Principal Component Analysis, a Powerful Scoring Technique

Total Page:16

File Type:pdf, Size:1020Kb

Principal Component Analysis, a Powerful Scoring Technique Principal Component Analysis, A Powerful Scoring Technique George C. J. Fernandez, University of Nevada - Reno, Reno NV 89557 ABSTRACT be broadly classified into unsupervised and supervised learning methods. The main Data mining is a collection of analytical difference between supervised and techniques to uncover new trends and unsupervised learning methods is the patterns in massive databases. These data underlying model structure. In supervised mining techniques stress visualization to learning, relationships between input and the thoroughly study the structure of data and to target variables are being established. But, in check the validity of the statistical model fit unsupervised learning, no variable is defined as which leads to proactive decision making. a target or response variable. In fact, for most Principal component analysis (PCA) is one of types of unsupervised learning, the targets are the unsupervised data mining tools used to same as the inputs. All the variables are reduce dimensionality in multivariate data and assumed to be influenced by a few components to develop composite scores. In PCA, in unsupervised learning. Because of this dimensionality of multivariate data is reduced feature, it is possible to study large complex by transforming the correlated variables into models with unsupervised learning than with linearly transformed un-correlated variables. supervised learning. PCA summarizes the variation in a correlated Unsupervised learning methods are used multi-attribute to a set of uncorrelated in many fields including medicine and in components, each of which is a particular microarray studies [1] under a wide variety of linear combination of the original variables. names. Analysis of multivariate data plays a key The extracted uncorrelated components are role in data mining and knowledge discovery. called principal components (PC) and are Multivariate data consists of many different estimated from the eigenvectors of the attributes or variables recorded for each covariance or correlation matrix of the original observation. If there are p variables in a variables. Therefore, the objective of PCA is to database, each variable could be regarded as achieve parsimony and reduce dimensionality constituting a different dimension, in a p- by extracting the smallest number dimensional hyperspace. This multi-dimensional components that account for most of the hyperspace is often difficult to visualize, and variation in the original multivariate data and thus the main objectives of unsupervised to summarize the data with little loss of learning methods are to reduce dimensionality information. A user-friendly SAS application and scoring all observations based on a utilizing the latest capabilities of SAS macro to composite index. Also, summarizing perform PCA is presented here. Previously multivariate attributes by, two or three that can published diabetes screening data containing be displayed graphically with minimal loss of multi-attributes is used to reduce multi information is useful in knowledge discovery. attributes into few dimensions. The most commonly practiced unsupervised methods are latent variable Key Words: Data mining, SAS, Data models (principal component and factor exploration, Bi-Plot, Multivariate data, SAS analyses). In principal component analysis macro, (PCA), dimensionality of multivariate data is reduced by transforming the correlated Introduction variables into linearly transformed uncorrelated Data mining is the process of selecting, variables. In factor analysis, a few uncorrelated exploring, and modeling large amounts of hidden factors that explain the maximum data to uncover new trends and patterns in amount of common variance and are massive databases. These analyses lead to responsible for the observed correlation among proactive decision making by stressing data the multivariate data are extracted. The exploration to thoroughly study the structure relationship between the multi-attributes and of data and to check the validity of statistical the extracted hidden factors are then models that fit. Data mining techniques can investigated. Because it is hard to visualize multi- the dataset are measured using different units dimensional space, principal components (annual income, educational level, numbers of analysis (PCA), a popular multivariate cars owned per family) or if different variables technique, is mainly used to reduce the have different variances. Using the correlation dimensionality of p multi-attributes to two or matrix is equivalent to standardizing the three dimensions. A brief account on non- variables to zero mean and unit standard mathematical description and application of deviation. The statistical theory, methods, and PCA are discussed in this paper. For a the computation aspects of PCA are presented mathematical account of principal component in details elsewhere [2]. analysis, the readers are encouraged to refer While the PCA and Exploratory factor analysis the multivariate statistics book [2] (EFA) analyses are functionally very similar and PCA summarizes the variation in a are used for data reduction and summarization, correlated multi-attribute to a set of they are quite different in terms of the uncorrelated components, each of which is a underlying assumptions. In EFA, the variance of particular linear combination of the original a single variable can be partitioned into variables. The extracted uncorrelated common and unique variances. The common components are called principal components variance is considered shared by other variables (PC) and are estimated from the