Infrared Thermometry Understanding and Using the Infrared Thermometer

Total Page:16

File Type:pdf, Size:1020Kb

Infrared Thermometry Understanding and Using the Infrared Thermometer Infrared Thermometry Understanding and using the Infrared Thermometer Advances in electronic and detector Electromagnetic Spectrum the curve increases, increasing the area (energy) technology have resulted in a variety of Infrared radiation is part of the electromagnetic beneath it, and (2) the wavelength associated spectrum which includes radio waves, with the peak energy (highest point of the curve) non-contact infrared thermometers (IR) for microwaves, visible light, ultraviolet, gamma- shifts to the shorter wavelength end of the scale. industrial and scientific use. It is important and X-rays (Figure 2). These various forms of to understand their major differences in energy are categorised by frequency or This relationship is described by Wien’s order to select the proper unit for a given wavelength.* Note that visible light extends from Displacement Law: 3 application. .4 to .7 micron, with ultraviolet (UV) shorter than λmax = 2.89 x 10 /T .4 micron, and infrared longer than .7 micron, where λmax = wavelength of peak Infrared Theory extending to several hundred microns. In energy in microns Energy is emitted by all objects having a practice, the .5 to 20 micron band is used for IR T = temperature in degrees Kelvin temperature greater than absolute zero. This temperature measurement. energy increases as the object gets hotter, For example, the wavelength for peak energy permitting measurement of temperature by Planck’s Law emitted from an object at 2617 degrees Celsius measurement of the emitted energy, particularly The amplitude (intensity) of radiated energy can (2890 degrees Kelvin) is: the radiation in the infrared portion of the be plotted as a function of wavelength, based on 3 spectrum of emitted radiation. Figure 1 shows Planck’s law. Figure 3 shows the radiation λmax = 2.89 x 10 /2890K = 1.0 µm a typical infrared radiation thermometer. emission curves for objects at two different Lens or mirror temperatures. By convention, longer wavelengths Another illustration involves heating a steel billet. Dare shownAmp to the right on IR graphs, reverse of At about 600°C (1100°F), a dull, red glow is Lens or mirror electromagnetic spectrum charts, such as Figure emitted from the steel. As the temperature D Amp 2. The area under each curve represents the total increases, the colour changes from red to Output to Signal controller, energy radiated atConditioner the associated temperature. orange and yellow as the peak passes into the Output to Signalrecorder, etc. controller, Conditioner visible light spectrum. Finally, the energy emitted recorder, etc. Note that two changes occur simultaneously as throughout the entire visible spectrum is at such Figure 1: Block diagram, infrared pyrometer temperature is increased: (1) the amplitude of a high level that white light is given off by the steel at about 1650°C. Because the peak of the curve shifts as temperature increases, selection ed owaves oadcast oadcast; ed α owaves elevision Radar Infrar Visible Light Ultraviolet X-Rays -Rays Longwave Radio AM Radio Br Shortwave Radio FM Radio Br T Micr of the optimum portion of the spectrum is oadcast oadcast; elevision α 10 KHz 1 MHz Longwave Radio 100 MHz AM Radio Br 100 µm Shortwave Radio FM Radio 1 Br µm T Micr Radar Infrar Visible Light Ultraviolet X-Rays -Rays important to achieving satisfactory infrared The IR to UV spectrum 10 KHz 1 MHz 100 MHz 100 µm 1 µm thermometer performance. is explained as shown. The IR to UV spectrum Emissivity is explained as shown. een ellow Infrared Red Y Gr Blue Violet UV Emissivity is defined as the ratio of the energy 20 µm .7 µm .4 µm radiated by an object at a given temperature to een the energy emitted by a perfect radiator, or ellow Infrared Red Y Gr Blue Violet UV blackbody, at the same temperature. The 20 µm .7 µm .4 µm emissivity of a blackbody is 1.0. All values of Figure 2: Electromagnetic spectrum and light spectrum *Wavelength (λ) is inversely related to frequency (f): λ = c/f, where c = velocity of the wave; λ is measured in microns (µm); 1 µm = 10-6m. emissivity fall between 0.0 and 1.0. Emissivity (E), a major but not uncontrollable factor in IR temperature measurement, cannot be ignored. Related to emissivity are reflectivity (R), a measure of an object’s ability to reflect 700C infrared energy, and transmissivity (T), a measure of an object’s ability to pass or transmit IR 25C Relative Radiation Intensity energy. Since all radiation must be either transmitted, reflected or absorbed: l 1 µm 10 µm 20 µm A + R + T = 1.0 Figure 3: Radiation intensities derived from Planck’s Law (Blackbody radiation