Multilocus Phylogeny Reveals Taxonomic Misidentification of the Schizopora Paradoxa (KUC8140) Representative Genome

Total Page:16

File Type:pdf, Size:1020Kb

Multilocus Phylogeny Reveals Taxonomic Misidentification of the Schizopora Paradoxa (KUC8140) Representative Genome A peer-reviewed open-access journal MycoKeysMultilocus 38: 121–127 (2018)phylogeny reveals taxonomic misidentification of the Schizopora paradoxa... 121 doi: 10.3897/mycokeys.38.28497 SHORT COMMUNICATION MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Multilocus phylogeny reveals taxonomic misidentification of the Schizopora paradoxa (KUC8140) representative genome Javier Fernández-López1, María P. Martín1, Margarita Dueñas1, M. Teresa Telleria1 1 Departmento de Micología, Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain Corresponding author: Javier Fernández-López ([email protected]) Academic editor: T. Lumbsch | Received 20 July 2018 | Accepted 13 August 2018 | Published 28 August 2018 Citation: Fernández-López J, Martín MP, Dueñas M, Telleria MT (2018) Multilocus phylogeny reveals taxonomic misidentification of theSchizopora paradoxa (KUC8140) representative genome. MycoKeys 38: 121–127. https://doi. org/10.3897/mycokeys.38.28497 Abstract Schizopora paradoxa, current name Xylodon paradoxus, is a white-rot fungus with certain useful biotechno- logical properties. The representative genome of Schizopora paradoxa strain KUC8140 was published in 2015 as part of the 1000 Fungal Genomes Project. Multilocus phylogenetic analyses, based on three nu- clear regions (ITS, LSU and rpb2), confirmed a misidentification of S. paradoxa strain KUC8140 which should be identified as Xylodon ovisporus. This wrong identification explains the unexpected geographical distribution of S. paradoxa, since this species has a European distribution, whereas the strain KUC8140 was recorded from Korea, Eastern Asia. Keywords Hymenochaetales, phylogenetic analyses, taxonomy, white-rot fungi, Xylodon Introduction The genus Schizopora Velen., currently synonymous with Xylodon (Pers.) Fr. (Riebesehl and Langer 2017), includes white-rot fungi that play an important role in ecosys- tem processes as a wood decomposer. The description and identification of Xylodon (=Schizopora) species, based on morphological characters, has led to inaccuracies due to a lack of clear diagnostic characters and it has been assumed that many Xylodon species have a worldwide distribution (Paulus et al. 2000). However, during the last Copyright Javier Fernández-López et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 122 Javier Fernández-López et al. / MycoKeys 38: 121–127 (2018) decade, it has been pointed out that fungal cosmopolitanism could be the result of the application of a morphological species recognition criterion and not the result of an actual biogeographical pattern (Taylor et al. 2006). Moreover, phylogenetic analyses have revealed an undescribed species diversity masked by the morphological species recognition approach (Taylor et al. 2000). The representative genome of Schizopora paradoxa strain KUC8140, current name Xylodon paradoxus (Schrad.) Chevall., was sequenced in 2015 as part of the 1000 Fun- gal Genomes Project (http://jgi.doe.gov/fungi) (Min et al. 2015); this strain was col- lected from an oak forest in Korea. Usually X. paradoxus has been associated with late stages of wood decay, mainly in deciduous forests and shows useful biotechnological properties for bioremediation, such as tolerance to heavy metals or dye decolourising activity (Lee et al. 2014). It has been recorded around the world; however, available ge- netic data point to a European distribution (Paulus et al. 2000). Within the framework of a broader study of Xylodon through molecular approaches, the taxonomic identity of the strain KUC8140 has been