp connections and oblong-ellipsoid, hyaline, thin-walled, smooth, inamyloid and index- Accepted 5 February 2019 trinoid, acyanophilous basidiospores, 5e5.8 Â 2.8e3.5 mm. The phylogenetic analyses based on molecular Available online 6 February 2019 data of ITS sequences showed that X. kunmingensis belongs to the genus Xylodon and formed a single group with a high support (100% BS, 100% BP, 1.00 BPP) and grouped with the related species Keywords: Hyphodontia X. astrocystidiatus, X. crystalliger and X. paradoxus. Both morphological and molecular evidences fi Schizoporaceae con rmed the placement of the new species in Xylodon. Phylogenetic analyses © 2019 The Mycological Society of Japan. Published by Elsevier B.V. All rights reserved. Taxonomy Wood-rotting fungi Xylodon (Pers.) Gray (Schizoporaceae, Hymenochaetales) is a (Hjortstam & Ryvarden, 2009).
    [Show full text]
  • Re-Thinking the Classification of Corticioid Fungi
    mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • Genera of Corticioid Fungi: Keys, Nomenclature and Taxonomy Article
    Studies in Fungi 5(1): 125–309 (2020) www.studiesinfungi.org ISSN 2465-4973 Article Doi 10.5943/sif/5/1/12 Genera of corticioid fungi: keys, nomenclature and taxonomy Gorjón SP BIOCONS – Department of Botany and Plant Physiology, University of Salamanca, 37007 Salamanca, Spain Gorjón SP 2020 – Genera of corticioid fungi: keys, nomenclature, and taxonomy. Studies in Fungi 5(1), 125–309, Doi 10.5943/sif/5/1/12 Abstract A review of the worldwide corticioid homobasidiomycetes genera is presented. A total of 620 genera are considered with comments on their taxonomy and nomenclature. Of them, about 420 are accepted and keyed out, described in detail with remarks on their taxonomy and systematics. Key words – Corticiaceae – Crust fungi – Diversity – Homobasidiomycetes Introduction Corticioid fungi are a diverse and heterogeneous group of fungi mainly referred to basidiomycete fungi in which basidiomes are generally resupinate. Basidiome construction is often simple, and in most cases, only generative hyphae are found. In more structured basidiomes, those with a reflexed margin or with a pileate surface, more or less sclerified hyphae are usually found. Even the basidiome structure is apparently not very complex, hymenophore configuration should be highly variable finding smooth surfaces or different variations to increase the spore production area such as rugose, tuberculate, aculeate, merulioid, folded, or poroid hymenial surfaces. It is often thought that corticioid fungi produce unattractive and little variable forms and, in most cases, they go unnoticed by most mycologists as ungraceful forms that ‘cover sticks and look like a paint stain’. Although the macroscopic variability compared to other fungi is, but not always, usually limited, under the microscope they surprise with a great diversity of forms of basidia, cystidia, spores and other microscopic elements (Hjortstam et al.