curves) Calex Electronics Limited Tel: +44 (0)1525 373178/853800 Fax: +44 (0)1525 851319 Online: http://www.calex.co.uk R E Hot Source T Pyrometer Consider the example in Figure 4a. Object X is a hot block of material, Y is colder; therefore, 1.0 heat will be radiated from X to Y. Some heat will be absorbed by Y, some reflected, and some transmitted through Y. The three dispositions 5 must equal 100%, represented as 1.0 for ransmission T coefficients of absorption, reflection, and transmission. If A = 1.0, all the heat is Wavelength 0 in microns absorbed; if R = 1.0, then A = T = 0. Usually 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (µm) some combination exists: Figure 5: IR transmission through atmosphere A = .7 (70% absorbed) window to pass a high percentage of the IR 2. Increase the size of object B until it fills R = .2 (20% reflected) energy at that wavelength. the thermometer’s FOV. T = .1 (10% transmitted) 3. Decrease the emissivity compensator Atmospheric Absorption (described later) to compensate for the Sum = 1.0 (100% energy radiated from One of the first considerations in selecting the loss of energy. X to Y) spectral response (wavelength range at which 4. Get a thermometer with a smaller FOV. an instrument is sensitive to IR) of a device is atmospheric absorption. Certain components Field of view is described either by its angle or of the atmosphere, such as water vapour, CO2 by a distance-to-size ratio (D:S). If D:S = 20:1, A and other materials, absorb IR at certain and if the distance to the object divided by the wavelengths, increasing the amount of energy diameter of the object is exactly 20, then the R X Y absorbed with the distance between the object object exactly fills the instrument’s field of view. T and the instrument. Therefore, if these A D:S ratio of 60:1 equals a field of view of 1°. absorbents are ignored, an instrument may read correctly when near the object, but several Since most IR thermometers have fixed focus Figure 4a: Energy budget for all radiated IR energy degrees lower a few feet away because the optics, the minimum measurement spot occurs displayed temperature represents an average of at the specified focal distance. Typically, if an If an object is in a state of thermal equilibrium, it the object temperature and the atmosphere instrument has fixed-focus optics with a 120: 1 is getting neither hotter nor colder; the amount 700C temperature. The reading may be affected by D:S ratio and a focal length of 1.5 m the of energy it is radiating must equal the amount of changes in humidity or the presence of steam or minimum spot (resolution) the instrument can energy it is absorbing, so A = E25C (emissivity). By Relative Radiation Intensity certain gases. Fortunately, there are “windows” achieve is 1.5 m divided by 120, or 12.5 mm at substitution: in the IR spectrum which allow these absorption a distance of 1.5 m from the instrument. This is l bands to be avoided. Figure 5 illustrates these significant when the size of the object is close 1 µm 10 µmE + R + T = 1.0 20 µm windows. to the minimum spot the instrument can If any two of these values are known, the third is measure. easy to find. Figure 4b illustrates this relationship. Optics Target size and distance are critical to accuracy Most general-purpose IR thermometers use a for most IR thermometers. Every IR instrument focal distance between 50 cm and 150 cm; R has a field of view (FOV), an angle of vision in special close-focus instruments use a 12.5 mm which it will average all the temperatures it sees to 300 mm focal distance, and may be E Hot Source (Figure 6). equipped with a light-spot aiming device to T ensure that the instrument is measuring the Pyrometer exact spot desired. Some long-range instruments for checking insulators and Figure 4b: Total IR radiation reaching pyrometer transformers on pylons use a 15 m focal Object B Wall distance. Sighting scopes are often used at longer distances or for small spot sizes. Some Transmission Object A IR thermometers use variable-focus optics, In some applications, particularly glass and thin- especially high performance fixed-mount types film plastics, transmission becomes an important Figure 6: Field of view of instrument with through-the-lens sighting. factor. If it is desired to measure the temperature of these substances using IR, a wavelength Object A fills the field of view of the sensor; the Fibre optics are alternatively used in special must be chosen where the material appears only temperature seen is that of object A, so the applications where there is not enough space opaque or semi-opaque. Often it is desired to temperature of object A will be accurately to mount a sensing head, or where radio measure temperatures under the surface of an indicated.