assessed. Materials and methods In order to infer the taxonomic position of the strain KUC8140, phylogenetic rela- tionships of six Xylodon species were addressed. DNA from specimens of X. paradoxus, X. quercinus (Pers.) Gray, X. nothofagi (G. Cunn.) Hjorstam & Ryvarden, X. raduloides Riebesehl & E. Langer, X. flaviporus (Ber. & M.A. Curtis ex Cooke) Riebesehl & E. Langer and X. ovisporus (Corner) Riebesehl & E. Langer was extracted from herbaria specimens and culture collections (Table 1). Three specimens of the sister genusLyo - myces P. Karst. were included as outgroup in the phylogenetic analyses (Table 1). DNA isolation was performed using DNeasy™ Plant Mini Kit (Qiagen, Valencia, California, USA) following the manufacturer’s instructions. Three nuclear regions were amplified and sequenced: nuclear ribosomal internal transcribed spacer (ITS, fungal barcoding; Schoch et al. 2012), nuclear large ribosomal subunit (LSU) and the second largest subunit of RNA polymerase II (rpb2). Direct Polymerase chain reactions (PCRs) were performed to obtain sequences from ITS and LSU with the pair of primers ITS5/ITS4 (White et al. 1990) and LR0R/LR5 (Rehner and Samuels 1994), respectively. Nested- PCRs were done to obtain amplifications of rpb2 fragments, using RPB2-5F/RPB2- 7.1R (Liu et al. 1999, Matheny 2005) for the first amplification followed by RPB2-6F/ RPB2-7R2 (Matheny et al. 2007), using 1 μl of the first PCR as target DNA. Ampli- fications were undertaken using illustra™ PuReTaq™ Ready-To-Go™ PCR beads (GE Healthcare, Buckinghamshire, UK) as described in Winka et al. (1998), following thermal cycling conditions in Martín and Winka (2000). Negative controls lacking fungal DNA were run for each experiment to check for contamination. Amplifications were assayed by gel electrophoresis in 2% Pronadisa D-1 Agarose (Lab. Conda, Tor- rejón de Ardoz, Spain). Amplified DNA fragments were purified from the agarose gel using the Wizard SV Gel and PCR Clean-Up System (Promega Corporation, Madi- son, WI, USA) and sent to Macrogen Korea (Seoul, Korea) for sequencing. Primers, Multilocus phylogeny reveals taxonomic misidentification of the Schizopora paradoxa... 123 Table 1. Specimen information, GenBank accession numbers and genome BLAST searches (ID) used in this study. New sequences generated in this study are indicated in bold. n.d.: no data. GenBank accession number Species Specimen voucher Country ITS LSU rpb2 HHB 10401 USA MH260068 MH260061 MH259316 Lyomyces crustosus HHB 13100 USA MH260069 MH260062 MH259317 UC 2022841 USA KP814310 n.d. n.d. ICMP 13836 Taiwan AF145585 n.d. n.d. Xylodon flaviporus MA-Fungi 79440, 12094IS Germany MH260071 MH260066 MH259319 ICMP 13839 New Zealand AF145582 MH260064 MH259322 Xylodon nothofagi PDD 91630, BCP 3306 New Zealand GQ411524 n.d. n.d. ICMP 13835 Taiwan AF145586 MH260063 MH259320 Xylodon ovisporus ICMP 13837 Taiwan AF145587 n.d. n.d. FCUG 2425 Russia AF145577 n.d. n.d. Xylodon paradoxus MA-Fungi 70444, 11060MD France MH260070 MH260065 n.d. MA-Fungi 81294, 13833MD France MH260072 n.d. MH259318 H 6013352 Finland KT361632 n.d. n.d. Xylodon quercinus MA-Fungi 91311, 1JFL Spain MH260073 MH260067 MH259321 ICMP 13833 Australia AF145580 KY962853 n.d. Xylodon raduloides MA-Fungi 75310, GP2291 Spain KY962825 KY962864 KY967055 Schizopora paradoxa KUC8140 Korea ID14957398 ID14957349 ID1495735 used for sequencing, were those used for PCR amplifications. Additional searches for the six Xylodon species in EMBL/GenBank/DDBJ databases were performed in order to complete the molecular information available for this genus. Using the BLAST tool from the JGI portal, ITS, LSU and rpb2 sequences were extracted from the KUC8140 strain genome (https://genome.jgi.doe.gov/pages/blast- query.jsf?db=Schpa1). The same regions from X. paradoxus specimens FCUG-2425, MA-Fungi 70444 