    [Show full text]
  • Hyphodontia Juniperi (Basidiomycota) Newly Recorded from China
    Fung. Sci. 28(1): 45–53, 2013 Hyphodontia juniperi (Basidiomycota) newly recorded from China 1 2 3* Eugene Yurchenko , Hong-Xia Xiong & Sheng-Hua Wu 1Department of Biotechnology, Paleski State University, Dnyaprouskai flatylii str. 23, BY-225710, Pinsk, Belarus 2Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China 3Department of Biology, National Museum of Natural Science, Taichung, Taiwan 40419, R. O. C. (Accepted: 1 Demcember 2013) ABSTRACT Hyphodontia juniperi (Xylodon juniperi) was recorded for the first time for China in Jilin Province, Hebei Province, and in Beijing Municipality. General distribution of the species, its ecological and morphological differences from H. crustosa (Xylodon crustosus) are discussed. Bayesian reconstruction of phylogeny based on ITS1, 5.8S, and ITS2 nuclear ribosomal DNA sequences demonstrated that both H. crustosa and H. juniperi belong to a species complex, which requires richer molecular sampling for separation. Key words: Corticiaceae s.l., geography, host range, subulate cystidia Introduction (Pers. : Fr.) J. Erikss. [Xylodon crustosus (Pers.) Chevall.] are discussed below. Hyphodontia juniperi is a corticioid fungus, the member of Schizoporaceae Material and methods (Hymenochaetales). The name Xylodon juniperi (Bourdot & Galzin) Hjortstam & Ryvarden is Specimens of H. juniperi were examined in applied to this taxon after splitting Hyphodontia the course of a critical study of s.l., which was based on morphological Hyphodontia-like fungi from China. Reference characters (Hjortstam and Ryvarden, 2009). The specimens are deposited in herbaria TNM and species was previously reported from Europe, MSK (acronyms follow Index Herbariorum, North and South America, Africa, and two http://sweetgum.nybg.org/ih). The morphology localities in Asia (Iran and Japan).
    [Show full text]
  • Phylogeny and Taxonomy of Ceriporia and Other Related Taxa and Description of Three New Species
    Mycologia ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: https://www.tandfonline.com/loi/umyc20 Phylogeny and taxonomy of Ceriporia and other related taxa and description of three new species Che-Chih Chen, Chi-Yu Chen, Young Woon Lim & Sheng-Hua Wu To cite this article: Che-Chih Chen, Chi-Yu Chen, Young Woon Lim & Sheng-Hua Wu (2020) Phylogeny and taxonomy of Ceriporia and other related taxa and description of three new species, Mycologia, 112:1, 64-82, DOI: 10.1080/00275514.2019.1664097 To link to this article: https://doi.org/10.1080/00275514.2019.1664097 View supplementary material Published online: 06 Jan 2020. Submit your article to this journal Article views: 266 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=umyc20 MYCOLOGIA 2020, VOL. 112, NO. 1, 64–82 https://doi.org/10.1080/00275514.2019.1664097 Phylogeny and taxonomy of Ceriporia and other related taxa and description of three new species Che-Chih Chen a, Chi-Yu Chen a, Young Woon Lim b, and Sheng-Hua Wu a,c aDepartment of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan; bSchool of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea; cDepartment of Biology, National Museum of Natural Science, Taichung 40419, Taiwan ABSTRACT ARTICLE HISTORY Species of Ceriporia (Irpicaceae, Basidiomycota) are saprotrophs or endophytes in forest ecosys- Received 18 June 2019 tems. To evaluate the taxonomy and generic relationships of Ceriporia and other related taxa, we Accepted 3 September 2019 used morphology and multigene phylogenetic analyses based on sequence data from nuc rDNA KEYWORDS internal transcribed spacer ITS1-5.8S-ITS2 (ITS) region, nuc 28S rDNA (28S), and RNA polymerase II Leptoporus; phlebioid clade; largest subunit (rpb1).