Recommended publications
  • Radiant Heating with Infrared
    W A T L O W RADIANT HEATING WITH INFRARED A TECHNICAL GUIDE TO UNDERSTANDING AND APPLYING INFRARED HEATERS Bleed Contents Topic Page The Advantages of Radiant Heat . 1 The Theory of Radiant Heat Transfer . 2 Problem Solving . 14 Controlling Radiant Heaters . 25 Tips On Oven Design . 29 Watlow RAYMAX® Heater Specifications . 34 The purpose of this technical guide is to assist customers in their oven design process, not to put Watlow in the position of designing (and guaranteeing) radiant ovens. The final responsibility for an oven design must remain with the equipment builder. This technical guide will provide you with an understanding of infrared radiant heating theory and application principles. It also contains examples and formulas used in determining specifications for a radiant heating application. To further understand electric heating principles, thermal system dynamics, infrared temperature sensing, temperature control and power control, the following information is also available from Watlow: • Watlow Product Catalog • Watlow Application Guide • Watlow Infrared Technical Guide to Understanding and Applying Infrared Temperature Sensors • Infrared Technical Letter #5-Emissivity Table • Radiant Technical Letter #11-Energy Uniformity of a Radiant Panel © Watlow Electric Manufacturing Company, 1997 The Advantages of Radiant Heat Electric radiant heat has many benefits over the alternative heating methods of conduction and convection: • Non-Contact Heating Radiant heaters have the ability to heat a product without physically contacting it. This can be advantageous when the product must be heated while in motion or when physical contact would contaminate or mar the product’s surface finish. • Fast Response Low thermal inertia of an infrared radiation heating system eliminates the need for long pre-heat cycles.
    [Show full text]
  • Experiment 5: Molar Volume of a Gas (Mg + Hcl)
    1 CHEM 30A EXPERIMENT 5: MOLAR VOLUME OF A GAS (MG + HCL) Learning Outcomes Upon completion of this lab, the student will be able to: 1) Demonstrate a single replacement reaction. 2) Calculate the molar volume of a gas at STP using experimental data. 3) Calculate the molar mass of a metal using experimental data. Introduction Metals that are above hydrogen in the activity series will displace hydrogen from an acid and produce hydrogen gas. Magnesium is an example of a metal that is more active than hydrogen in the activity series. The reaction between magnesium metal and aqueous hydrochloric acid is an example of a single replacement reaction (a type of redox reaction). The chemical equation for this reaction is shown below: Mg(s) + 2HCl(aq) è MgCl2(aq) + H2(g) Equation 1 When the reaction between the metal and the acid is conducted in a eudiometer, the volume of the hydrogen gas produced can be easily determined. In the experiment described below magnesium metal will be reacted with an excess of hydrochloric acid and the volume of hydrogen gas produced at the experimental conditions will be determined. According to Avogadro’s law, the volume of one mole of any gas at Standard Temperature and Pressure (STP = 273 K and 1 atm) is 22.4 L. Two important Gas Laws are required in order to convert the experimentally determined volume of hydrogen gas to that at STP. 1. Dalton’s law of partial pressures. 2. Combined gas law. Dalton’s Law of Partial Pressures According to Dalton’s law of partial pressures in a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of the individual gases.
    [Show full text]
  • Use of Laboratory Equipement
    USE OF LABORATORY EQUIPEMENT C. Laboratory Thermometers Most thermometers are based upon the principle that liquids expand when heated. Most common thermometers use mercury or colored alcohol as the liquid. These thermometers are constructed as that a uniform-diameter capillary tube surmounts a liquid reservoir. To calibrate a thermometer, one defines two reference points, normally the freezing point of water (0°C, 32°F) and the boiling point of water (100°C, 212°F) at 1 tam of pressure (1 tam = 760 mm Hg). Once these points are marked on the capillary, its length is then subdivided into uniform divisions called degrees. There are 100° between these two points on the Celsius (°C, or centigrade) scale and 180° between those two points on the Fahrenheit (°F) scale. °F = 1.8 °C + 32 The Thermometer and Its Calibration This section describes the proper technique for checking the accuracy of your thermometer. These measurements will show how measured temperatures (read from thermometer) compare with true temperatures (the boiling and freezing points of water). The freezing point of water is 0°C; the boiling point depends upon atmospheric pressure but at sea level it is 100°C. Option 1: Place approximately 50 mL of ice in a 250-mL beaker and cover the ice with distilled water. Allow about 15 min for the mixture to come to equilibrium and then measure and record the temperature of the mixture. Theoretically, this temperature is 0°C. Option 2: Set up a 250-mL beaker on a wire gauze and iron ring. Fill the beaker about half full with distilled water.