and MA-Fungi 81294 were used as reference sequences for BLAST searches, respectively (Table 1). For ITS and LSU, custom search settings were used (blastn; all databases; Expect = 1*10-3; Word size = 11; Filter low complexity regions; Scoring matrix = PAM30; ITS Job ID = 14957398; LSU Job ID = 14957349). For rpb2, default BLAST settings were used (blastn; assembly database; Expect = 1*10-5; Word size = 11; Filter low complexity regions; Scoring matrix = BLOSUM62; rpb2 Job ID = 14957357). The best scoring sequence from theS. paradoxa KUC8140 strain genome for each region was extracted and downloaded. Raw sequence data were processed and assembled with Geneious version 9.0.2. (Kearse et al. 2012). Two individual datasets, ITS-LSU concatenated and rpb2, were created to compare the KUC8140 strain with other Xylodon species. The combination of novel, GenBank and KUC8140 sequences for each dataset were aligned in Geneious 9.0.2 with the MAFFT nucleotide sequence alignment function (Katoh and Standley 2013). The automatic alignments were reviewed manually through Geneious 9.0.2. Phylogenetic tree estimation for each alignment was performed using Maximum Likelihood (ML) and Bayesian Inference (BI). ML and bootstrapping analyses were conducted in RAxML (Stamatakis 2006), using default parameters established in the 124 Javier Fernández-López et al. / MycoKeys 38: 121–127 (2018) CIPRES web portal (http://www.phylo.org/portal2/; Miller et al. 2010) and calculat- ing bootstrap statistics from 1000 replicates. Bayesian inference analyses were imple- mented in BEAST v2.4.3 (Drummond and Rambaut 2007). Site model partition was selected using jModelTest2 (Darriba et al. 2012) and defined using BEAUti v2.4.3 interface. HKY and GTR substitution models were selected for ITS+LSU and rpb2 alignments, respectively, as the closest available in BEAST from the results obtained in jModelTest2. We used relative timing with an uncorrelated lognormal
Recommended publications
  • A Re-Evaluation of Neotropical Junghuhnia S.Lat. (Polyporales, Basidiomycota) Based on Morphological and Multigene Analyses
    Persoonia 41, 2018: 130–141 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2018.41.07 A re-evaluation of Neotropical Junghuhnia s.lat. (Polyporales, Basidiomycota) based on morphological and multigene analyses M.C. Westphalen1,*, M. Rajchenberg2, M. Tomšovský3, A.M. Gugliotta1 Key words Abstract Junghuhnia is a genus of polypores traditionally characterised by a dimitic hyphal system with clamped generative hyphae and presence of encrusted skeletocystidia. However, recent molecular studies revealed that Mycodiversity Junghuhnia is polyphyletic and most of the species cluster with Steccherinum, a morphologically similar genus phylogeny separated only by a hydnoid hymenophore. In the Neotropics, very little is known about the evolutionary relation- Steccherinaceae ships of Junghuhnia s.lat. taxa and very few species have been included in molecular studies. In order to test the taxonomy proper phylogenetic placement of Neotropical species of this group, morphological and molecular analyses were carried out. Specimens were collected in Brazil and used for DNA sequence analyses of the internal transcribed spacer and the large subunit of the nuclear ribosomal RNA gene, the translation elongation factor 1-α gene, and the second largest subunit of RNA polymerase II gene. Herbarium collections, including type specimens, were studied for morphological comparison and to confirm the identity of collections. The molecular data obtained revealed that the studied species are placed in three different genera. Specimens of Junghuhnia carneola represent two distinct species that group in a lineage within the phlebioid clade, separated from Junghuhnia and Steccherinum, which belong to the residual polyporoid clade.
