Cephalopods Present and Past: New Insights and Fresh Perspectives Cephalopods Present and Past: New Insights and Fresh Perspectives

Total Page:16

File Type:pdf, Size:1020Kb

Cephalopods Present and Past: New Insights and Fresh Perspectives Cephalopods Present and Past: New Insights and Fresh Perspectives Cephalopods Present and Past: New Insights and Fresh Perspectives Cephalopods Present and Past: New Insights and Fresh Perspectives Edited by Neil H. Landman Division of Paleontology (Invertebrates) American Museum of Natural History New York, NY, USA Richard Arnold Davis Department of Biology College of Mount St. Joseph Cincinnati, OH, USA Royal H. Mapes Department of Geological Sciences Ohio University Athens, OH, USA A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4020-6461-6 ISBN 978-1-4020-6806-5 (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springer.com Cover illustration: Reconstruction of the life cycle of Manticoceras, depicting the orientations of the aperture of four representative growth stages. Figure by Christian Klug, Universität Zürich. Printed on acid-free paper All Rights Reserved © 2007 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Preface Cephalopods are diverse, highly developed molluscs capable of swimming and jet propulsion. These animals are an important component of present-day marine ecosys- tems throughout the world and comprise approximately 900 species. They also have an extraordinary fossil record, extending back to the Cambrian Period, with as many as 10,000 extinct species. Throughout their long history, they have experienced spec- tacular radiations and near-total extinctions. Because of their superb fossil record, they also serve as ideal index fossils to subdivide geologic time. This book touches on many of these themes, and it treats both fossil and present-day cephalopods. The chapters are outgrowths of presentations at the Sixth International Symposium “Cephalopods – Present and Past,” at the University of Arkansas in Fayetteville, September 16–19, 2004. The Symposium was organized principally by Walter L. Manger of the Department of Geology, University of Arkansas. The editors gratefully acknowledge Walter for his terrific job in putting together this symposium and for making it such an intellectual, and social, success. Other publications related to this Symposium include the abstract volume, assembled by W. L. Manger, and two field- trip guidebooks, one written by W. L. Manger, and the other by R. H. Mapes. Because this symposium was held in North America, it honored four cephalopod workers from this continent: William A. Cobban (US Geological Survey, Denver, Colorado), Brian F. Glenister (University of Iowa, Iowa City, Iowa), William M. Furnish (University of Iowa, Iowa City, Iowa), and Gerd E. G. Westermann (McMaster University, Hamilton, Ontario). These four workers are giants in their fields, and through their research on the biology, systematics, and biostratigraphy of fossil cephalopods, they have enormously expanded our understanding of these animals and the history of planet Earth. This volume is dedicated to them – in recognition of their phenomenal accomplishments. This volume contains 20 chapters covering a wide range of topics about both fossil and present-day cephalopods. We have grouped these chapters into three sections, although we recognize that many of the subjects overlap: ● Phylogeny and Systematics (Chapters 1–7) ● Morphology of Soft and Hard Tissues (Chapters 8–14) ● Biogeography, Biostratigraphy, Ecology, and Taphonomy (Chapters 15–20) v vi Preface Within each section, ammonoids are treated first, followed by coleoids, in order of geologic time. Every chapter was examined by at least two outside reviewers, and their suggestions and other comments, together with those of the editors, were forwarded to the authors. The reviewers made many helpful suggestions; this resulted in substantially improving the quality of the manuscripts. In addition, authors were encouraged to follow General Recommendation 10 of the International Code of Zoological Nomenclature, which suggests that the author and date of every taxon in a publication be cited at least once in that publication. The editors extend their sincere thanks to the following people who reviewed the manuscripts: Emily G. Allen (Bryn Mawr College, Bryn Mawr, Pennsylvania), Roland Anderson (Seattle