    [Show full text]
  • Understanding Infrared Light
    TEACHER/PARENT ACTIVITY MANUAL Joint Polar Satellite System Understanding Infrared Light This activity educates students about the electromagnetic spectrum, or different forms of light detected by Earth observing satellites. The Joint Polar Satellite System (JPSS), a collaborative effort between NOAA and NASA, detects various wavelengths of the electromagnetic spectrum including infrared light to measure the temperature of Earth’s surface, oceans, and atmosphere. The data from these measurements provide the nation with accurate weather forecasts, hurricane warnings, wildfire locations, and much more! Provided is a list of materials that can be purchased to complete several learning activities, including simulating infrared light by constructing homemade infrared goggles. Learning Objectives Next Generation Science Standards (Grades 5–8) Performance Disciplinary Description Expectation Core Ideas 4-PS4-1 PS4.A: • Waves, which are regular patterns of motion, can be made in water Waves and Their Wave Properties by disturbing the surface. When waves move across the surface of Applications in deep water, the water goes up and down in place; there is no net Technologies for motion in the direction of the wave except when the water meets a Information Transfer beach. (Note: This grade band endpoint was moved from K–2.) • Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks). 4-PS4-2 PS4.B: An object can be seen when light reflected from its surface enters the Waves and Their Electromagnetic eyes. Applications in Radiation Technologies for Information Transfer 4-PS3-2 PS3.B: Light also transfers energy from place to place.
    [Show full text]
  • Ear and Forehead Thermometer
    Ear and Forehead Thermometer INSTRUCTION MANUAL Item No. 91807 19.PJN174-14_GA-USA_HHD-Ohrthermometer_DSO364_28.07.14 Montag, 28. Juli 2014 14:37:38 USAD TABLE OF CONTENTS No. Topic Page 1.0 Definition of symbols 5 2.0 Application and functionality 6 2.1 Intended use 6 2.2 Field of application 7 3.0 Safety instructions 7 3.1 General safety instructions 7 3.3 Environment for which the DSO 364 device is not suited 9 3.4 Usage by children and adolescents 10 3.5 Information on the application of the device 10 4.0 Questions concerning body temperature 13 4.1 What is body temperature? 13 4.2 Advantages of measuring the body tempera- ture in the ear 14 4.3 Information on measuring the body tempera- ture in the ear 15 5.0 Scope of delivery / contents 16 6.0 Designation of device parts 17 7.0 LCD display 18 8.0 Basic functions 19 8.1 Commissioning of the device 19 8.2 Warning indicator if the body temperature is 21 too high 2 19.PJN174-14_GA-USA_HHD-Ohrthermometer_DSO364_28.07.14 Montag, 28. Juli 2014 14:37:38 TABLE OF CONTENTS USA No. Topic Page 8.3 Backlighting / torch function 21 8.4 Energy saving mode 22 8.5 Setting °Celsius / °Fahrenheit 22 9.0 Display / setting time and date 23 9.1 Display of time and date 23 9.2 Setting time and date 23 10.0 Memory mode 26 11.0 Measuring the temperature in the ear 28 12.0 Measuring the temperature on the forehead 30 13.0 Object temperature measurement 32 14.0 Disposal of the device 33 15.0 Battery change and information concerning batteries 33 16.0 Cleaning and care 36 17.0 “Cleaning” warning indicator 37 18.0 Calibration 38 19.0 Malfunctions 39 20.0 Technical specification 41 21.0 Warranty 44 3 19.PJN174-14_GA-USA_HHD-Ohrthermometer_DSO364_28.07.14 Montag, 28.