    [Show full text]
  • 2020031311055984 5984.Pdf
    Mycoscience 60 (2019) 184e188 Contents lists available at ScienceDirect Mycoscience journal homepage: www.elsevier.com/locate/myc Short communication Xylodon kunmingensis sp. nov. (Hymenochaetales, Basidiomycota) from southern China * Zhong-Wen Shi a, Xue-Wei Wang b, c, Li-Wei Zhou b, Chang-Lin Zhao a, a College of Biodiversity Conservation and Utilisation, Southwest Forestry University, Kunming, 650224, PR China b Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China c University of Chinese Academy of Sciences, Beijing, 100049, PR China article info abstract Article history: A new wood-inhabiting fungal species, Xylodon kunmingensis, is proposed based on morphological and Received 28 November 2018 molecular evidences. The species is characterized by an annual growth habit, resupinate basidiocarps Received in revised form with cream to buff hymenial, odontioid surface, a monomitic hyphal system with generative hyphae 28 January 2019 bearing clamp connections and oblong-ellipsoid, hyaline, thin-walled, smooth, inamyloid and index- Accepted 5 February 2019 trinoid, acyanophilous basidiospores, 5e5.8 Â 2.8e3.5 mm. The phylogenetic analyses based on molecular Available online 6 February 2019 data of ITS sequences showed that X. kunmingensis belongs to the genus Xylodon and formed a single group with a high support (100% BS, 100% BP, 1.00 BPP) and grouped with the related species Keywords: Hyphodontia X. astrocystidiatus, X. crystalliger and X. paradoxus. Both morphological and molecular evidences fi Schizoporaceae con rmed the placement of the new species in Xylodon. Phylogenetic analyses © 2019 The Mycological Society of Japan. Published by Elsevier B.V. All rights reserved. Taxonomy Wood-rotting fungi Xylodon (Pers.) Gray (Schizoporaceae, Hymenochaetales) is a (Hjortstam & Ryvarden, 2009).
    [Show full text]
  • Old-Growth Forest Fungus Antrodiella Citrinella – Distribution and Ecology in the Czech Republic
    CZECH MYCOLOGY 70(2): 127–143, OCTOBER 24, 2018 (ONLINE VERSION, ISSN 1805-1421) Old-growth forest fungus Antrodiella citrinella – distribution and ecology in the Czech Republic 1 2 3,4 5 6 JAN HOLEC *, JAN BĚŤÁK ,VÁCLAV POUSKA ,DANIEL DVOŘÁK ,LUCIE ZÍBAROVÁ , 7 2 JIŘÍ KOUT ,DUŠAN ADAM 1 National Museum, Mycological Department, Cirkusová 1740, Praha 9, CZ-193 00, Czech Republic 2 The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Department of Forest Ecology, Lidická 25/27, Brno, CZ-602 00, Czech Republic 3 Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, Praha 6 – Suchdol, CZ-165 00, Czech Republic 4 Šumava National Park Administration, 1. máje 260, Vimperk, CZ-385 01, Czech Republic 5 Masaryk University, Faculty of Science, Department of Botany and Zoology, Kotlářská 2, Brno, CZ-611 37, Czech Republic 6 Resslova 26, Ústí nad Labem, CZ-400 01, Czech Republic 7 University of West Bohemia, Faculty of Education, Department of Biology, Geosciences and Environmental Education, Klatovská 51, Plzeň, CZ-306 19, Czech Republic *corresponding author: [email protected] Holec J., Běťák J., Pouska V., Dvořák D., Zíbarová L., Kout J., Adam D. (2018): Old-growth forest fungus Antrodiella citrinella – distribution and ecology in the Czech Republic. – Czech Mycol. 70(2): 127–143. Localities and records of Antrodiella citrinella (Basidiomycota, Polyporales) in the Czech Re- public are summarised and the ecology of the species is evaluated. The 31 localities are mostly situ- ated in mountain regions, the highest number of records coming from elevations of 1200–1299 m.
    [Show full text]
  • Re-Thinking the Classification of Corticioid Fungi
    mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma.
