Education Quarterly Reviews
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improving Your Exploratory Factor Analysis for Ordinal Data: a Demonstration Using FACTOR
Practical Assessment, Research, and Evaluation Volume 19 Volume 19, 2014 Article 5 2014 Improving Your Exploratory Factor Analysis for Ordinal Data: A Demonstration Using FACTOR James Baglin Follow this and additional works at: https://scholarworks.umass.edu/pare Recommended Citation Baglin, James (2014) "Improving Your Exploratory Factor Analysis for Ordinal Data: A Demonstration Using FACTOR," Practical Assessment, Research, and Evaluation: Vol. 19 , Article 5. DOI: https://doi.org/10.7275/dsep-4220 Available at: https://scholarworks.umass.edu/pare/vol19/iss1/5 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Practical Assessment, Research, and Evaluation by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Baglin: Improving Your Exploratory Factor Analysis for Ordinal Data: A De A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation. Permission is granted to distribute this article for nonprofit, educational purposes if it is copied in its entirety and the journal is credited. PARE has the right to authorize third party reproduction of this article in print, electronic and database forms. Volume 19, Number 5, June 2014 ISSN 1531-7714 Improving Your Exploratory Factor Analysis for Ordinal Data: A Demonstration Using FACTOR James Baglin, RMIT University, Melbourne, Australia Exploratory factor analysis (EFA) methods are used extensively in the field of assessment and evaluation. Due to EFA’s widespread use, common methods and practices have come under close scrutiny. -
A Practical Guide to Instrument Development and Score Validation in the Social Sciences: the MEASURE Approach
Practical Assessment, Research, and Evaluation Volume 26 Article 1 2021 A Practical Guide to Instrument Development and Score Validation in the Social Sciences: The MEASURE Approach Michael T. Kalkbrenner New Mexico State University - Main Campus Follow this and additional works at: https://scholarworks.umass.edu/pare Recommended Citation Kalkbrenner, Michael T. (2021) "A Practical Guide to Instrument Development and Score Validation in the Social Sciences: The MEASURE Approach," Practical Assessment, Research, and Evaluation: Vol. 26 , Article 1. DOI: https://doi.org/10.7275/svg4-e671 Available at: https://scholarworks.umass.edu/pare/vol26/iss1/1 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Practical Assessment, Research, and Evaluation by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. A Practical Guide to Instrument Development and Score Validation in the Social Sciences: The MEASURE Approach Cover Page Footnote Special thank you to my colleague and friend, Ryan Flinn, for his consultation and assistance with copyediting. This article is available in Practical Assessment, Research, and Evaluation: https://scholarworks.umass.edu/pare/ vol26/iss1/1 Kalkbrenner: The MEASURE Approach A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation. Permission is granted to distribute this article for nonprofit, educational purposes if it is copied in its entirety and the journal is credited. PARE has the right to authorize third party reproduction of this article in print, electronic and database forms. -
Levels of Measurement and Types of Variables
01-Warner-45165.qxd 8/13/2007 4:52 PM Page 6 6—— CHAPTER 1 evaluate the potential generalizability of research results based on convenience samples. It is possible to imagine a hypothetical population—that is, a larger group of people that is similar in many ways to the participants who were included in the convenience sample—and to make cautious inferences about this hypothetical population based on the responses of the sample. Campbell suggested that researchers evaluate the degree of similarity between a sample and hypothetical populations of interest and limit general- izations to hypothetical populations that are similar to the sample of participants actually included in the study. If the convenience sample consists of 50 Corinth College students who are between the ages of 18 and 22 and mostly of Northern European family back- ground, it might be reasonable to argue (cautiously, of course) that the results of this study potentially apply to a hypothetical broader population of 18- to 22-year-old U.S.col- lege students who come from similar ethnic or cultural backgrounds. This hypothetical population—all U.S.college students between 18 and 22 years from a Northern European family background—has a composition fairly similar to the composition of the conve- nience sample. It would be questionable to generalize about response to caffeine for pop- ulations that have drastically different characteristics from the members of the sample (such as persons who are older than age 50 or who have health problems that members of the convenience sample do not have). Generalization of results beyond a sample to make inferences about a broader popula- tion is always risky, so researchers should be cautious in making generalizations. -
Chapter 1 Getting Started Section 1.1