Aquarium, Seattle, Washington), R. Thomas Becker (WWU, Geologisch-Paläontologisches Institut, Münster, Germany), Hugo Bucher (Paläontologisches Institut und Museum der Universität Zürich, Zürich, Switzerland), Antonio G. Checa (Universidad de Granada, Granada, Spain), William A. Cobban (US Geological Survey, Denver, Colorado), Régis Chirat (Université Claude Bernard Lyon 1, Villeurbanne Cedex, France), Larisa A. Doguzhaeva (Palaeontological Institute of the Russian Academy of Sciences, Moscow, Russia), Jean-Louis Dommergues (Centre des Sciences de la Terre, Université de Bourgogne, Dijon, France), Desmond T. Donovan (University College London, London, United Kingdom), Dirk Fuchs (Freie Universität Berlin, Berlin, Germany), Roger A. Hewitt (Leigh-on-Sea, Essex, United Kingdom), W. James Kennedy (University Museum, Oxford, United Kingdom), William T. Kirchgasser (SUNY, Potsdam, New York), Christian Klug (Paläontologisches Institut und Museum der Universität Zürich, Zürich, Switzerland), Dieter Korn (Museum für Naturkunde der Humboldt- Universität zu Berlin, Berlin, Germany), Cyprian Kulicki (Polska Akademia Nauk, Warsaw, Poland), Neal L. Larson (Black Hills Museum of Natural History, Hill City, South Dakota), George R. McGhee (Rutgers University, New Brunswick, New Jersey), Lisa K. Meeks (Exxon Mobil Development Company, Houston, Texas), Pascal Neige (Centre des Sciences de la Terre, Université de Bourgogne, Dijon, France), W. Bruce Saunders (Bryn Mawr College, Bryn Mawr, Pennsylvania), Dolf Seilacher (Yale University, New Haven, Connecticut), Kazushige Tanabe (University of Tokyo, Tokyo, Japan), Janet R. Voight (The Field Museum, Chicago, Illinois), Frank Weise (Freie Universität Berlin, Berlin, Germany), Wolfgang Weitschat (Geologische-Paläontologisches Institut und Museum der Universität Hamburg, Hamburg, Germany), Gerd E. G. Westermann (Hamilton, Ontario, Canada), and Margaret M. Yacobucci (Bowling Green State University, Bowling Green, Ohio). The editors also thank Susan M. Klofak, Kathy B. Sarg, Steve Thurston, and Stephanie Crooms (American Museum of Natural History) for help in working with the manuscripts (proofing, mailing, word processing, and scanning images), and Judith Terpos (Springer) for guidance in putting the book together. Neil H. Landman New York, New York Richard Arnold Davis Cincinnati, Ohio Royal H. Mapes Athens, Ohio Contents Preface ............................................................................................................. v Part I • Phylogeny and Systematics Chapter 1 • Phylogenetic Practices Among Scholars of Fossil Cephalopods, with Special Reference to Cladistics Pascal Neige, Isabelle Rouget, and Sebastien Moyne 1 Introduction .............................................................................................. 3 2 Sampling Phylogenetic Practices: Review of Paleontological Literature from 1985 to 2003 .................................................................. 4 3 Discussion.................................................................................................. 9 Acknowledgments ............................................................................................ 12 Appendix ........................................................................................................... 12 References ......................................................................................................... 13 Chapter 2 • Patterns of Embryonic Development in Early to Middle Devonian Ammonoids Susan M. Klofak, Neil H. Landman, and Royal H. Mapes 1 Introduction .............................................................................................. 15 2 Material and Methods ............................................................................. 19 3 Results ....................................................................................................... 20 4 Discussion.................................................................................................. 30 5 Conclusions ............................................................................................... 35 Acknowledgments ............................................................................................ 36 Appendix ........................................................................................................... 36 References ......................................................................................................... 53 vii viii Contents Chapter 3 • Conch Form Analysis, Variability, Morphological Disparity, and Mode of Life of the Frasnian (Late Devonian) Ammonoid Manticoceras from Coumiac (Montagne Noire, France) Dieter Korn and Christian Klug 1 Introduction ............................................................................................. 57 2 Material .................................................................................................... 60 3 Conch Parameters ................................................................................... 61 4 Conch
