4164-01-P Department of Health and Human Services
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quaternary Ammonium Compounds
FACT SHEET: Quaternary Ammonium Compounds Quaternary ammonium compounds, also known as “quats” or “QACs,” include a number of chemicals used as sanitizers and disinfectants, including benzalkonium chloride, benzethonium chloride, cetalkonium chloride, cetrimide, cetrimonium bromide, cetylpyridinium chloride, glycidyl trimethyl, ammonium chloride, and stearalkonium chloride.[i] In general, quats cause toxic effects through all Mutagenicity routes of exposure including inhalation, Some quats have shown to be mutagenic and to ingestion, dermal application, and irrigation of damage animal DNA and DNA in human body cavities. Exposure to diluted solutions may lymphocytes at much lower levels than are result in mild irritation, while concentrated present in cleaning chemicals.[6] solutions are corrosive, causing burns to the skin and mucous Membranes. They can produce Antimicrobial Resistance systemic toxicity and can also cause allergic Genes have been discovered that mediate reactions.[2] resistance to quats. There has been an association of some of these genes with beta lactamase genes, Asthma and Allergies raising concern for a relationship between Of particular interest with regard to use as disinfectant resistance and antibiotic resistance.[7] disinfectants in the COVID-19 pandemic, quats increase the risk for asthma and allergic Reproductive Toxicity sensitization. Evidence from occupational Mice whose cages were cleaned with QACs had exposures shows increased risk of rhinitis and very low fertility rates. [8] Exposure to a common asthma -
Tonsillopharyngitis - Acute (1 of 10)
Tonsillopharyngitis - Acute (1 of 10) 1 Patient presents w/ sore throat 2 EVALUATION Yes EXPERT Are there signs of REFERRAL complication? No 3 4 EVALUATION Is Group A Beta-hemolytic Yes DIAGNOSIS Streptococcus (GABHS) • Rapid antigen detection test infection suspected? (RADT) • roat culture No TREATMENT EVALUATION No A Supportive management Is GABHS confi rmed? B Pharmacological therapy (Non-GABHS) Yes 5 TREATMENT A EVALUATE RESPONSEMIMS Supportive management TO THERAPY C Pharmacological therapy • Antibiotics Poor/No Good D Surgery, if recurrent or complicated response response REASSESS PATIENT COMPLETE THERAPY & REVIEW THE DIAGNOSIS© Not all products are available or approved for above use in all countries. Specifi c prescribing information may be found in the latest MIMS. B269 © MIMS Pediatrics 2020 Tonsillopharyngitis - Acute (2 of 10) 1 ACUTE TONSILLOPHARYNGITIS • Infl ammation of the tonsils & pharynx • Etiologies include bacterial (group A β-hemolytic streptococcus, Haemophilus infl uenzae, Fusobacterium sp, etc) & viral (infl uenza, adenovirus, coronavirus, rhinovirus, etc) pathogens • Sore throat is the most common presenting symptom in older children TONSILLOPHARYNGITIS 2 EVALUATION FOR COMPLICATIONS • Patients w/ sore throat may have deep neck infections including epiglottitis, peritonsillar or retropharyngeal abscess • Examine for signs of upper airway obstruction Signs & Symptoms of Sore roat w/ Complications • Trismus • Inability to swallow liquids • Increased salivation or drooling • Peritonsillar edema • Deviation of uvula -
FDA-2015-N-0101; and FDA-2016-N-0124
DE PARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Silver Spring MD 20993 November 18, 2020 Docket Nos. FDA-1975-N-0012; FDA-2015-N-0101; and FDA-2016-N-0124 The American Cleaning Institute Attention: James Kim, PhD Vice President, Science and Regulatory Affairs 1401 H Street, N.W. Suite 700 Washington, D.C. 20005 Re: Benzalkonium Chloride, Benzethonium Chloride, Chloroxylenol, Ethanol, and Povidone-Iodine Dear Dr. Kim: This letter responds to The American Cleaning Institute’s (ACI’s) July 14, 2020 communication regarding the deferral from final rulemaking under the over-the-counter (OTC) Drug Review on benzalkonium chloride, benzethonium chloride, chloroxylenol, ethanol, and povidone-iodine for use in nonprescription (often referred to as over-the-counter or OTC) consumer antiseptic wash, health care antiseptic, and consumer antiseptic rub drug products. In March 2016, FDA issued letters granting requests to defer three active ingredients— benzalkonium chloride, benzethonium chloride, and chloroxylenol—from inclusion in the final rulemaking for the December 2013 proposed rule for OTC consumer antiseptic washes (78 FR 76444). Similarly, in January 2017, FDA issued letters granting requests to defer six active ingredients—benzalkonium chloride, benzethonium chloride, chloroxylenol, ethanol, povidone- iodine, and isopropyl alcohol—from inclusion in the final rulemaking for the May 2015 proposed rule for OTC health care antiseptics (80 FR 25166). In October 2017, FDA issued letters granting requests to defer three active -