    [Show full text]
  • A Key to the Species of Hyphodontia Sensu Lato
    A peer-reviewed open-access journal MycoKeys 12: 1–27 (2016) A key to the species of Hyphodontia sensu lato 1 doi: 10.3897/mycokeys.12.7568 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research A key to the species of Hyphodontia sensu lato Eugene Yurchenko1, Sheng-Hua Wu2 1 Department of Biotechnology, Paleski State University, Pinsk, Belarus 2 Department of Biology, National Museum of Natural Science, Taichung, Taiwan Corresponding author: Eugene Yurchenko ([email protected]) Academic editor: C. Denchev | Received 21 December 2015 | Accepted 12 February 2016 | Published 18 March 2016 Citation: Yurchenko E, Wu SH (2016) A key to the species of Hyphodontia sensu lato. MycoKeys 12: 1–27. doi: 10.3897/ mycokeys.12.7568 Abstract A dichotomous key to all currently accepted species of Hyphodontia in the broad sense is presented. It consists of a key to genera (Alutaceodontia, Botryodontia, Chaetoporellus, Deviodontia, Hastodontia, Hyphodontia s. str., Kneiffiella, Lagarobasidium, Lyomyces, Palifer, Rogersella, Schizopora, Xylodon) and detailed keys to species level within genera. The key also includes taxa which were published under preliminary names (such as ‘Hypho- dontia species A’) and some taxa which require taxonomic clarification (like Hyphodontia macrescens). Some recently describes Hyphodontia species are placed in the keys to Palifer and Xylodon due to their morphology. Key words Basidiomycota, cystidia, global species diversity, Hymenochaetales, taxonomy Introduction Hyphodontia J. Erikss. (Hymenochaetales) in its broad sense is a genus of resupinate non-poroid Basidiomycota. Its species commonly occur on dead wood worldwide from Arctic tundra (Mukhin 2006) to evergreen equatorial forests (Hjortstam et al. 1998).
    [Show full text]
  • Investigating Wood Decaying Fungi Diversity in Central Siberia, Russia Using ITS Sequence Analysis and Interaction with Host Trees
    sustainability Article Investigating Wood Decaying Fungi Diversity in Central Siberia, Russia Using ITS Sequence Analysis and Interaction with Host Trees Ji-Hyun Park 1, Igor N. Pavlov 2,3 , Min-Ji Kim 4, Myung Soo Park 1, Seung-Yoon Oh 5 , Ki Hyeong Park 1, Jonathan J. Fong 6 and Young Woon Lim 1,* 1 School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea; [email protected] (J.-H.P.); [email protected] (M.S.P.); [email protected] (K.H.P.) 2 Laboratory of Reforestation, Mycology and Plant Pathology, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia; [email protected] 3 Department of Chemical Technology of Wood and Biotechnology, Reshetnev Siberian State University of Science and Technology, 660049 Krasnoyarsk, Russia 4 Wood Utilization Division, Forest Products Department, National Institute of Forest Science, Seoul 02455, Korea; [email protected] 5 Department of Biology and Chemistry, Changwon National University, Changwon 51140, Korea; [email protected] 6 Science Unit, Lingnan University, Tuen Mun, Hong Kong; [email protected] * Correspondence: [email protected]; Tel.: +82-2880-6708 Received: 27 February 2020; Accepted: 18 March 2020; Published: 24 March 2020 Abstract: Wood-decay fungi (WDF) play a significant role in recycling nutrients, using enzymatic and mechanical processes to degrade wood. Designated as a biodiversity hot spot, Central Siberia is a geographically important region for understanding the spatial distribution and the evolutionary processes shaping biodiversity. There have been several studies of WDF diversity in Central Siberia, but identification of species was based on morphological characteristics, lacking detailed descriptions and molecular data.