Recommended publications
  • Nautiloid Shell Morphology
    MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOWER STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOIVER 1964 STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS EXOFFICIO THEHONORABLEJACKM.CAMPBELL ................................ Governor of New Mexico LEONARDDELAY() ................................................... Superintendent of Public Instruction APPOINTEDMEMBERS WILLIAM G. ABBOTT ................................ ................................ ............................... Hobbs EUGENE L. COULSON, M.D ................................................................. Socorro THOMASM.CRAMER ................................ ................................ ................... Carlsbad EVA M. LARRAZOLO (Mrs. Paul F.) ................................................. Albuquerque RICHARDM.ZIMMERLY ................................ ................................ ....... Socorro Published February 1 o, 1964 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.50 Contents Page ABSTRACT ....................................................................................................................................................... 1 INTRODUCTION
    [Show full text]
  • First Record of Non-Mineralized Cephalopod Jaws and Arm Hooks
    Klug et al. Swiss J Palaeontol (2020) 139:9 https://doi.org/10.1186/s13358-020-00210-y Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access First record of non-mineralized cephalopod jaws and arm hooks from the latest Cretaceous of Eurytania, Greece Christian Klug1* , Donald Davesne2,3, Dirk Fuchs4 and Thodoris Argyriou5 Abstract Due to the lower fossilization potential of chitin, non-mineralized cephalopod jaws and arm hooks are much more rarely preserved as fossils than the calcitic lower jaws of ammonites or the calcitized jaw apparatuses of nautilids. Here, we report such non-mineralized fossil jaws and arm hooks from pelagic marly limestones of continental Greece. Two of the specimens lie on the same slab and are assigned to the Ammonitina; they represent upper jaws of the aptychus type, which is corroborated by fnds of aptychi. Additionally, one intermediate type and one anaptychus type are documented here. The morphology of all ammonite jaws suggest a desmoceratoid afnity. The other jaws are identifed as coleoid jaws. They share the overall U-shape and proportions of the outer and inner lamellae with Jurassic lower jaws of Trachyteuthis (Teudopseina). We also document the frst belemnoid arm hooks from the Tethyan Maastrichtian. The fossils described here document the presence of a typical Mesozoic cephalopod assemblage until the end of the Cretaceous in the eastern Tethys. Keywords: Cephalopoda, Ammonoidea, Desmoceratoidea, Coleoidea, Maastrichtian, Taphonomy Introduction as jaws, arm hooks, and radulae are occasionally found Fossil cephalopods are mainly known from preserved (Matern 1931; Mapes 1987; Fuchs 2006a; Landman et al. mineralized parts such as aragonitic phragmocones 2010; Kruta et al.
    [Show full text]
  • Paleozoic Rocks Antelope Valley Eureka and Nye Counties Nevada