Comparison of Effectiveness Disinfection of 2%
ORIGINAL RESEARCH Journal of Dentomaxillofacial Science (J Dentomaxillofac Sci ) December 2018, Volume 3, Number 3: 169-171 P-ISSN.2503-0817, E-ISSN.2503-0825 Comparison of effectiveness disinfection of 2% Original Research glutaraldehyde and 4.8% chloroxylenol on tooth extraction instruments in the Department of Oral CrossMark http://dx.doi.org/10.15562/jdmfs.v3i2.794 Maxillofacial Surgery, Faculty of Dentistry, University of North Sumatera Month: December Ahyar Riza,* Isnandar, Indra B. Siregar, Bernard Volume No.: 3 Abstract Objective: To compare disinfecting effectiveness of 2% glutaraldehyde while the control group was treated with 4.8% chloroxylenol. Each Issue: 2 and 4.8% chloroxylenol on tooth extraction instruments at the instrument was pre-cleaned using a brush, water and soap for both Department of Oral Surgery, Faculty of Dentistry, University of North groups underwent the disinfection process. Sumatera. Results: The results were statistically analyzed using Mann-Whitney Material and Methods: This was an experimental study with post- Test. The comparison between glutaraldehyde and chloroxylenol First page No.: 147 test only control group design approach. Purposive technique is showed a significant difference to the total bacteria count on applied to collect samples which are lower molar extraction forceps. In instrument after disinfection (p=0.014 < 0.05). this study, sample were divided into 2 groups and each consisting of 18 Conclusion: 2% glutaraldehyde was more effective than 4.8% P-ISSN.2503-0817 instruments. The treatment group was treated with 2% glutaraldehyde chloroxylenol at disinfecting lower molar extraction forceps. Keyword: Disinfection, Glutaraldehyde, Chloroxylenol, Forceps E-ISSN.2503-0825 Cite this Article: Riza A, Siregar IB, Isnandar, Bernard. -
NINDS Custom Collection II
ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC -
Quantitative Assessment of Antimicrobial Activity of PLGA Films Loaded with 4-Hexylresorcinol
Journal of Functional Biomaterials Article Quantitative Assessment of Antimicrobial Activity of PLGA Films Loaded with 4-Hexylresorcinol Michael Kemme * and Regina Heinzel-Wieland Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt, University of Applied Sciences, Stephanstrasse 7, 64295 Darmstadt, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-6151-1638631 Received: 18 December 2017; Accepted: 9 January 2018; Published: 11 January 2018 Abstract: Profound screening and evaluation methods for biocide-releasing polymer films are crucial for predicting applicability and therapeutic outcome of these drug delivery systems. For this purpose, we developed an agar overlay assay embedding biopolymer composite films in a seeded microbial lawn. By combining this approach with model-dependent analysis for agar diffusion, antimicrobial potency of the entrapped drug can be calculated in terms of minimum inhibitory concentrations (MICs). Thus, the topical antiseptic 4-hexylresorcinol (4-HR) was incorporated into poly(lactic-co-glycolic acid) (PLGA) films at different loadings up to 3.7 mg/cm2 surface area through a solvent casting technique. The antimicrobial activity of 4-HR released from these composite films was assessed against a panel of Gram-negative and Gram–positive bacteria, yeasts and filamentous fungi by the proposed assay. All the microbial strains tested were susceptible to PLGA-4-HR films with MIC values down to 0.4% (w/w). The presented approach serves as a reliable method in screening and quantifying the antimicrobial activity of polymer composite films. Moreover, 4-HR-loaded PLGA films are a promising biomaterial that may find future application in the biomedical and packaging sector. -
A Screening-Based Approach to Circumvent Tumor Microenvironment
