Commercialisation of Space and Its Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Commercialisation of Space and Its Evolution COMMERCIALISATION OF SPACE AND ITS EVOLUTION WILL NEW WAYS TO SHARE RISKS AND BENEFITS OPEN UP A MUCH LARGER SPACE MARKET? Report 4, May 2007 Rolf SKAAR, ESPI European Space Policy Institute 1 Report 4, May 2007 DISCLAIMER This Report has been prepared for the client in accordance with the associated contract and ESPI will accept no liability for any loss or damage arising out of the provision of the report to third parties. Short Title: ESPI Report 4, May 2007 Ref.: P16- C/20490-001 Editor, Publisher: ESPI European Space Policy Institute A-1030 Vienna, Schwarzenbergplatz 6, Austria http://www.espi.or.at Tel.: +43 1 718 11 18 - 0 Fax - 99 Copyright: © ESPI, May 2007 Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 4, May 2007. All rights reserved” and sample transmission to ESPI before publishing. Price: 11,00 EUR Printed by ESA/ESTEC Layout and Design: M. A. Jakob/ESPI and Panthera.cc Report 4, May 2007 2 Commercialisation of Space Foreword The main purpose of this report is to investigate if new models for sharing risks and benefits may lead to more space activities. Also included in the study are ongoing activities to reduce the cost of access to space and other efforts to make space more affordable such that there will be more space related activities. Examples of such work are the privately funded launcher development by rich entrepreneurs in the US and the increased capabilities of smaller satellites developed by universities and small companies. European Space Policy Institute 3 Report 4, May 2007 TABLE OF CONTENTS Foreword ………………………………………………………………………………………………………………………………… 3 Contents…………………………………………………………………………………………………………………………………… 4 Executive summary………………………………………………………………………………………………………………… 5 1. Capabilities in the private sector………………………………………………………………………………… 8 2. Development of commercial satellite communication………………………………………………… 9 3. Satellite communication constellations………………………………………………………………………… 11 4. Development of commercial Earth observation ……………………………………………………… 13 5. Development of commercial satellite ground station services …………………………………… 15 6. Space Tourism ……………………………………………………………………………………………………………… 16 7. Space transportation, commercialization of launchers………………………………………………… 18 8. Could dramatic changes happen to commercial space………………………………………………… 24 9. Lessons learned, commercial space and role of the governments…………………………… 27 10. Analysis of risks and benefits of proposed actions……………………………………………………… 30 Acknowledgements…………………………………………………………………………………………………………………… 32 Report 4, May 2007 4 Commercialisation of Space Executive Summary The prime goal of this study was to Governments may gain twice if the investigate new ways and present proposed actions are implemented. They new role models for the will pay less for the space derived development of space systems. services they need, and they will help foster a globally competitive industry. By If Governments could be smarter, take far the most critical element is to truly more risks, and change some of their reduce the cost of access to space. policies, commercial space could grow faster and would become more Contrary to general belief, commercial affordable and therefore more useful. space business is already the major The first seven chapters deals with the space activity, in particular when space development of commercial space based applications are included as space activities organized by sector, including a business. The capabilities in the private chapter on Space Tourism. sector are such that any space activity which governments wishes to do, can also be done by the private sector. This The main recommendations of the is due to the fact that over several study are: decades Space Agencies and other Government Agencies have contracted 1. Governments should stimulate out the major portion of its space demand by being “smart customers” mission to industrial companies. and give industry flexibility both in implementation and in getting The major hindrance to more space additional revenues. activities and to more space business is the relative high cost of 2. Governments should invite industry access to space and of the and make serious efforts to really spacecrafts or satellites themselves. reduce the cost of access to space. A part of this study has therefore been 3. The current challenge with Galileo is devoted to ongoing activities to make analyzed and a way forward is space more accessible and more proposed based upon an adaptation affordable. Of special interest to reduce of the way Europe has developed its cost of access to space is the new meteorological satellites and entrepreneurial companies in the US, established Eumetsat. developing with mainly private funding new launchers. 