Chapter 1 Getting Started Section 1.1 1. (a) The variable is the response regarding frequency of eating at fast-food restaurants. (b) The variable is qualitative. The categories are the number of times one eats in fast-food restaurants. (c) The implied population is responses for all adults in the U.S. 3. (a) The variable is student fees. (b) The variable is quantitative because arithmetic operations can be applied to the fee values. (c) The implied population is student fees at all colleges and universities in the U.S. 5. (a) The variable is the time interval between check arrival and clearance. (b) The variable is quantitative because arithmetic operations can be applied to the time intervals. (c) The implied population is the time interval between check arrival and clearance for all companies in the five-state region. 7. (a) Length of time to complete an exam is a ratio level of measurement. The data may be arranged in order, differences and ratios are meaningful, and a time of 0 is the starting point for all measurements. (b) Time of first class is an interval level of measurement. The data may be arranged in order and differences are meaningful. (c) Class categories is a nominal level of measurement. The data consists of names only. (d) Course evaluation scale is an ordinal level of measurement. The data may be arranged in order. (e) Score on last exam is a ratio level of measurement. The data may be arranged in order, differences and ratios are meaningful, and a score of 0 is the starting point for all measurements. -
Measuring Learners' Attitudes Toward Team Projects: Scale Development
American Journal of Engineering Education – December 2017 Volume 8, Number 2 Measuring Learners’ Attitudes Toward Team Projects: Scale Development Through Exploratory And Confirmatory Factor Analyses Seung Youn (Yonnie) Chyung, Boise State University, USA Donald J. Winiecki, Boise State University, USA Gary Hunt, Boise State University, USA Carol M. Sevier, Boise State University, USA ABSTRACT Team projects are increasingly used in engineering courses. Students may develop attitudes toward team projects from prior experience, and their attitudinal responses could influence their performance during team project-based learning in the future. Thus, instructors need to measure students’ attitudes toward team projects during their learner analysis to better understand students’ characteristics and be proactive in providing effective strategies to help students succeed in a team project environment. The purpose of our study was to develop a survey instrument that measures students’ attitudes toward team projects to be used as a learner analysis tool, derived from our local practical needs and due to the lack of appropriate existing instruments. The study was conducted at a mid-sized university in the northwestern United States during 2015-2016. After we generated an initial pool of 50 items, we administered the survey to 225 undergraduate engineering students, performed exploratory factor analysis on the data, and arrived at a four-factor solution of 20 items and a three-factor solution of 14 items. We tested the two competing solutions with another set of 330 undergraduate engineering students. Based on our confirmatory factor analysis results, we arrived at a three-factor model of 12 items as the finalized scale, which measures: (a) professional capacity building, (b) learning and problem-solving skills development, and (c) workload challenges. -
Career Values Scale Manual and User's Guide Includes Bibliographic References
MANUAL & USER’S GUIDE DONALD MACNAB SHAWN BAKKER GEORGE FITZSIMMONS CVS-M Career Values Scale Manual and User's Guide Includes bibliographic references. © 2005 Psychometrics Publishing. All rights reserved. No portion of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher. Published and distributed by Psychometrics Canada Ltd. 7125-77 Avenue, Edmonton AB T6B 0B5 CANADA www.psychometrics.com ISBN 0-929022-42-4 Printed in Canada Myers-Briggs Type Indicator and MBTI are registered trademarks of the Myers-Briggs Type Indicator Trust in the United States and other countries. CONTENTS Chapter 1 • Introduction Conceptualization of career values in the Career Values scale . 1 Overview of the Career Values Scale . 3 Chapter 2 • Administration Procedures . 6 Appropriate Populations for Administration . 7 Chapter 3 • Using the Career Values Scale Scoring and Reporting . 8 Illustrative Examples . 9 Exercises using the Career Values Scale . 12 Chapter 4 • Development & Norming of the Career Values Scale Development Process . 18 Scale development and item writing . 18 Norming of the CVS . 19 Sten Scores . 21 Means and Standard Deviations . 22 Chapter 5 • Reliability and Validity Reliability . 23 Validity . 25 Concurrent Validity . .25 Construct Validity Evidence . 29 Values and Occupational Interests . 28 Values and Personality . 28 Inter-correlation between WPI Scale . 30 Factor Analysis . 31 Feedback Study . 32 Bibliography • Research on Values . .33 Appendix A • Sample Report . .35 TABLES & FIGURES Chapter 1 Figure 1.1 Career Values Scale Factors and Scale . 3 Chapter 4 Table 4.1 Ethnic Origin of Norming Sample . -