    [Show full text]
  • <I>Rhomboidia Wuliangshanensis</I> Gen. & Sp. Nov. from Southwestern
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2019 October–December 2019—Volume 134, pp. 649–662 https://doi.org/10.5248/134.649 Rhomboidia wuliangshanensis gen. & sp. nov. from southwestern China Tai-Min Xu1,2, Xiang-Fu Liu3, Yu-Hui Chen2, Chang-Lin Zhao1,3* 1 Yunnan Provincial Innovation Team on Kapok Fiber Industrial Plantation; 2 College of Life Sciences; 3 College of Biodiversity Conservation: Southwest Forestry University, Kunming 650224, P.R. China * Correspondence to: [email protected] Abstract—A new, white-rot, poroid, wood-inhabiting fungal genus, Rhomboidia, typified by R. wuliangshanensis, is proposed based on morphological and molecular evidence. Collected from subtropical Yunnan Province in southwest China, Rhomboidia is characterized by annual, stipitate basidiomes with rhomboid pileus, a monomitic hyphal system with thick-walled generative hyphae bearing clamp connections, and broadly ellipsoid basidiospores with thin, hyaline, smooth walls. Phylogenetic analyses of ITS and LSU nuclear RNA gene regions showed that Rhomboidia is in Steccherinaceae and formed as distinct, monophyletic lineage within a subclade that includes Nigroporus, Trullella, and Flabellophora. Key words—Polyporales, residual polyporoid clade, taxonomy, wood-rotting fungi Introduction Polyporales Gäum. is one of the most intensively studied groups of fungi with many species of interest to fungal ecologists and applied scientists (Justo & al. 2017). Species of wood-inhabiting fungi in Polyporales are important as saprobes and pathogens in forest ecosystems and in their application in biomedical engineering and biodegradation systems (Dai & al. 2009, Levin & al. 2016). With roughly 1800 described species, Polyporales comprise about 1.5% of all known species of Fungi (Kirk & al.
    [Show full text]
  • Polyporales, Basidiomycota), a New Polypore Species and Genus from Finland
    Ann. Bot. Fennici 54: 159–167 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 18 April 2017 © Finnish Zoological and Botanical Publishing Board 2017 Caudicicola gracilis (Polyporales, Basidiomycota), a new polypore species and genus from Finland Heikki Kotiranta1,*, Matti Kulju2 & Otto Miettinen3 1) Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, FI-00251 Helsinki, Finland (*corresponding author’s e-mail: [email protected]) 2) Biodiversity Unit, P.O. Box 3000, FI-90014 University of Oulu, Finland 3) Finnish Museum of Natural History, Botanical Museum, P.O. Box 7, FI-00014 University of Helsinki, Finland Received 10 Jan. 2017, final version received 23 Mar. 2017, accepted 27 Mar. 2017 Kotiranta H., Kulju M. & Miettinen O. 2017: Caudicicola gracilis (Polyporales, Basidiomycota), a new polypore species and genus from Finland. — Ann. Bot. Fennici 54: 159–167. A new monotypic polypore genus, Caudicicola Miettinen, Kotir. & Kulju, is described for the new species C. gracilis Kotir., Kulju & Miettinen. The species was collected in central Finland from Picea abies and Pinus sylvestris stumps, where it grew on undersides of stumps and roots. Caudicicola gracilis is characterized by very fragile basidiocarps, monomitic hyphal structure with clamps, short and wide tramal cells, smooth ellipsoid spores, basidia with long sterigmata and conidiogenous areas in the margins of the basidiocarp producing verrucose, slightly thick-walled conidia. The genus belongs to the residual polyporoid clade of the Polyporales in the vicinity of Steccherinaceae, but has no known close relatives. Introduction sis taxicola, Pycnoporellus fulgens and its suc- cessional predecessor Fomitopsis pinicola, and The species described here was found when deciduous tree trunks had such seldom collected Heino Kulju, the brother of the second author, species as Athelopsis glaucina (on Salix) and was making a forest road for tractors.
    [Show full text]
  • Miettinen2006antrodiella
    MYCOTAXON Volume 96, pp. 211–239 April–June 2006 Northern Antrodiella species: the identity of A. semisupina, and type studies of related taxa Otto Miettinen1*, Tuomo Niemelä1 & Wjacheslav Spirin2 *otto.miettinen@helsinki.fi 1 Finnish Museum of Natural History, Botanical Museum P.O.Box 7, FI–00014 University of Helsinki, Finland 2 Kirochnaya 8–12, 191028 St.-Petersburg, Russia Abstract—Type collections of Antrodiella (Basidiomycota, polypores) from Europe, North America and Siberia were studied. The current concept ofAntrodiella semisupina includes many species; the European taxon is A. pallescens, comb. nov., while A. semisupina sensu typi occurs in North America. The identity of A. romellii was clarified and an epitype was selected to supplement its poor-quality holotype. A. serpula, comb. nov. is an earlier name for A. hoehnelii. In addition, the following new combinations are made: A. leucoxantha (=A. genistae), A. subradula (type from Siberia), A. pachycheiles (type from eastern U.S.A.), and A. ellipsospora (type from Siberia). A. beschidica and A. farinacea are reduced to the synonymy of A. pallescens; A. thompsonii is accepted as a good species. Antrodiella ichnusana, described from the Mediterranean, is reported from North Europe. Several other Antrodiella species are discussed. Spores are illustrated and their dimensions are given for the 17 accepted species. Gloeocystidia are considered an unreliable character for delimiting species in Antrodiella. Key words—taxonomy, nomenclature, polyporoid clade Introduction The genus Antrodiella was described by Ryvarden & Johansen (1980) for Polyporus semisupinus and a few related East African species. The number of species grew rapidly, and at present 58 names are included in Antrodiella (Index Fungorum 2006).