4. The most daring proposal is found in Chapters 8 and 10. Assuming prices Also mentioned in the report is space of launchers can be brought tourism, initially sub-orbital tourism. If significantly down if sufficient the current development in sub-orbital number of same type of launchers tourism leads to also orbital tourism it are used every year, it is proposed to will have a major impact of both the cost develop a system for fully automated of access to space and the volume of assembly in orbit of future medium space business. to heavy mass spacecraft, using multiple launchers, one for each In particular, the cost of manned space individual subassembly. missions could be significantly reduced both for Governments and wealthy Finally in chapter 10, the benefits individuals if the entrepreneurs succeed and risks of the proposed actions are with their ambitious plans. Also the likely analyzed. development of mini satellites is European Space Policy Institute 5 Report 4, May 2007 analysed with their potential for needs, including both civilian and becoming much more capable. military use. This has led to the creation of new entrepreneurial companies, There seems to be a substantial DigitalGlobe and GeoEye, who have difference of mentality in the private designed, built and launched optical sector between the US and Europe in earth observation satellites which they the willingness to take risks in now operate using commercial ground developing commercial space stations and commercial data ventures. transmission to reach the end-users. In the US private sector invested several These companies have their risks billion USD in the so-called satellite reduced by being guaranteed a certain constellations for the Iridium and minimum sale of such pictures, however Globalstar networks. Now wealthy the companies have all technical risks entrepreneurs are investing in the including launch and satellite failure. development of new launchers as well as They basically make their profit from in space tourism. In Europe such high selling the remaining capacity for taking risk individuals or companies are not imagery to other commercial users. visible in space ventures, with the exemption of Sir Richard Branson with Both in Europe and recently also in the his Virgin Galactic sub-orbital space US, the military needs for secure, tourism company. encrypted satellite communication is now met by commercial companies who This study gives several examples of combine the secure military satellite new and different ways of sharing payload with the standard commercial the risks and benefits of space transponders using a common missions compared to the traditional geostationary communication satellite practice. (i.e. Skynet 5 and HispaSat). Another example is ground station This has opened both for more services for telemetry, tracking and commercial space activities and helped control (TT&C) and data reception is now create new space companies. being opened for global competitive commercial tendering, allowing any A key part to foster such paradigm shift satellite owner or potential satellite is that the customer, and in particular owner to have its satellites being ground government or space agency customers, serviced from a globally competitive may buy data or information or a industry with no need to make the particular service based upon investment for their own dedicated competitive bidding, and where the ground station. supplier is free to design the means to The chapter on commercial launchers produce the customers requirements and details the historic background of also to use the government contract as launcher development and the strength an “anchor contract” to develop a system of Ariane 4 and 5 in the global market to produce the desired data, information for launch of communication satellites to or service, and keep for himself the geostationary orbit. An analysis of the additional revenues for selling more potential of the new commercially under data, information or services to other development launchers, like the Falcon customers, using the same system. family from SpaceX is given with its possible impact on the European launch In the US, the government agency, industry. It is recommended that Europe National Geospatial Intelligence Agency establish a road map for bringing up a (NGA), now procures, through the Euro-Russian family of globally Clearview programme, optical pictures competitive low cost launchers. with very high resolution, fresh, newly captured, information (40 cm ground A possible paradigm shift for both resolution and 30 minutes after a pass) commercial and institutional
Recommended publications
  • Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports
    Commercial Space Transportation 2006 Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports January 2006 HQ003606.INDD 2006 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encour- age, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2006 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2006 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Significant 2005 Events . .4 Space Competitions . .6 Expendable Launch Vehicles . .9 Current Expendable Launch Vehicle Systems . .9 Atlas 5 - Lockheed Martin Corporation .
    [Show full text]
  • Trade Studies Towards an Australian Indigenous Space Launch System
    TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system.
    [Show full text]
  • Commercial Orbital Transportation Services
    National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter.