JBXXXX10.1177/1087057113501081Journal of Biomolecular ScreeningSingh et al. 501081research-article2013 Original Research Journal of Biomolecular Screening 2014, Vol 19(1) 158 –167 A Screening-Based Approach to © 2013 Society for Laboratory Automation and Screening DOI: 10.1177/1087057113501081 Circumvent Tumor Microenvironment- jbx.sagepub.com Driven Intrinsic Resistance to BCR-ABL+ Inhibitors in Ph+ Acute Lymphoblastic Leukemia Harpreet Singh1,2, Anang A. Shelat3, Amandeep Singh4, Nidal Boulos1, Richard T. Williams1,2*, and R. Kiplin Guy2,3 Abstract Signaling by the BCR-ABL fusion kinase drives Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myelogenous leukemia (CML). Despite their clinical activity in many patients with CML, the BCR-ABL kinase inhibitors (BCR-ABL-KIs) imatinib, dasatinib, and nilotinib provide only transient leukemia reduction in patients with Ph+ ALL. While host-derived growth factors in the leukemia microenvironment have been invoked to explain this drug resistance, their relative contribution remains uncertain. Using genetically defined murine Ph+ ALL cells, we identified interleukin 7 (IL-7) as the dominant host factor that attenuates response to BCR-ABL-KIs. To identify potential combination drugs that could overcome this IL-7–dependent BCR-ABL-KI–resistant phenotype, we screened a small-molecule library including Food and Drug Administration–approved drugs. Among the validated hits, the well-tolerated antimalarial drug dihydroartemisinin (DHA) displayed potent activity in vitro and modest in vivo monotherapy activity against engineered murine BCR-ABL-KI–resistant Ph+ ALL. Strikingly, cotreatment with DHA and dasatinib in vivo strongly reduced primary leukemia burden and improved long-term survival in a murine model that faithfully captures the BCR-ABL-KI–resistant phenotype of human Ph+ ALL. -
Comparative Analysis of Chlorhexidine Gluconate, Povidone Iodine and Chloroxylenol As Scrubbing Solution
British Journal of Pharmacology and Toxicology 1(2): 93-95, 2010 ISSN: 2044-2467 © Maxwell Scientific Organization, 2010 Submitted date: May 20, 2010 Accepted date: August 21, 2010 Published date: November 15, 2010 Comparative Analysis of Chlorhexidine Gluconate, Povidone Iodine and Chloroxylenol as Scrubbing Solution 1A.S. Yakubu, 1A.A. Abubakar, 2M.D. Salihu, 1A. Jibril and 1I. Isah 1Department of Veterinary Medicine, Surgery and Theriogenology 2Department of Veterinary Public Health and Preventive Medicine, Usmanu Danfodiyo University, Sokoto Abstract: The study was carried out to determine the efficacy of stock concentration of the commonly used disinfectant as scrub solution for surgical site in goats. The evaluation of efficacy and safety of commercially available disinfectant and antiseptic (0.3% Chlorhexidine gluconate, 0.4% Chloroxylenol and 4% Povidone iodine) as scrub solution for surgical site, using stock concentration was assessed in thirty (30) Red Sokoto goats undergoing non elective surgical procedures at Usmanu Danfodiyo University, Veterinary Teaching Hospital and Zonal Veterinary Clinic, Sokoto. Colony counting was used to quantify skin bacteria Colony Forming Unit (CFU) at surgical site before and after skin preparation. Reduction of CFU before and after preparation was significant with all the three disinfectants compared (p<0.05) and the result shows that Povidone iodine and Chloroxylenol to be less effecacious than Chlorhexidine gluconate when mean colony forming unit after two minute of preparing the surgical sites. -
AP76: 4-Hexyl-Resorcinol CAS#: 136-77-6
the art and science of smart patch testingTM AP76: 4-hexyl-resorcinol CAS#: 136-77-6 Patient Information Your patch test result indicates that you have a contact allergy to 4-hexyl- resorcinol. This contact allergy may cause your skin to react when it is exposed to this substance although it may take several days for the symptoms to appear. Typical symptoms include redness, swelling, itching, and fluid-filled blisters. Where is 4-hexyl-resorcinol found? 4-hexyl-resorcinol has a long history of human pharmaceutical use as a topical skin and mucosal disinfectant for treatment of superficial wounds, and as a component of soaps, handwashes, and skin cleaners. 4-hexyl-resorcinol has been used in dilute solutions as antiseptic gargles or throat spray, and in lozenges. 