eigenvectors included in the model and the unique variance of the covariance or correlation matrix of the that includes the error component is unique to original variables. Therefore, the objective of that particular variable. Thus, EFA analyzes only PCA is to achieve parsimony and reduce the common variance of the observed variables dimensionality by extracting the smallest whereas PCA summarizes the total variance and number components that account for most of makes no distinction between common and the variation in the original multivariate data unique variance. and to summarize the data with little loss of The selection of PCA over the EFA is information. dependent upon the objective of the analysis In PCA, uncorrelated PC’s are and the assumptions about the variation in the extracted by linear transformations of the original variables. EFA and PCA are considered original variables so that the first few PC’s similar since the objectives of both analyses are contain most of the variations in the original to reduce the original variables into fewer dataset. These PCs are extracted in components, called factors or principal decreasing order of importance so that the components. However, they are also different first PC accounts for as much of the variation since the extracted components serve different as possible and each successive component purposes. In EFA, a small number of factors are accounts for a little less. Following PCA, extracted to account for the inter-correlations analyst tries to interpret the first few principal among the observed variables and to identify components in terms of the original variables, the latent factors that explain why the variables and thereby have a greater understanding of are correlated with each other. But, the the data. To reproduce the total system objective of PCA is to account for the maximum variability of the original p variables, we need portion of the variance present in the original all p PCs. However, if the first few PCs variables with a minimum number of PC. account for a large proportion of the If the observed variables are measured variability (80-90%), we have achieved our relatively error free, or if it is assumed that the objective of dimension reduction. Because the error and unique variance represent a small first principal component accounts for the co- portion of the total variance in the original set variation shared by all attributes, this may be of the variables, then PCA is appropriate. But if a better estimate than simple or weighted the observed variables are only indicators of the averages of the original variables. Thus, PCA latent factor, or if the error variance represents can be useful when there is a severe high- a significant portion of the total variance, then degree of correlation present in the multi- the appropriate technique is EFA. attributes. Previously published diabetes screening In PCA, the extractions of PC can be data [3] containing multi-attributes from made using either original multivariate data glucose tolerance tests, relative weight (x1: sets or using the covariance or the correlation RELWT), fasting plasma glucose levels (x2: matrix if the original data set is not available. GLUFAST), test plasma glucose levels (x3: In deriving PC, the correlation matrix is GLUTEST), plasma insulin level during test (x4: commonly used when different variables in INSTEST), and steady state plasma glucose levels (x5: SSPG) are used here to information on the nature of multi-attributes demonstrate the features of PCA. A that can be used to decide whether to use user-friendly SAS application developed by standardized or un-standardized data in the the author utilizing the latest capabilities of PCA analysis. The minimum and the maximum SAS macros to perform PCA and EFA analyses values describe the range of variation in each with data exploration is presented here. attribute and help to check for any extreme
Recommended publications
  • Arxiv:1910.08883V3 [Stat.ML] 2 Apr 2021 in Real Data [8,9]
    Nonpar MANOVA via Independence Testing Sambit Panda1;2, Cencheng Shen3, Ronan Perry1, Jelle Zorn4, Antoine Lutz4, Carey E. Priebe5 and Joshua T. Vogelstein1;2;6∗ Abstract. The k-sample testing problem tests whether or not k groups of data points are sampled from the same distri- bution. Multivariate analysis of variance (Manova) is currently the gold standard for k-sample testing but makes strong, often inappropriate, parametric assumptions. Moreover, independence testing and k-sample testing are tightly related, and there are many nonparametric multivariate independence tests with strong theoretical and em- pirical properties, including distance correlation (Dcorr) and Hilbert-Schmidt-Independence-Criterion (Hsic). We prove that universally consistent independence tests achieve universally consistent k-sample testing, and that k- sample statistics like Energy and Maximum Mean Discrepancy (MMD) are exactly equivalent to Dcorr. Empirically evaluating these tests for k-sample-scenarios demonstrates that these nonparametric independence tests typically outperform Manova, even for Gaussian distributed settings. Finally, we extend these non-parametric k-sample- testing procedures to perform multiway and multilevel tests. Thus, we illustrate the existence of many theoretically motivated and empirically performant k-sample-tests. A Python package with all independence and k-sample tests called hyppo is available from https://hyppo.neurodata.io/. 1 Introduction A fundamental problem in statistics is the k-sample testing problem. Consider the p p two-sample problem: we obtain two datasets ui 2 R for i = 1; : : : ; n and vj 2 R for j = 1; : : : ; m. Assume each ui is sampled independently and identically (i.i.d.) from FU and that each vj is sampled i.i.d.