Appropriate Statistical Analysis for Two Independent Groups of Likert
APPROPRIATE STATISTICAL ANALYSIS FOR TWO INDEPENDENT GROUPS OF LIKERT-TYPE DATA By Boonyasit Warachan Submitted to the Faculty of the College of Arts and Sciences of American University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Mathematics Education Chair: Mary Gray, Ph.D. Monica Jackson, Ph.D. Jun Lu, Ph.D. Dean of the College of Arts and Sciences Date 2011 American University Washington, D.C. 20016 © COPYRIGHT by Boonyasit Warachan 2011 ALL RIGHTS RESERVED DEDICATION This dissertation is dedicated to my beloved grandfather, Sighto Chankomkhai. APPROPRIATE STATISTICAL ANALYSIS FOR TWO INDEPENDENT GROUPS OF LIKERT-TYPE DATA BY Boonyasit Warachan ABSTRACT The objective of this research was to determine the robustness and statistical power of three different methods for testing the hypothesis that ordinal samples of five and seven Likert categories come from equal populations. The three methods are the two sample t-test with equal variances, the Mann-Whitney test, and the Kolmogorov-Smirnov test. In additional, these methods were employed over a wide range of scenarios with respect to sample size, significance level, effect size, population distribution, and the number of categories of response scale. The data simulations and statistical analyses were performed by using R programming language version 2.13.2. To assess the robustness and power, samples were generated from known distributions and compared. According to returned p-values at different nominal significance levels, empirical error rates and power were computed from the rejection of null hypotheses. Results indicate that the two sample t-test and the Mann-Whitney test were robust for Likert-type data. -
Management Measurement Scale As a Reference to Determine Interval in a Variable
ATM, Vol 2, No. 1, January 2018 e-ISSN: 2622-6804 p-ISSN: 2622-6812 ■45 Management Measurement Scale As A Reference To Determine Interval In A Variable 1 2 3 Qurotul Aini , Siti Ria Zuliana , Nuke Puji Lestari Santoso 1-3STMIK Raharja, Jl. Jendral Sudirman No.40 Modernland, Cikokol, Tangerang e-mail: [email protected], [email protected], [email protected] Abstract The scale is usually used to check and determine the value of a qualitative factor in quantitative measures. The measurement scale is a management in agreement that is used as a reference to determine the short length of the interval that is in the measuring instrument, so that the measuring instrument when used in measurements will produce quantitative data. The results of the scale management calculation must be interpreted carefully because in addition to producing a rough picture, the respondent's answers are not just straightforward to be trusted. Types of measurement scales: Likert scale, Guttman scale, semantic differential scale, rating scale, Thurstone scale, Borgadus scale, and various other measurement management scales. One of the most difficult jobs for information technology researchers faced with the necessity of measuring variables is: finding directions in the midst of many existing sizes. If there is a good size for a particular variable, it seems that there are not many reasons to compile a new size yourself. Keywords: Scale, Measurement, Variables. 1. Introduction The scale is usually used to check and determine the value of a qualitative factor in quantitative measures. Scale is a tool that is compiled and used by researchers to change the response about a qualitative variable to quantitative data (Mahmud, 2011: 181) [1]. -
To Get SPSS to Conduct a One-Way Chi-Square Test on Your Data
Biomeasurement 4e Dawn Hawkins SPSS24 HELP SHEET: Mann-Whitney U test (using legacy dialogs) CONTENTS 1. How to enter data to do a Mann-Whitney U test test. 2. How to do a Mann-Whitney U test test. 1. How to enter data to do a Mann-Whitney U test test. For general advice on data entry see the “How to enter data into SPSS” help sheet. Mann-Whitney U test tests are used on unrelated data: Data for the dependent variable go in one column and data for the independent variable goes in another. In this example, the dependent variable is BMD and the independent variable is SEX. BMD is bone-density measurement measured in grams per square centimetre of the neck of the femur which is a scale level of measurement). SEX is measured at the nominal level: either 1 (value label = female) or 2 (value label = male). Variable View Data View Data View (View – Value Labels off) (View – Value Labels on) Page 1 of 2 Dawn Hawkins: Anglia Ruskin University, January 2019 Biomeasurement 4e Dawn Hawkins 2. How to do a Mann-Whitney U test test… To get SPSS to conduct a Mann-Whitney U test test : Open your data file. Select: Analyze – Nonparametric Tests – Legacy Dialogs - 2 Independent Samples... This will bring up the Two-Independent-Samples Tests window. Select the variable that you want to analyse, and send it to the Test Variable List box (in the example above this is Bone Density Measurement). Select the independent variable, and send it to the Grouping Variable box (in the example above this is Sex). -
Summated Rating Scale Construction : an Introduction Sage University Papers Series