    [Show full text]
  • Equilibrium, Energy Conservation, and Temperature Chapter Objectives
    Equilibrium, Energy Conservation, and Temperature Chapter Objectives 1. Explain thermal equilibrium and how it relates to energy transport. 2. Understand temperature ranges important for biological systems and temperature sensing in mammals. 3. Understand temperature ranges important for the environment. 1. Thermal equilibrium and the Laws of thermodynamics Laws of Thermodynamics Energy of the system + = Constant Energy of surrounding Energy Conservation 1. Thermal equilibrium and the Laws of thermodynamics Energy conservation Rate of Rate of Rate of Rate of Energy In Energy Out Energy Generation Energy Storage 1. Thermal equilibrium and the Laws of thermodynamics Ex) Solid is put in the liquid. specific mass heat temperature Solid Liquid Energy = m( − ) 1. Thermal equilibrium and the Laws of thermodynamics Energy In = − Energy Out = 0 Energy Generation = 0 Energy Storage = ( +) − −( −) >> Use the numerical values as shown in last page’s picture and equation of energy conservation. Using energy conservation, we can find the final or equilibrium temperature. 2. Temperature in Living System Most biological activity is confined to a rather narrow temperature range of 0~60°C 2. Temperature in Living System Temperature Response to Human body How temperature affects the state of human body? - As shown in this picture, it is obvious that temperature needs to be controlled. 2. Temperature in Living System Temperature Sensation in Humans - The human being can perceive different gradations of cold and heat, as shown in this picture. 2. Temperature in Living System Thermal Comfort of Human and Animals - Body heat losses are affected by air temperature, humidity, velocity and other factors. - Especially, affected by humidity. 3.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Thermal Physics
    Slide 1 / 163 Slide 2 / 163 Thermal Physics www.njctl.org Slide 3 / 163 Slide 4 / 163 Thermal Physics · Temperature, Thermal Equilibrium and Thermometers · Thermal Expansion · Heat and Temperature Change · Thermal Equilibrium : Heat Calculations · Phase Transitions · Heat Transfer · Gas Laws Temperature, Thermal Equilibrium · Kinetic Theory Click on the topic to go to that section · Internal Energy and Thermometers · Work in Thermodynamics · First Law of Thermodynamics · Thermodynamic Processes · Second Law of Thermodynamics · Heat Engines · Entropy and Disorder Return to Table of Contents Slide 5 / 163 Slide 6 / 163 Temperature and Heat Temperature Here are some definitions of temperature: In everyday language, many of us use the terms temperature · A measure of the warmth or coldness of an object or substance with and heat interchangeably reference to some standard value. But in physics, these terms have very different meanings. · Any of various standardized numerical measures of this ability, such Think about this… as the Kelvin, Fahrenheit, and Celsius scale. · When you touch a piece of metal and a piece of wood both · A measure of the ability of a substance, or more generally of any resting in front of you, which feels warmer? · When do you feel warmer when the air around you is 90°F physical system, to transfer heat energy to another physical system. and dry or when it is 90°F and very humid? · A measure of the average kinetic energy of the particles in a sample · In both cases the temperatures of what you are feeling is of matter, expressed in terms of units or degrees designated on a the same.
    [Show full text]
  • Thermal Equilibrium State of the World Oceans
    Thermal equilibrium state of the ocean Rui Xin Huang Department of Physical Oceanography Woods Hole Oceanographic Institution Woods Hole, MA 02543, USA April 24, 2010 Abstract The ocean is in a non-equilibrium state under the external forcing, such as the mechanical energy from wind stress and tidal dissipation, plus the huge amount of thermal energy from the air-sea interface and the freshwater flux associated with evaporation and precipitation. In the study of energetics of the oceanic circulation it is desirable to examine how much energy in the ocean is available. In order to calculate the so-called available energy, a reference state should be defined. One of such reference state is the thermal equilibrium state defined in this study. 1. Introduction Chemical potential is a part of the internal energy. Thermodynamics of a multiple component system can be established from the definition of specific entropy η . Two other crucial variables of a system, including temperature and specific chemical potential, can be defined as follows 1 ⎛⎞∂η ⎛⎞∂η = ⎜⎟, μi =−Tin⎜⎟, = 1,2,..., , (1) Te m ⎝⎠∂ vm, i ⎝⎠∂ i ev, where e is the specific internal energy, v is the specific volume, mi and μi are the mass fraction and chemical potential for the i-th component. For a multiple component system, the change in total chemical potential is the sum of each component, dc , where c is the mass fraction of each component. The ∑i μii i mass fractions satisfy the constraint c 1 . Thus, the mass fraction of water in sea ∑i i = water satisfies dc=− c , and the total chemical potential for sea water is wi∑iw≠ N −1 ∑()μμiwi− dc .