    [Show full text]
  • Discussion Notes for Aristotle's Politics
    Sean Hannan Classics of Social & Political Thought I Autumn 2014 Discussion Notes for Aristotle’s Politics BOOK I 1. Introducing Aristotle a. Aristotle was born around 384 BCE (in Stagira, far north of Athens but still a ‘Greek’ city) and died around 322 BCE, so he lived into his early sixties. b. That means he was born about fifteen years after the trial and execution of Socrates. He would have been approximately 45 years younger than Plato, under whom he was eventually sent to study at the Academy in Athens. c. Aristotle stayed at the Academy for twenty years, eventually becoming a teacher there himself. When Plato died in 347 BCE, though, the leadership of the school passed on not to Aristotle, but to Plato’s nephew Speusippus. (As in the Republic, the stubborn reality of Plato’s family connections loomed large.) d. After living in Asia Minor from 347-343 BCE, Aristotle was invited by King Philip of Macedon to serve as the tutor for Philip’s son Alexander (yes, the Great). Aristotle taught Alexander for eight years, then returned to Athens in 335 BCE. There he founded his own school, the Lyceum. i. Aside: We should remember that these schools had substantial afterlives, not simply as ideas in texts, but as living sites of intellectual energy and exchange. The Academy lasted from 387 BCE until 83 BCE, then was re-founded as a ‘Neo-Platonic’ school in 410 CE. It was finally closed by Justinian in 529 CE. (Platonic philosophy was still being taught at Athens from 83 BCE through 410 CE, though it was not disseminated through a formalized Academy.) The Lyceum lasted from 334 BCE until 86 BCE, when it was abandoned as the Romans sacked Athens.
    [Show full text]
  • Education Quarterly Reviews
    Education Quarterly Reviews Allanson, Patricia E., and Notar, Charles E. (2020), Statistics as Measurement: 4 Scales/Levels of Measurement. In: Education Quarterly Reviews, Vol.3, No.3, 375-385. ISSN 2621-5799 DOI: 10.31014/aior.1993.03.03.146 The online version of this article can be found at: https://www.asianinstituteofresearch.org/ Published by: The Asian Institute of Research The Education Quarterly Reviews is an Open Access publication. It May be read, copied, and distributed free of charge according to the conditions of the Creative ComMons Attribution 4.0 International license. The Asian Institute of Research Education Quarterly Reviews is a peer-reviewed International Journal. The journal covers scholarly articles in the fields of education, linguistics, literature, educational theory, research, and methodologies, curriculum, elementary and secondary education, higher education, foreign language education, teaching and learning, teacher education, education of special groups, and other fields of study related to education. As the journal is Open Access, it ensures high visibility and the increase of citations for all research articles published. The Education Quarterly Reviews aiMs to facilitate scholarly work on recent theoretical and practical aspects of education. The Asian Institute of Research Education Quarterly Reviews Vol.3, No.3, 2020: 375-385 ISSN 2621-5799 Copyright © The Author(s). All Rights Reserved DOI: 10.31014/aior.1993.03.03.146 Statistics as Measurement: 4 Scales/Levels of Measurement 1 2 Patricia E. Allanson , Charles E. Notar 1 Liberty University 2 Jacksonville State University. EMail: [email protected] (EMeritus) Abstract This article discusses the basics of the “4 scales of MeasureMent” and how they are applicable to research or everyday tools of life.