    [Show full text]
  • Hyphodontia (Hymenochaetales, Basidiomycota) and Similar Taxa from Central Asia
    Botany Hyphodontia (Hymenochaetales, Basidiomycota) and similar taxa from Central Asia Journal: Botany Manuscript ID cjb-2017-0115.R1 Manuscript Type: Article Date Submitted by the Author: 21-Aug-2017 Complete List of Authors: Gafforov, Yusufjon; Institute of Botany and Zoology, Academy of Sciences of the Republic of Uzbekistan, Mycology; Universitat Kassel Institut fur Biologie, Department of Ecology; Instituto de Botanica de Sao Paulo, Núcleo de PesquisaDraft em Micologia, Centro de Pesquisa em Plantas Avasculares e Fungos Riebesehl, Janett ; Universitat Kassel Institut fur Biologie, Department of Ecology Ordynets, Alexander; Universitat Kassel Institut fur Biologie, Department of Ecology Langer, Ewald ; Universitat Kassel Institut fur Biologie, Department of Ecology Yarasheva, Manzura; Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan Ghobad-Nejhad, Masoomeh; Iranian Research Organization for Science and Technology (IROST), Department of Biotechnology Zhou, Li-Wei; Institute of Applied Ecology, Chinese Academy of Sciences, Biodiversity (Fungus) Wang, Xue-Wei ; Institute of Applied Ecology, Chinese Academy of Sciences, Biodiversity (Fungus) Gugliotta, Adriana; Instituto de Botanica de Sao Paulo, Núcleo de Pesquisa em Micologia, Centro de Pesquisa em Plantas Avasculares e Fungos Is the invited manuscript for consideration in a Special N/A Issue? : Keyword: Taxonomy, ITS, wood-inhabiting basidiomycetes, global distribution, GIS https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 39 Botany 1 Hyphodontia (Hymenochaetales, Basidiomycota) and similar taxa from Central Asia 2 3 Yusufjon Gafforov 1,2,6*, Janett Riebesehl 2, Alexander Ordynets 2, Ewald Langer 2, Manzura Yarasheva 3, 4 Masoomeh Ghobad-Nejhad 4, Li-Wei Zhou 5, Xue-Wei Wang 5 and Adriana de Mello Gugliotta 6 5 6 1 Laboratory of Mycology, Institute of Botany and Zoology, Academy of Sciences of the Republic of 7 Uzbekistan, 232 Bogishamol Street, Tashkent 100053, Uzbekistan, [email protected] 8 2 Department of Ecology, University of Kassel, Heinrich-Plett-Str.
    [Show full text]
  • Papp Viktor.Pdf
    Doktori (PhD) értekezés A Juhdöglő-völgy Erdőrezervátum lignikol bazídiumos nagygombáinak taxonómiája és természetvédelmi helyzete PAPP VIKTOR Témavezető: Dr. Rimóczi Imre, DSc professor emeritus Budapest 2015 A doktori iskola megnevezése: Kertészettudományi Doktori Iskola tudományága: 4. Agrártudományok (4.1 Növénytermesztési és kertészeti tudományok) vezetője: Dr. Tóth Magdolna, DSc egyetemi tanár Budapesti Corvinus Egyetem, Kertészettudományi Kar, Gyümölcstermő Növények Tanszék Témavezető: Dr. Rimóczi Imre, DSc professor emeritus Budapesti Corvinus Egyetem, Kertészettudományi Kar, Növénytani Tanszék és Soroksári Botanikus Kert A doktori iskola- és a témavezető jóváhagyó aláírása: A jelölt a Budapesti Corvinus Egyetem Doktori Szabályzatában előírt valamennyi feltételnek eleget tett, az értekezés műhelyvitájában elhangzott észrevételeket és javaslatokat az értekezés átdolgozásakor figyelembe vette, ezért az értekezés védési eljárásra bocsátható. .................................................. .................................................. Dr. Tóth Magdolna Dr. Rimóczi Imre doktori iskola vezető témavezető 1 A Budapesti Corvinus Egyetem Élettudományi Területi Doktori Tanácsának 2015. december 8-i határozatában a nyilvános vita lefolytatására az alábbi bíráló Bizottságot jelölte ki: BÍRÁLÓ BIZOTTSÁG: Elnöke: Balázs Sándor, MHAS, BCE Tagjai: Terbe István, DSc, BCE Lőkös László, PhD, MTM Bartha Dénes, DSc, NyME Opponensek: Vetter János, DSc, SZIE Lenti István, CSc, Nyíregyházi Főiskola Titkár: Balázs Gábor, PhD, BCE 2 TARTALOMJEGYZÉK