    [Show full text]
  • Flaviporus Hydrophilus and Phellinus Portoricensis (Fungi: Polypores) Istributio
    Check List 9(4): 815–817, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N New records of Flaviporus hydrophilus and Phellinus portoricensis (Fungi: Polypores) ISTRIBUTIO D Marco Antonio Borba-Silva*, Valéria Ferreira-Lopes and Elisandro Ricardo Drechsler-Santos RAPHIC G Laboratório de Micologia, Departamento de Botânica, PPGFAP, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina. CEP EO 88010-970. Florianópolis, SC, Brazil. * Corresponding author. E-mail: [email protected] G N O Abstract: Flaviporus hydrophilus and Phellinus portoricensis, collected in the Parque Municipal do Morro do Finder, OTES are reported as new records for the Atlantic Rain Forest of Santa Catarina state and for Southern Brazil, respectively. N Descriptions, illustrations and notes on distribution of these species are presented. Diversity of polypores and related fungi from the Atlantic solution. The arithmetic mean of all measurements from Rain Forest biome has been recorded by several authors studied material is given in the description. The specimens and many new taxa have been proposed (p. ex. Loguercio- were deposited in the FLOR Herbarium of UFSC (Holmgren Leite et al. 2002, Ryvarden and de Meijer 2002, Drechsler- and Holmgren 1998). The collecting was authorized by Santos et al. 2008b, Baltazar et al. 2009). Compilation of Fundação Municipal do Meio Ambiente (FUNDEMA). literature records provided by Baltazar and Gibertoni (2009) presents a list of 733 species of aphyllophoroid fungi Flaviporus hydrophilus (Berk. and M.A. Curtis) in 47 families, out of which 50% are polypores. Particularly Ginns, Can.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • A Revised Family-Level Classification of the Polyporales (Basidiomycota)
    fungal biology 121 (2017) 798e824 journal homepage: www.elsevier.com/locate/funbio A revised family-level classification of the Polyporales (Basidiomycota) Alfredo JUSTOa,*, Otto MIETTINENb, Dimitrios FLOUDASc, € Beatriz ORTIZ-SANTANAd, Elisabet SJOKVISTe, Daniel LINDNERd, d €b f Karen NAKASONE , Tuomo NIEMELA , Karl-Henrik LARSSON , Leif RYVARDENg, David S. HIBBETTa aDepartment of Biology, Clark University, 950 Main St, Worcester, 01610, MA, USA bBotanical Museum, University of Helsinki, PO Box 7, 00014, Helsinki, Finland cDepartment of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden dCenter for Forest Mycology Research, US Forest Service, Northern Research Station, One Gifford Pinchot Drive, Madison, 53726, WI, USA eScotland’s Rural College, Edinburgh Campus, King’s Buildings, West Mains Road, Edinburgh, EH9 3JG, UK fNatural History Museum, University of Oslo, PO Box 1172, Blindern, NO 0318, Oslo, Norway gInstitute of Biological Sciences, University of Oslo, PO Box 1066, Blindern, N-0316, Oslo, Norway article info abstract Article history: Polyporales is strongly supported as a clade of Agaricomycetes, but the lack of a consensus Received 21 April 2017 higher-level classification within the group is a barrier to further taxonomic revision. We Accepted 30 May 2017 amplified nrLSU, nrITS, and rpb1 genes across the Polyporales, with a special focus on the Available online 16 June 2017 latter. We combined the new sequences with molecular data generated during the Poly- Corresponding Editor: PEET project and performed Maximum Likelihood and Bayesian phylogenetic analyses. Ursula Peintner Analyses of our final 3-gene dataset (292 Polyporales taxa) provide a phylogenetic overview of the order that we translate here into a formal family-level classification.