    [Show full text]
  • On the Meaning and Use of Kurtosis
    Psychological Methods Copyright 1997 by the American Psychological Association, Inc. 1997, Vol. 2, No. 3,292-307 1082-989X/97/$3.00 On the Meaning and Use of Kurtosis Lawrence T. DeCarlo Fordham University For symmetric unimodal distributions, positive kurtosis indicates heavy tails and peakedness relative to the normal distribution, whereas negative kurtosis indicates light tails and flatness. Many textbooks, however, describe or illustrate kurtosis incompletely or incorrectly. In this article, kurtosis is illustrated with well-known distributions, and aspects of its interpretation and misinterpretation are discussed. The role of kurtosis in testing univariate and multivariate normality; as a measure of departures from normality; in issues of robustness, outliers, and bimodality; in generalized tests and estimators, as well as limitations of and alternatives to the kurtosis measure [32, are discussed. It is typically noted in introductory statistics standard deviation. The normal distribution has a kur- courses that distributions can be characterized in tosis of 3, and 132 - 3 is often used so that the refer- terms of central tendency, variability, and shape. With ence normal distribution has a kurtosis of zero (132 - respect to shape, virtually every textbook defines and 3 is sometimes denoted as Y2)- A sample counterpart illustrates skewness. On the other hand, another as- to 132 can be obtained by replacing the population pect of shape, which is kurtosis, is either not discussed moments with the sample moments, which gives or, worse yet, is often described or illustrated incor- rectly. Kurtosis is also frequently not reported in re- ~(X i -- S)4/n search articles, in spite of the fact that virtually every b2 (•(X i - ~')2/n)2' statistical package provides a measure of kurtosis.
    [Show full text]
  • Univariate and Multivariate Skewness and Kurtosis 1
    Running head: UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 1 Univariate and Multivariate Skewness and Kurtosis for Measuring Nonnormality: Prevalence, Influence and Estimation Meghan K. Cain, Zhiyong Zhang, and Ke-Hai Yuan University of Notre Dame Author Note This research is supported by a grant from the U.S. Department of Education (R305D140037). However, the contents of the paper do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. Correspondence concerning this article can be addressed to Meghan Cain ([email protected]), Ke-Hai Yuan ([email protected]), or Zhiyong Zhang ([email protected]), Department of Psychology, University of Notre Dame, 118 Haggar Hall, Notre Dame, IN 46556. UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 2 Abstract Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74% of univariate distributions and 68% multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17% in a t-test and 30% in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances.
    [Show full text]
  • A Pragmatic Stylistic Framework for Text Analysis
    International Journal of Education ISSN 1948-5476 2015, Vol. 7, No. 1 A Pragmatic Stylistic Framework for Text Analysis Ibrahim Abushihab1,* 1English Department, Alzaytoonah University of Jordan, Jordan *Correspondence: English Department, Alzaytoonah University of Jordan, Jordan. E-mail: [email protected] Received: September 16, 2014 Accepted: January 16, 2015 Published: January 27, 2015 doi:10.5296/ije.v7i1.7015 URL: http://dx.doi.org/10.5296/ije.v7i1.7015 Abstract The paper focuses on the identification and analysis of a short story according to the principles of pragmatic stylistics and discourse analysis. The focus on text analysis and pragmatic stylistics is essential to text studies, comprehension of the message of a text and conveying the intention of the producer of the text. The paper also presents a set of standards of textuality and criteria from pragmatic stylistics to text analysis. Analyzing a text according to principles of pragmatic stylistics means approaching the text’s meaning and the intention of the producer. Keywords: Discourse analysis, Pragmatic stylistics Textuality, Fictional story and Stylistics 110 www.macrothink.org/ije International Journal of Education ISSN 1948-5476 2015, Vol. 7, No. 1 1. Introduction Discourse Analysis is concerned with the study of the relation between language and its use in context. Harris (1952) was interested in studying the text and its social situation. His paper “Discourse Analysis” was a far cry from the discourse analysis we are studying nowadays. The need for analyzing a text with more comprehensive understanding has given the focus on the emergence of pragmatics. Pragmatics focuses on the communicative use of language conceived as intentional human action.