    [Show full text]
  • Tarrelos Nº 18
    FEDERACIÓN GALEGA DE MICOLOXÍA NÚMERO 18 •NOVEMBRO 2016 NESTE NÚMERO staff PORTADA: Mycena rosea. Autor: Ramón Carlos Encisa Fraga TARRELOS é unha publicación da Federación Galega de Micoloxía. 3 - Limiar CIF: G-36640928 Telf.: 630 493 497 4 - Contribución al conocimiento florístico de los ascomycetes [email protected] bitunicados en Galicia. J. M. C. MARCOTE & J. M. COSTA LAGO Depósito Legal: PO-388/04 ISSN: 1888-7066 13- Gyromitra infula, una interesante recolecta para la micoflora gallega. M. NODAR SANMARTÍN & J. M. COSTA LAGO COORDINA José Luis Tomé Ortega 16- Nueva cita de Gyromitra esculenta para Galicia. R. X. RODRÍGUEZ & S. DE LA PEÑA CONSELLO DE 19- Na cara oculta dos garabullos: pequena contribución a REDACCIÓN Corticiaceae s. l. J. M. COSTA LAGO Jaime B. Blanco-Dios, José Luis Tomé Ortega, 24- Agaricales de las dunas de Galicia (VI): una nueva variedad de Carlos Álvarez Puga. Macrolepiota y algunas combinaciones nuevas. J. B. BLANCO- DIOS 29- Calocybe gambosa en el municipio de Lugo y características de las zonas de micetación. J. ALONSO DÍAZ 35- Guía micológica de la isla de Cortegada. S. DE LA PEÑA FEDERACIÓN GALEGA DE MICOLOXÍA NÚMERO 18 •NOVEMBRO 2016 38- Notes sobre el género Entoloma s.l. en el Noroeste de la Península Ibérica (VIII): Entoloma corunnense, sp. nov. y algunas combinaciones y nombres nuevos. J. B. BLANCO-DIOS 43- Nuevo híbrido de orquídea para Galicia. S. DE LA PEÑA & J. ÁLVAREZ GÁNDARA 46- Dos nuevas localidades de Rumex rupestris (Polygonaceae) en la ría de Arousa (A Coruña-Pontevedra). J. B. BLANCO-DIOS Mycena rosea. Autor: Ramón Carlos Encisa Fraga 50- Anfibios que podemos atopar preto de Pontevedra.
    [Show full text]
  • 14 Agaricomycetes
    14 Agaricomycetes 1 2 3 4 5 1 6 D.S. HIBBETT ,R.BAUER ,M.BINDER , A.J. GIACHINI ,K.HOSAKA ,A.JUSTO ,E.LARSSON , 7 8 1,9 1 6 10 11 K.H. LARSSON , J.D. LAWREY ,O.MIETTINEN , L.G. NAGY , R.H. NILSSON ,M.WEISS , R.G. THORN CONTENTS F. Hymenochaetales . ...................... 396 G. Polyporales . ...................... 397 I. Introduction ................................. 373 H. Thelephorales. ...................... 399 A. Higher-Level Relationships . ............ 374 I. Corticiales . ................................ 400 B. Taxonomic Characters and Ecological J. Jaapiales. ................................ 402 Diversity. ...................... 376 K. Gloeophyllales . ...................... 402 1. Septal Pore Ultrastructure . ........ 376 L. Russulales . ................................ 403 2. Fruiting Bodies. .................. 380 M. Agaricomycetidae . ...................... 405 3. Ecological Roles . .................. 383 1. Atheliales and Lepidostromatales . 406 C. Fossils and Molecular Clock Dating . 386 2. Amylocorticiales . .................. 406 II. Phylogenetic Diversity ...................... 387 3. Boletales . ............................ 407 A. Cantharellales. ...................... 387 4. Agaricales . ............................ 409 B. Sebacinales . ...................... 389 III. Conclusions.................................. 411 C. Auriculariales . ...................... 390 References. ............................ 412 D. Phallomycetidae . ...................... 391 1. Geastrales. ............................ 391 2. Phallales .
    [Show full text]