    [Show full text]
  • Referências Bibliográficas 43
    1 UNIVERSIDADE FEDERAL DE SANTA CATARINA - UFSC CENTRO DE CIÊNCIAS BIOLÓGICAS - CCB DEPARTAMENTO DE BOTÂNICA PÓS-GRADUAÇÃO EM BIOLOGIA VEGETAL - PPGBVE INVENTÁRIO DE BASIDIOMYCETES LIGNOLÍTICOS EM SANTA CATARINA: GUIA ELETRÔNICO Biólogo Elisandro Ricardo Drechsler-Santos Orientadora: Profª. Dra. Clarice Loguercio Leite Dissertação apresentada ao Programa de Pós- Graduação em Biologia Vegetal da Universidade Federal de Santa Catarina como requisito parcial para a obtenção do título de Mestre em Biologia Vegetal. Florianópolis 2005 ii Agradecimentos - À minha orientadora, Profª. Drª. Clarice Loguercio Leite, por me acolher e oportunizar tal trabalho, assim como por me mostrar a importância do sentido das palavras, inclusive da palavra “Orientar”. - A Claudia Groposo, minha fiel colega e grande amiga, por estar presente nos momentos mais importantes destes anos. - Aos professores da PPGBVE e colegas do mestrado, pelos ensinamentos e companheirismo. - Profª. Drª. Gislene Silva, do Departamento de Jornalismo da UFSC, pela disponibilização de tempo e bibliografia para confecção do projeto. - Prof. Dr. Luiz Antonio Paulino, Profª. Drª. Rosemy da Silva Nascimento, Profª. Drª. Ruth Emilia Nogueira Loch e seu orientado Dirceu de Menezes Machado, pelo auxílio na parte de SIG - Sistema de Informação Geográfica (geoprocessamento e cartografia). - Aos amigos do laboratório, Josué, Juliano, Lia e Larissa, pela ajuda em todos os momentos. - Em especial a minha família, pela confiança e coragem de apostar em mim, assim como compreensão, carinho e amor nos momentos importantes. - Também especialmente a minha noiva, Daniela Werner Ribeiro, pela cumplicidade do nosso amor e por me mostrar que as coisas mais importantes nem sempre estão no primeiro plano. - Por fim, ao fascinante mundo dos fungos.
    [Show full text]
  • Journal of Biodiversity & Endangered Species
    t & E si y nd er a v n i g d e o i r e Journal of Biodiversity & Endangered B d Wieners et al., J Biodivers Endanger Species 2016, f S o p l e a 4:2 c ISSN:n 2332-2543 r i e u s o J Species DOI: 10.4172/2332-2543.1000168 Research Article Open Access The Rare Polypore Antrodiella citrinella and Its Special Phenology in the Black Forest National Park (Germany) Max Wieners1, Anne Reinhard2, Marc Förschler3 and Markus Scholler1* 1State Museum of Natural History Karlsruhe, Department of Biosciences, Erbprinzenstr. 13, 76133 Karlsruhe, Germany 2University of Greifswald, Department of Bacterial Physiology, Friedrich-Ludwig-Jahn-Str. 15, 17489 Greifswald, Germany 3Black Forest National Park, Kniebisstrabe 67, 72250 Freudenstadt, Germany *Corresponding author: Scholler M, State Museum of Natural History Karlsruhe, Department of Biosciences, Erbprinzenstr. 13, 76133 Karlsruhe, Germany; Tel: +49 721 175-2810; E-mail: [email protected] Received date: Aug 16, 2016; Accepted date: October 5, 2016; Published date: October 12, 2016 Copyright: © 2016 Wieners M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. Abstract In the old growth spruce-fir forest “Wilder See”, a long-term protected zone of the Black Forest National Park (Baden-Wuerttemberg, Germany), the phenology of two associated polypore fungus species on Picea abies logs, Fomitopsis pinicola and the rare red-data list species Antrodiella citrinella were investigated. We combined detailed field studies and temperature-related in-vitro growth studies.
    [Show full text]