    [Show full text]
  • Mathematics: Analysis and Approaches First Assessments for SL and HL—2021
    International Baccalaureate Diploma Programme Subject Brief Mathematics: analysis and approaches First assessments for SL and HL—2021 The Diploma Programme (DP) is a rigorous pre-university course of study designed for students in the 16 to 19 age range. It is a broad-based two-year course that aims to encourage students to be knowledgeable and inquiring, but also caring and compassionate. There is a strong emphasis on encouraging students to develop intercultural understanding, open-mindedness, and the attitudes necessary for them LOMA PROGRA IP MM to respect and evaluate a range of points of view. B D E I DIES IN LANGUA STU GE ND LITERATURE The course is presented as six academic areas enclosing a central core. Students study A A IN E E N D N DG two modern languages (or a modern language and a classical language), a humanities G E D IV A O L E I W X S ID U IT O T O G E U or social science subject, an experimental science, mathematics and one of the creative IS N N C N K ES TO T I A U CH E D E A A A L F C T L Q O H E S O R I I C P N D arts. Instead of an arts subject, students can choose two subjects from another area. P G E A Y S A E R S It is this comprehensive range of subjects that makes the Diploma Programme a O S E A Y H T demanding course of study designed to prepare students effectively for university entrance.
    [Show full text]
  • Improving Your Exploratory Factor Analysis for Ordinal Data: a Demonstration Using FACTOR
    Practical Assessment, Research, and Evaluation Volume 19 Volume 19, 2014 Article 5 2014 Improving Your Exploratory Factor Analysis for Ordinal Data: A Demonstration Using FACTOR James Baglin Follow this and additional works at: https://scholarworks.umass.edu/pare Recommended Citation Baglin, James (2014) "Improving Your Exploratory Factor Analysis for Ordinal Data: A Demonstration Using FACTOR," Practical Assessment, Research, and Evaluation: Vol. 19 , Article 5. DOI: https://doi.org/10.7275/dsep-4220 Available at: https://scholarworks.umass.edu/pare/vol19/iss1/5 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Practical Assessment, Research, and Evaluation by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Baglin: Improving Your Exploratory Factor Analysis for Ordinal Data: A De A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation. Permission is granted to distribute this article for nonprofit, educational purposes if it is copied in its entirety and the journal is credited. PARE has the right to authorize third party reproduction of this article in print, electronic and database forms. Volume 19, Number 5, June 2014 ISSN 1531-7714 Improving Your Exploratory Factor Analysis for Ordinal Data: A Demonstration Using FACTOR James Baglin, RMIT University, Melbourne, Australia Exploratory factor analysis (EFA) methods are used extensively in the field of assessment and evaluation. Due to EFA’s widespread use, common methods and practices have come under close scrutiny.
    [Show full text]
  • A Practical Guide to Instrument Development and Score Validation in the Social Sciences: the MEASURE Approach
    Practical Assessment, Research, and Evaluation Volume 26 Article 1 2021 A Practical Guide to Instrument Development and Score Validation in the Social Sciences: The MEASURE Approach Michael T. Kalkbrenner New Mexico State University - Main Campus Follow this and additional works at: https://scholarworks.umass.edu/pare Recommended Citation Kalkbrenner, Michael T. (2021) "A Practical Guide to Instrument Development and Score Validation in the Social Sciences: The MEASURE Approach," Practical Assessment, Research, and Evaluation: Vol. 26 , Article 1. DOI: https://doi.org/10.7275/svg4-e671 Available at: https://scholarworks.umass.edu/pare/vol26/iss1/1 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Practical Assessment, Research, and Evaluation by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. A Practical Guide to Instrument Development and Score Validation in the Social Sciences: The MEASURE Approach Cover Page Footnote Special thank you to my colleague and friend, Ryan Flinn, for his consultation and assistance with copyediting. This article is available in Practical Assessment, Research, and Evaluation: https://scholarworks.umass.edu/pare/ vol26/iss1/1 Kalkbrenner: The MEASURE Approach A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation. Permission is granted to distribute this article for nonprofit, educational purposes if it is copied in its entirety and the journal is credited. PARE has the right to authorize third party reproduction of this article in print, electronic and database forms.