4-hexyl-resorcinol is still marketed today as an ingredient of certain throat lozenges. How can you avoid contact with 4-hexyl-resorcinol? Avoid products that list any of the following names in the ingredients: 1,3-Benzenediol, 4-hexyl- Cystoids anthelmintic 1,3-Dihydroxy-4-hexylbenzene EINECS 205-257-4 1,3-Dihydroxy-4-n-hexylbenzene Gelovermin 4-(1-Hexyl)resorcinol Hexylresorcin [German] 4-06-00-06048 (Beilstein Handbook Ref) Hexylresorcinol 4-Hexyl-1,3-benzenediol Hexylresorcinolum 4-Hexyl-1,3-dihydroxybenzene Hexylresorzin 4-Hexylresorcine Hidesol 4-n-Hexylresorcinol HSDB 566 Adrover NCI-C55787 AI3-08055 NSC 1570 Antascarin Oxana Ascaricid p-Hexylresorcinol Ascarinol Prensol Ascaryl Resorcinol, 4-hexyl- BRN 2048312 S.T. 37 Caprokol ST 37 CCRIS 888 ST-37 Crystoids Worm-agen What are some products that may contain 4-hexyl-resorcinol? Cosmetics: Clearasil Adult Care Lotions and Skin Care: KOPNOL Mouthwash / Gargle Throat Lozenges: Sucrets Throat Spray *For additional information about products that might contain 4-hexyl-resorcinol, go to the Household Product Database online (http:/householdproducts.nlm.nih.gov) at the United States National Library of Medicine. -
Disinfection of Tonometers a Report by the American Academy of Ophthalmology
Ophthalmic Technology Assessment Disinfection of Tonometers A Report by the American Academy of Ophthalmology Anna K. Junk, MD,1 Philip P. Chen, MD,2 Shan C. Lin, MD,3 Kouros Nouri-Mahdavi, MD,4 Sunita Radhakrishnan, MD,5 Kuldev Singh, MD, MPH,6 Teresa C. Chen, MD7 Objective: To examine the efficacy of various disinfection methods for reusable tonometer prisms in eye care and to highlight how disinfectants can damage tonometer tips and cause subsequent patient harm. Methods: Literature searches were conducted last in October 2016 in the PubMed and the Cochrane Library databases for original research investigations. Reviews, non-English language articles, nonophthalmology articles, surveys, and case reports were excluded. Results: The searches initially yielded 64 unique citations. After exclusion criteria were applied, 10 labo- ratory studies remained for this review. Nine of the 10 studies used tonometer prisms and 1 used steel discs. The infectious agents covered in this assessment include adenovirus 8 and 19, herpes simplex virus (HSV) 1 and 2, human immunodeficiency virus 1, hepatitis C virus, enterovirus 70, and variant Creutzfeldt-Jakob disease. All 4 studies of adenovirus 8 concluded that after sodium hypochlorite (dilute bleach) disinfection, the virus was undetectable, but only 2 of the 4 studies found that 70% isopropyl alcohol (e.g., alcohol wipes or soaks) eradicated all viable virus. All 3 HSV studies concluded that both sodium hypochlorite and 70% isopropyl alcohol eliminated HSV. Ethanol, 70% isopropyl alcohol, dilute bleach, and mechanical cleaning all lack the ability to remove cellular debris completely, which is necessary to prevent prion transmission. Therefore, single-use tonometer tips or disposable tonometer covers should be considered when treating patients with suspected prion disease. -
Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01 -
Nomination Background: N-(3-Chloroallyl)Hexaminium Chloride
• NATIONAL TOXICOLOGY PROGRAM EXECUTIVE SUMMARY OF SAFETY AND TOXICITY INFORMATION N-(3-CHLOROALLYL)HEXAMINIUM CHLORIDE CAS Number 4080-31-3 July 16, 1991 Submitted to: NATIONAL TOXICOLOGY PROGRAM Submitted by: Arthur D. Little, Inc. Chemical Evaluation Committee Draft Report • • TABLE OF CONTENTS Page L NOMINATION HISTORY AND REVIEW .................... 1 II. CHEMICAL AND PHYSICAL DATA ....................... 3 III. PRODUCTION/USE ................................... 5 IV. EXPOSURE/REGULATORY STATUS...................... .10 V. TOXICOLOGICAL EFFECTS ........................... .11 VI. STRUCTURE ACTIVITY RELATIONSHIPS ..................48 VII. REFERENCES ..................................... : . ......... 49 APPENDIX I, ON-LINE DATA BASES SEARCHED ............ .53 APPENDIX II, SAFETY INFORMATION.................... .54 1 ,, .• • • OVERVJEWl Nomination History: N-(3-Chloroallyl)hexaminium chloride was originally nominated for carcinogenicity testing by the National Cancer Institute (NCI) in 1980 with moderate priority. In March 1980, the Chemical Evaluation Committee (CEC) recommended carcinogenicity testing. Due to budgetary cutbacks in 1982, this compound was reevaluated and recommended for in vitro cytogenetics and chemical disposition testing by the CEC, and was selected for chemical disposition testing by the Executive Committee. The renomination of this chemical in 1984 by the NCI was based on potentialfor significant human exposure and concern that it may be carcinogenic due to structural considerations. This recent nomination was