    :It k 'I! ' Paleozoic Rocks Antelope Valley Eureka and Nye Counties Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 423 Paleozoic Rocks of Antelope Valley Eureka and Nye Counties Nevada By CHARLES W. MERRIAM GEOLOGICAL SURVEY PROFESSIONAL PAPER 423 P,rinciples of stratigraphy applied in descriptive study of the Central Great Basin Paleozoic column UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Silurian system ____________________________________ _ Abstract------------------------------------------- 1 36 Introduction. _____________________________________ _ 2 General features-------------------------------- 36 Geologic setting ______________ ------ ___ --------- 2 Roberts Mountains formation ___________________ _ 37 History of investigation ________________________ _ 5 Lone Mountain dolomite ______ ---_-------------- 39 Purpose and scope _____________ -- ______ ------ --- 6 Devonian system ______________ ---- __ - _- ___ - _------- 41 Acknowledgments ______________________________ _ 6 General features _____________ - ___________ -_----- 41 Geologic structure as related to stratigraphy __________ _ 6 Western Helderberg age limestones of the Monitor Paleontologic studies ______ ..:. _______ ~ ________________ _ 9 · Range ______ - _.- ___ --------------------------- 42 The Paleozoic column at Antelope Valley
    [Show full text]
  • Memorial to Brian Frederick Glenister
    Memorial to Brian Frederick Glenister (1928–2012) DESMOND COLLINS 501-437 Roncesvalles Avenue, Toronto, Ontario M6R 3B9, Canada GILBERT KLAPPER Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois 60208, USA W.W. NASSICHUK Geological Survey of Canada, 3303 33rd Street NW, Calgary, Alberta, T2L 2A7, Canada HOLMES SEMKEN Department of Geoscience, University of Iowa, Iowa City, Iowa 52242, USA CLAUDE SPINOSA Department of Geosciences, Boise State University, Boise, Idaho 83725 Brian F. Glenister, 83, a leading researcher on Paleozoic ammonoids, passed away on 7 June 2012 in Phoenix, Arizona. He was an influential member of the International Stratigraphic Commission and several of its subcommissions, led many seminars on Holocene lithofacies and molluscan biofacies in Florida Bay, and was an inspiring teacher for almost forty years at The University of Iowa in Iowa City. Brian was born in Albany, Western Australia on 28 September 1928 into a large family whose father died four years later. He was then raised by his eldest sister but also encouraged greatly in his studies by his mother. He attended the University of Western Australia in Perth, where he received a B.Sc., majoring in physics in 1948. Brian had taken an introductory geology course in order to fulfill requirements for the degree, and decided that he Brian Glenister at the Conklin Quarry in the liked it enough to switch to geology at the first opportunity, Middle Devonian Cedar Valley Limestone near so he took a postgraduate year of geology courses in Perth Iowa City, 1964, courtesy Desmond Collins. in 1949. In 1950, he enrolled in the M.Sc.
    [Show full text]
  • Devonian and Carboniferous Pre-Stephanian Rocks from the Pyrenees
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio da Universidade da Coruña 1 Published In García-López, S. and Bastida, F. (eds). Palaeozoic conodonts from northern Spain: Eight International Conodont Symposium held in Europe. Instituto Geológico y Minero de España, Serie Cuadernos del Museo Geominero 1, (2002), pp. 367-389. Madrid (438p.). ISBN: 84-74840-446-5. Devonian and Carboniferous pre-Stephanian rocks from the Pyrenees J. SANZ-LÓPEZ Facultad de Ciencias de la Educación. Universidad de A Coruña. Paseo de Ronda 47, 15011 A Coruña (Spain). [email protected] ABSTRACT A stratigraphic description of the Devonian and Carboniferous pre-Variscan rocks of the Pyrenees is presented. The successions are grouped into sedimentary domains that replace the “facies areas” proposed by previous authors for areas with homogeneous stratigraphy. The description of the sedimentary filling is divided into temporal intervals, where the previous stratigraphic correlation, based on lithological criteria, is supplemented by faunal data, especially conodont findings. A simple palaeogeographic model of the sedimentation during the Upper Palaeozoic and data related to southern boundary between the Pyrenean basin and the Cantabro-Ebroian Massif are discussed. Keywords: Devonian, Carboniferous, conodonts, Pyrenees, stratigraphy. RESUMEN Se ha realizado una descripción estratigráfica de las rocas devónicas y carboníferas pre- variscas de los Pirineos. Las sucesiones son agrupadas en dominios sedimentarios que sustituyen a las “áreas de facies” propuestas por los autores previos para zonas con una estratigrafía homogénea. La descripción del relleno sedimentario está dividida en intervalos de tiempo, donde la correlación estratigráfica basada en criterios litológicos está incrementada por los datos faunísticos, sobre todo los hallazgos de conodontos.