    [Show full text]
  • Multivariate Chemometrics As a Strategy to Predict the Allergenic Nature of Food Proteins
    S S symmetry Article Multivariate Chemometrics as a Strategy to Predict the Allergenic Nature of Food Proteins Miroslava Nedyalkova 1 and Vasil Simeonov 2,* 1 Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; [email protected]fia.bg 2 Department of Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria * Correspondence: [email protected]fia.bg Received: 3 September 2020; Accepted: 21 September 2020; Published: 29 September 2020 Abstract: The purpose of the present study is to develop a simple method for the classification of food proteins with respect to their allerginicity. The methods applied to solve the problem are well-known multivariate statistical approaches (hierarchical and non-hierarchical cluster analysis, two-way clustering, principal components and factor analysis) being a substantial part of modern exploratory data analysis (chemometrics). The methods were applied to a data set consisting of 18 food proteins (allergenic and non-allergenic). The results obtained convincingly showed that a successful separation of the two types of food proteins could be easily achieved with the selection of simple and accessible physicochemical and structural descriptors. The results from the present study could be of significant importance for distinguishing allergenic from non-allergenic food proteins without engaging complicated software methods and resources. The present study corresponds entirely to the concept of the journal and of the Special issue for searching of advanced chemometric strategies in solving structural problems of biomolecules. Keywords: food proteins; allergenicity; multivariate statistics; structural and physicochemical descriptors; classification 1.
    [Show full text]
  • Scientific Discovery in the Era of Big Data: More Than the Scientific Method
    Scientific Discovery in the Era of Big Data: More than the Scientific Method A RENCI WHITE PAPER Vol. 3, No. 6, November 2015 Scientific Discovery in the Era of Big Data: More than the Scientific Method Authors Charles P. Schmitt, Director of Informatics and Chief Technical Officer Steven Cox, Cyberinfrastructure Engagement Lead Karamarie Fecho, Medical and Scientific Writer Ray Idaszak, Director of Collaborative Environments Howard Lander, Senior Research Software Developer Arcot Rajasekar, Chief Domain Scientist for Data Grid Technologies Sidharth Thakur, Senior Research Data Software Developer Renaissance Computing Institute University of North Carolina at Chapel Hill Chapel Hill, NC, USA 919-445-9640 RENCI White Paper Series, Vol. 3, No. 6 1 AT A GLANCE • Scientific discovery has long been guided by the scientific method, which is considered to be the “gold standard” in science. • The era of “big data” is increasingly driving the adoption of approaches to scientific discovery that either do not conform to or radically differ from the scientific method. Examples include the exploratory analysis of unstructured data sets, data mining, computer modeling, interactive simulation and virtual reality, scientific workflows, and widespread digital dissemination and adjudication of findings through means that are not restricted to traditional scientific publication and presentation. • While the scientific method remains an important approach to knowledge discovery in science, a holistic approach that encompasses new data-driven approaches is needed, and this will necessitate greater attention to the development of methods and infrastructure to integrate approaches. • New approaches to knowledge discovery will bring new challenges, however, including the risk of data deluge, loss of historical information, propagation of “false” knowledge, reliance on automation and analysis over inquiry and inference, and outdated scientific training models.
    [Show full text]
  • In the Term Multivariate Analysis Has Been Defined Variously by Different Authors and Has No Single Definition
    Newsom Psy 522/622 Multiple Regression and Multivariate Quantitative Methods, Winter 2021 1 Multivariate Analyses The term "multivariate" in the term multivariate analysis has been defined variously by different authors and has no single definition. Most statistics books on multivariate statistics define multivariate statistics as tests that involve multiple dependent (or response) variables together (Pituch & Stevens, 2105; Tabachnick & Fidell, 2013; Tatsuoka, 1988). But common usage by some researchers and authors also include analysis with multiple independent variables, such as multiple regression, in their definition of multivariate statistics (e.g., Huberty, 1994). Some analyses, such as principal components analysis or canonical correlation, really have no independent or dependent variable as such, but could be conceived of as analyses of multiple responses. A more strict statistical definition would define multivariate analysis in terms of two or more random variables and their multivariate distributions (e.g., Timm, 2002), in which joint distributions must be considered to understand the statistical tests. I suspect the statistical definition is what underlies the selection of analyses that are included in most multivariate statistics books. Multivariate statistics texts nearly always focus on continuous dependent variables, but continuous variables would not be required to consider an analysis multivariate. Huberty (1994) describes the goals of multivariate statistical tests as including prediction (of continuous outcomes or
    [Show full text]