    [Show full text]
  • The Future of European Commercial Spacecraft Manufacturing
    The Future of European Commercial Spacecraft Manufacturing Report 58 May 2016 Cenan Al-Ekabi Short title: ESPI Report 58 ISSN: 2218-0931 (print), 2076-6688 (online) Published in May 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 58; May 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 58 2 May 2016 The Future of European Commercial Spacecraft Manufacturing Table of Contents Executive Summary 5 Introduction – Research Question 7 1. The Global Satellite Manufacturing Landscape 9 1.1 Introduction 9 1.2 Satellites in Operation 9 1.3 Describing the Satellite Industry Market 10 1.4 The Satellite Industry Value Chain 12 1.4.1 Upstream Revenue by Segment 13 1.4.2 Downstream Revenue by Segment 14 1.5 The Different Actors 15 1.5.1 Government as the Prominent Space Actor 15 1.5.2 Commercial Actors in Space 16 1.6 The Satellite Manufacturing Supply Chain 17 1.6.1 European Consolidation of the Spacecraft Manufacturing Industry 18 1.7 The Satellite Manufacturing Industry 19 1.7.1 The Six Prime Contractors 21 1.7.2 The Smaller Commercial Prime Contractors 23 1.7.3 Asian National Prime Contractors in the Commercial Market 23 1.7.4 European Prime Contractors’ Relative Position in the Global Industry 23 2.
    [Show full text]
  • Study of a 100Kwe Space Reactor for Exploration Missions
    Preliminary study of a 100 kWe space reactor concept for exploration missions Elisa CLIQUET, Jean-Marc RUAULT 1), Jean-Pierre ROUX, Laurent LAMOINE, Thomas RAMEE 2), Christine POINOT-SALANON, Alexey LOKHOV, Serge PASCAL 3) 1) CNES Launchers Directorate,Evry, France 2) AREVA TA, Aix en Provence, France 3) CEA DEN/DM2S, F-91191 Gif-sur-Yvette, France NETS 2011 Overview ■ General context of the study ■ Requirements ■ Methodology of the study ■ Technologies selected for final trade-off ■ Reactor trade-off ■ Conversion trade-off ■ Critical technologies and development philosophy ■ Conclusion and perspectives CNES Directorate of Launchers Space transportation division of the French space agency ■ Responsible for the development of DIAMANT, ARIANE 1 to 4, ARIANE 5, launchers ■ System Architect for the Soyuz at CSG program ■ Development of VEGA launcher first stage (P80) ■ Future launchers preparation activities Multilateral and ESA budgets • To adapt the current launchers to the needs for 2015-2020 • To prepare launcher evolutions for 2025 - 2030, if needed • To prepare the new generation of expandable launchers (2025-2030) • To prepare the long future after 2030 with possible advanced launch vehicles ■ Future space transportation prospective activities, such as Exploration needs (including in particular OTV missions) Advanced propulsion technologies investigation General context ■ Background Last French studies on space reactors : • ERATO (NEP) in the 80’s, • MAPS (NTP) in the 90’s • OPUS (NEP) 2002-2004 ■ Since then Nuclear safe orbit
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • The European Launchers Between Commerce and Geopolitics
    The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3.
    [Show full text]
  • The Delta Launch Vehicle- Past, Present, and Future
    The Space Congress® Proceedings 1981 (18th) The Year of the Shuttle Apr 1st, 8:00 AM The Delta Launch Vehicle- Past, Present, and Future J. K. Ganoung Manager Spacecraft Integration, McDonnell Douglas Astronautics Co. H. Eaton Delta Launch Program, McDonnell Douglas Astronautics Co. Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Ganoung, J. K. and Eaton, H., "The Delta Launch Vehicle- Past, Present, and Future" (1981). The Space Congress® Proceedings. 7. https://commons.erau.edu/space-congress-proceedings/proceedings-1981-18th/session-6/7 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. THE DELTA LAUNCH VEHICLE - PAST, PRESENT AND FUTURE J. K. Ganoung, Manager H. Eaton, Jr., Director Spacecraft Integration Delta Launch Program McDonnell Douglas Astronautics Co. McDonnell Douglas Astronautics Co. INTRODUCTION an "interim space launch vehicle." The THOR was to be modified for use as the first stage, the The Delta launch vehicle is a medium class Vanguard second stage propulsion system, was used expendable booster managed by the NASA Goddard as the Delta second stage and the Vanguard solid Space Flight Center and used by the U.S. rocket motor became Delta's third stage. Government, private industry and foreign coun­ Following the eighteen month development program tries to launch scientific, meteorological, and failure to launch its first payload into or­ applications and communications satellites.