title : Summated Rating Scale Construction : An Introduction Sage University Papers Series. Quantitative Applications in the Social Sciences ; No. 07-082 author : Spector, Paul E. publisher : Sage Publications, Inc. isbn10 | asin : 0803943415 print isbn13 : 9780803943414 ebook isbn13 : 9780585217154 language : English subject Scaling (Social sciences) publication date : 1992 lcc : H61.27.S66 1992eb ddc : 300/.72 subject : Scaling (Social sciences) Summated Rating Scale Construction An Introduction SAGE UNIVERSITY PAPERS Series: Quantitative Applications in the Social Sciences Series Editor: Michael S. Lewis-Beck, University of Iowa Editorial Consultants Richard A. Berk, Sociology, University of California, Los Angeles William D. Berry, Political Science, Florida State University Kenneth A. Bollen, Sociology, University of North Carolina, Chapel Hill Linda B. Bourque, Public Health, University of California, Los Angeles Jacques A. Hagenaars, Social Sciences, Tilburg University Sally Jackson, Communications, University of Arizona Richard M. Jaeger, Education, University of North Carolina, Greensboro Gary King, Department of Government, Harvard University Roger E. Kirk, Psychology, Baylor University Helena Chmura Kraemer, Psychiatry and Behavioral Sciences, Stanford University Peter Marsden, Sociology, Harvard University Helmut Norpoth, Political Science, SUNY, Stony Brook Frank L. Schmidt, Management and Organization, University of Iowa Herbert Weisberg, Political Science, The Ohio State University Publisher Sara Miller McCune, Sage Publications, Inc. INSTRUCTIONS TO POTENTIAL CONTRIBUTORS For guidelines on submission of a monograph proposal to this series, please write Michael S. Lewis-Beck, Editor Sage QASS Series Department of Political Science University of Iowa Iowa City, IA 52242 Page i Series/Number 07-082 Summated Rating Scale Construction An Introduction Paul E. Spector University of South Florida SAGE PUBLICATIONS The International Professional Publishers Newbury Park London New Delhi Page ii Copyright © 1992 by Sage Publications, Inc. -
Levels of Measurement
8/16/18, 223 PM LO1-5 Distinguish between nominal, ordinal, interval, and ratio levels of measurement. LEVELS OF MEASUREMENT Data can be classified according to levels of measurement. The level of measurement determines how data should be summarized and presented. It also will indicate the type of statistical analysis that can be performed. Here are two examples of the relationship between measurement and how we apply statistics. There are six colors of candies in a bag of M&Ms. Suppose we assign brown a value of 1, yellow 2, blue 3, orange 4, green 5, and red 6. What kind of variable is the color of an M&M? It is a qualitative variable. Suppose someone summarizes M&M color by adding the assigned color values, divides the sum by the number of M&Ms, and reports that the mean color is 3.56. How do we interpret this statistic? You are correct in concluding that it has no meaning as a measure of M&M color. As a qualitative variable, we can only report the count and percentage of each color in a bag of M&Ms. As a second example, in a high school track meet there are eight competitors in the 400-meter run. We report the order of finish and that the mean finish is 4.5. What does the mean finish tell us? Nothing! In both of these instances, we have not used the appropriate statistics for the level of measurement. © Ron Buskirk/Alamy Stock Photo There are four levels of measurement: nominal, ordinal, interval, and ratio. -
Statistics Lesson 1.2.Notebook January 07, 2016
Statistics Lesson 1.2.notebook January 07, 2016 DATA CLASSIFICATION Data sets can consist of two types of data: Qualitative Data data consisting of attributes, labels, or nonnumerical entries. Quantitative Data data consisting of numerical measurements or counts. Suggested retail prices of several Honda vehicles. Model Suggested retail price Accord Sedan $21,680 Civic Hybrid $24,200 Civic Sedan $18,165 Crosstour $27,230 CRV $22,795 Fit $15,425 Odyssey $28,675 Pilot $29,520 Ridgeline $29,450 a. Identify the two data sets. b. Decide whether each data set consists of numerical or nonnumerical entries. c. Specify the qualitative data and the quantitative data. 1 Statistics Lesson 1.2.notebook January 07, 2016 Another characteristic of data is its level of measurement. The level of measurement determines which statistical calculations are meaningful. The four levels of measurement, in order from lowest to highest, are nominal, ordinal, interval, and ratio. Nominal Level of Measurement qualitative only. Data at this level are categorized using names, labels, or qualities. No mathematical computation are mad at this level. Ordinal Level of Measurement Data is qualitative or quantitative. Data at this level can be arranged in order, or ranked, but differences between entries are not meaningful. EXAMPLE 2: Page 10 The two data sets shown are the top 5 grossing movies of 2012 and movie genres. The first data set lists the ranks of five movies. The set consists of ranks1, 2, 3, 4, and 5. These can be ranked in order so this data is at the ordinal level. The ranks have no mathematical meaning.