    [Show full text]
  • Colour Patterns on Silurian Orthocerid and Pseudorthocerid Conchs from Gotland – Palaeoecological Implications
    Estonian Journal of Earth Sciences, 2015, 64, 1, 74–79 doi: 10.3176/earth.2015.13 Colour patterns on Silurian orthocerid and pseudorthocerid conchs from Gotland – palaeoecological implications Štěpán Mandaa and Vojtěch Turekb a Czech Geological Survey, Klárov 3, 11821 Praha 1, Czech Republic; [email protected] b National Museum, Department of Palaeontology, Václavské náměstí 68, 115 79 Praha 1, Czech Republic; [email protected] Received 30 June 2014, accepted 17 October 2014 Abstract. The longitudinal colour pattern – an adaptively controlled feature functioning in cephalopods as camouflage – is described in two straight-shelled cephalopods from the Silurian of Gotland. A shell of the orthocerid Dawsonoceras annulatum (Sowerby) exhibits relatively broad longitudinal colour bands around the entire shell circumference, which in combination with transverse annuli and undulated growth ridges form a visually reticulate ornament. Such a combination is not known in other Silurian straight-shelled cephalopods. Dawsonoceras annulatum is the only known Palaeozoic cephalopod retaining an almost identical colour pattern in populations inhabiting different palaeo-continents. The shell of the pseudorthocerid Lyecoceras? columnare (Marklin) has densely packed narrow longitudinal colour bands on the entire smooth shell. In this feature the species is very similar to other Silurian and Ordovician pseudorthocerids. However, in Ordovician pseudorthocerids colour bands are restricted dorsally. The type of colouration described herein differs from that of Devonian and younger pseudorthocerids where the shell bears zig-zag bands. Longitudinal colouration around the entire shell circumference supports vertical or subvertical life orientation in both described species. Key words: Silurian, Orthocerida, Pseudorthocerida, colour pattern, palaeoecology. INTRODUCTION poorly known in comparison with oncocerids and discosorids (Nautiloidea).
    [Show full text]
  • Bituminous Soft Body Tissues in the Body Chamber of the Late Triassic Ceratitid Austrotrachyceras Fkom the Austrian Alps
    Mitt. Geo1.-Palaont. Inst. Heft 88 S. 37-50 Hamburg, Oktober 2004 Univ. Hamburg Bituminous soft body tissues in the body chamber of the Late Triassic ceratitid Austrotrachyceras fkom the Austrian Alps LAIUSAA. DOGUZHAEVA,Moskau, HARRYMUTVEI, Stockholm, HERBERT SUMMESBERGER,Wien & ELENADUNCA, Stockholm *) With 5 figures Contents Abstract ............................................................................................................................ 37 Zusamrnenfassung ......................................................................................................... 3 8 I. Introduction .................................................................................................................. 38 11. Material and status of preservation ........................................................................... 39 111. Depositional environment ......................................................................................... 40 W. Methods of study ..................................................................................................... 4 1 V. Observations on the body chamber in Austmtrachyceras ........................................... 43 VI. Discussion ................................................................................................................. 45 Acknowledgements ........................................................................................................ 48 References ..................................................................................................................
    [Show full text]
  • Adaptive Evolution in Paleozoic Coiled Cephalopods
    Paleobiology, 31(2), 2005, pp. 253±268 Adaptive evolution in Paleozoic coiled cephalopods BjoÈrn KroÈger Abstract.ÐCoiled cephalopods constitute a major part of the Paleozoic nekton. They emerged in the Early Ordovician but nearly vanished in the Silurian. The Emsian appearance of ammonoids started a story of evolutionary success of coiled cephalopods, which lasted until the end-Permian extinction event. This story is investigated by using a taxonomic database of 1346 species of 253 genera of coiled nautiloids and 1114 genera of ammonoids. The per capita sampling diversities, the Van Valen metrics of origination and extinction, and the probabilities of origination and ex- tinction were calculated at stage intervals. The outcome of these estimations largely re¯ects the known biotic events of the Paleozoic. The polyphyletic, iterative appearance of coiled cephalopods within this time frame is interpreted to be a process of adaptation to shell-crushing predatory pres- sure. The evolution of the diversity of coiled nautiloids and ammonoids is strongly correlated with- in the time intervals. Once established, assemblages of coiled cephalopods are related to changes in sea level. The general trends of decreasing mean (or background) origination and extinction rates during the Paleozoic are interpreted to re¯ect a successive stabilization of the coiled cephalopod assemblages. Different reproduction strategies in ammonoids and nautiloids apparently resulted in different modes of competition and morphological trends. Signi®cant morphological trends to- ward a stronger ornamentation and a centrally positioned siphuncle characterize the evolution of Paleozoic nautiloids. BjoÈrn KroÈger. Department of Geological Sciences, Ohio University, Athens, Ohio 45701 Present address: Museum fuÈr Naturkunde, Invalidenstrasse 43, D-10115 Berlin, Germany.