    [Show full text]
  • Paper Session II-A-Current Status of the Ariane 4 Program and of The
    1994 (31st) Space Exploration and Utilization The Space Congress® Proceedings for the Good of the World Apr 27th, 1:00 PM - 4:00 PM Paper Session II-A - Current Status of the Ariane 4 Program and of the Ariane 5 Development James R. Youdale Arianespace Inc. Washington, D.C. Douglas A. Heydon Arianespace Inc. Washington, D.C. Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Youdale, James R. and Heydon, Douglas A., "Paper Session II-A - Current Status of the Ariane 4 Program and of the Ariane 5 Development" (1994). The Space Congress® Proceedings. 16. https://commons.erau.edu/space-congress-proceedings/proceedings-1994-31st/april-27-1994/16 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Current Status of the Ariane 4 Program and of the Ariane 5 Development James R. Youdale1 and Douglas A. Heyden~ Arianespace Inc. Washington, D.C. Abstract This paper provides an overview of the commercial siruation of Arianespace, a general update regarding its technical and operational activities and its near and medium term prospects. A summary of the Ariane 4 "track record" is given and the latest improvement to its third staae the HIO III, is presented. Operational improvements that reduce the interval between two = ' consecutive laWlches are also addressed. The ratiollale for going to Ariane 5 is discussed and the current status of the Ariane 5 development program is reviewed.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]
  • Space in a Changing Environment: a European Point of View
    NNoottee ddee ll’’IIffrrii ______________________________________________________________________ Space in a Changing Environment: A European Point of View ______________________________________________________________________ Guilhem Penent March 2015 . Space Policy Programme The Institut français des relations internationales (Ifri) is a research center and a forum for debate on major international political and economic issues. Headed by Thierry de Montbrial since its founding in 1979, Ifri is a non- governmental and a non-profit organization. As an independent think tank, Ifri sets its own research agenda, publishing its findings regularly for a global audience. Using an interdisciplinary approach, Ifri brings together political and economic decision-makers, researchers and internationally renowned experts to animate its debate and research activities. With offices in Paris and Brussels, Ifri stands out as one of the rare French think tanks to have positioned itself at the very heart of European debate. The opinions expressed in this text are the responsibility of the author alone. ISBN: 978-2-36567-364-8 © All rights reserved, Ifri, 2015 Ifri Ifri-Bruxelles 27, rue de la Procession Rue Marie-Thérèse, 21 75740 Paris Cedex 15 – FRANCE 1000 – Bruxelles – BELGIQUE Tél. : +33 (0)1 40 61 60 00 Tél. : +32 (0)2 238 51 10 Fax : +33 (0)1 40 61 60 60 Fax : +32 (0)2 238 51 15 Email : [email protected] Email : [email protected] Website : Ifri.org Ce qu’il faut retenir Le développement des activités spatiales en Europe s’est longtemps joué dans le cadre de l’agence spatiale européenne et des agences nationales. Les Européens ont acquis ce faisant une expérience inégalée pour résoudre les tensions entre intérêts nationaux et collectifs.
    [Show full text]
  • Towards a New Franco-German Partnership in Space
    Joint ESPI - FRS - IFRI - SWP Policy Memorandum: Towards a New Franco-German Partnership in Space November 2008 France and Germany have long been partners in space. However new attitudes and directions in their respective space programmes are affecting the nature of traditional Franco-German space relations in an evolving European space context. The longstanding partnership is at a juncture. In this context there is a need for a new dialogue to define what future directions the partnership should take. This joint memorandum initiated by the European Space Policy Institute (ESPI), and prepared together with the Paris-based Fondation pour la Recherche Stratégique (FRS) and the Institut Français des Relations Internationales (IFRI), as well as the Berlin-based German Stiftung Wissenschaft und Politik (SWP) aims to provide reflections on the state of current Franco-German space relations and to lay out issues to be considered in the months ahead by decision makers in both countries to provide a new impetus to the Franco-German partnership. It also aims to serve as an input to the upcoming ESA Council at Ministerial Level. Introduction France and Germany have from the beginning of European space activities played a pivotal role in shaping European strategies and contents and are historically among the main promoters of a strong European space effort. The Franco-German axis is thus often referred to as the driving force of the European space endeavour. Furthermore, even with a geographically enlarged European Union (EU) and European Space Agency (ESA), the Franco-German relationship remains a major force shaping the priorities and broader agenda of Europe in space.
    [Show full text]