    [Show full text]
  • Infrared Forehead Thermometer (4DET-306) Quick Start Guide
    Infrared Forehead Thermometer (4DET-306) Quick Start Guide To take a forehead temperature: 1” (2-3cm) 1 Press the power button , wait for 2 beeps. 2 Aim the thermometer at the center of the forehead about 1 inch (2-3 cm) from the skin and press the start button S T A R T . 2 START If the body temperature is below 100°F (38.7°C) you will hear one short beep and a 1 happy face will appear on the display. If the body temperature is above 100°F (38.7°C) you will hear one long beep followed by three short beeps and a sad face will appear on the display. Detailed instructions are included in the packaging Temperature Taking Hints and Tips • All body site temperatures are not the same. The • Temporal artery temperature changes faster than a temperature taken at different sites on the body will vary temperature taken rectally, orally or under the arm. A significantly. A forehead (temporal) temperature, for difference of 1°F (.6°C) is normal. Body temperature can example, is usually 0.5°F (0.3°C) to 1.0°F (0.6°C) lower change throughout the day. than an oral temperature. • Consistently low temperature readings may be caused by a • Make certain the thermometer is in FOREHEAD MODE. dirty instrument window. Use an alcohol wipe or a cotton • Non-contact infrared thermometers measure surface swab moistened with alcohol (70% isopropyl) to clean the temperature. Hold the device approximately 1 inch (2-3 instrument window and housing. Gently wipe and let air dry.
    [Show full text]
  • Undersea Warfare
    THE EMERGING ERA IN UNDERSEA WARFARE BRYAN CLARK www.csbaonline.org 1 The Emerging Era in Undersea Warfare Introduction U.S. defense strategy depends in large part on America’s advantage in undersea warfare. Quiet submarines are one of the U.S. military’s most viable means of gathering intelligence and pro- jecting power in the face of mounting anti-access/area-denial (A2/AD) threats being fielded by a growing number of countries. As a result, undersea warfare is an important, if not essential, element of current and future U.S. operational plans. America’s rivals worry in particular about the access submarines provide for U.S. power-projection operations, which can help offset an enemy’s numerical or geographic advantages.1 Broadly speaking, undersea warfare is the employment of submarines and other undersea sys- tems in military operations within and from the underwater domain. These missions may be both offensive and defensive and include surveillance, insertion of Special Forces, and destroy- ing or neutralizing enemy military forces and undersea infrastructure. America’s superiority in undersea warfare is the product of decades of research and develop- ment (R&D), a sophisticated defense industrial base, operational experience, and high-fidelity training. This superiority, however, is far from assured. U.S. submarines are the world’s qui- etest, but new detection techniques are emerging that do not rely on the noise a submarine makes, and that may render traditional manned submarine operations far riskier in the future. America’s competitors are likely pursuing these technologies while also expanding their own undersea forces.
    [Show full text]
  • Model 914-604 Infra-Red Thermometer
    Not recommended for use in measuring shiny or polished metal surfaces (stainless steel, aluminum, etc.) The reading will not be accurate. It is not possible to take measurements through transparent materials (glass, Plexiglas, etc.). It will Model 914-604 measure the temperature of the transparent surface Infra-red thermometer instead. It is not possible to measure air temperatures. Measurement errors can occur due to air contaminated with dust, steam, smoke, etc. Battery Replacement: Battery is low and no more measurements are possible. Replace the battery immediately with a CR2032 lithium button cell. 1- Power off the thermometer before replacing the battery A malfunction may occur if the power is on during battery replacement. If a malfunction occurs, restart the device. 2-Twist the battery cover on the back of thermometer to loosen the cover and remove the old battery. A coin will work well. 3- The new CR2032 battery is installed positive side up. Take care that the metal contacts at the top of the battery Congratulations on your purchase of the Infrared compartment are not bent. Thermometer! One-click for a temperature reading. Metal Contacts Metal Contacts No surface contact required, prevents contamination. Take a Measurement: 4-Replace the battery cover and tighten. Place the thermometer close to the item to measure. Click the button once to measure the surface temperature. The Troubleshooting: reading will display for 15 seconds. Problem Solution Hold the button for ongoing readings. No Display: Press the button Auto Shut Off: Ensure battery polarity is correct When the button has not been pressed for 15 seconds, the Change the battery thermometer will automatically shut off to save power.
    [Show full text]