    [Show full text]
  • Late Triassic)
    This is a repository copy of Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic). White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/136889/ Version: Accepted Version Article: Dal Corso, J orcid.org/0000-0002-2500-4097, Gianolla, P, Rigo, M et al. (13 more authors) (2018) Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic). Earth-Science Reviews, 185. pp. 732-750. ISSN 0012-8252 https://doi.org/10.1016/j.earscirev.2018.07.004 © 2018 Elsevier B.V. Licensed under the Creative Commons Attribution-Non Commercial No Derivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/). Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Accepted Manuscript Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic) Jacopo Dal Corso, Piero Gianolla, Manuel Rigo, Marco Franceschi, Guido Roghi, Paolo Mietto, Stefano Manfrin, Béla Raucsik, Tamás Budai, Hugh C.
    [Show full text]
  • The Middle Triassic Scleractinia-Like Coral Furcophyllia from the Pamir Mountains
    The Middle Triassic scleractinia−like coral Furcophyllia from the Pamir Mountains GALINA K. MELNIKOVA and EWA RONIEWICZ Melnikova, G.K. and Roniewicz, E. 2007. The Middle Triassic scleractinia−like coral Furcophyllia from the Pamir Mountains. Acta Palaeontologica Polonica 52 (2): 401–406. Furcophyllia is an unusual coral with septa regularly splitting into branching sets called septal brooms. This pattern of septal apparatus is so alien to scleractinians, that, despite a trabecular microstructure of septa resembling that of the Scleractinia, the genus was originally ascribed to a rare group of corals informally referred to as sleractiniamorphs, previ− ously known from the Ordovician and Permian. Genus Furcophyllia emerged together with corals of several groups, after the post−Permian crisis diversification of skeletonized anthozoans, some of them markedly differing in their skeletal fea− tures from typical Scleractinia. So far, the genus was represented by middle Carnian Furcophyllia septafindens from the Dolomites, in the Southern Alps. Here, we report Furcophyllia shaitanica sp. nov. from limestone boulders found in the volcano−clastic deposits of the upper Ladinian Šajtan suite of the South Eastern Pamirs. A new species of Furcophyllia signifies that the genus was a faunal element widely distributed in the Tethys. Key words: Anthozoa, scleractinia−like corals, Triassic, Pamirs, Alps, Republic of Tajikistan, Italy. Galina K. Melnikova [mgk−[email protected]], Geological Institute, Akademy of Sciences of the Republic of Tajikistan, Aini 267, 734063 Dushanbe, Republic of Tajikistan; Ewa Roniewicz [[email protected]], Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL−00−818 Warszawa, Poland. Introduction servation of another species, Furcophyllia shaitanica sp.
    [Show full text]
  • Retallack 2011 Lagerstatten
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Palaeogeography, Palaeoclimatology, Palaeoecology 307 (2011) 59–74 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Exceptional fossil preservation during CO2 greenhouse crises? Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA article info abstract Article history: Exceptional fossil preservation may require not only exceptional places, but exceptional times, as demonstrated Received 27 October 2010 here by two distinct types of analysis. First, irregular stratigraphic spacing of horizons yielding articulated Triassic Received in revised form 19 April 2011 fishes and Cambrian trilobites is highly correlated in sequences in different parts of the world, as if there were Accepted 21 April 2011 short temporal intervals of exceptional preservation globally. Second, compilations of ages of well-dated fossil Available online 30 April 2011 localities show spikes of abundance which coincide with stage boundaries, mass extinctions, oceanic anoxic events, carbon isotope anomalies, spikes of high atmospheric carbon dioxide, and transient warm-wet Keywords: Lagerstatten paleoclimates.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]