Quality Standards Body Care Ingredients Generated on May 5, 2014
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tonsillopharyngitis - Acute (1 of 10)
Tonsillopharyngitis - Acute (1 of 10) 1 Patient presents w/ sore throat 2 EVALUATION Yes EXPERT Are there signs of REFERRAL complication? No 3 4 EVALUATION Is Group A Beta-hemolytic Yes DIAGNOSIS Streptococcus (GABHS) • Rapid antigen detection test infection suspected? (RADT) • roat culture No TREATMENT EVALUATION No A Supportive management Is GABHS confi rmed? B Pharmacological therapy (Non-GABHS) Yes 5 TREATMENT A EVALUATE RESPONSEMIMS Supportive management TO THERAPY C Pharmacological therapy • Antibiotics Poor/No Good D Surgery, if recurrent or complicated response response REASSESS PATIENT COMPLETE THERAPY & REVIEW THE DIAGNOSIS© Not all products are available or approved for above use in all countries. Specifi c prescribing information may be found in the latest MIMS. B269 © MIMS Pediatrics 2020 Tonsillopharyngitis - Acute (2 of 10) 1 ACUTE TONSILLOPHARYNGITIS • Infl ammation of the tonsils & pharynx • Etiologies include bacterial (group A β-hemolytic streptococcus, Haemophilus infl uenzae, Fusobacterium sp, etc) & viral (infl uenza, adenovirus, coronavirus, rhinovirus, etc) pathogens • Sore throat is the most common presenting symptom in older children TONSILLOPHARYNGITIS 2 EVALUATION FOR COMPLICATIONS • Patients w/ sore throat may have deep neck infections including epiglottitis, peritonsillar or retropharyngeal abscess • Examine for signs of upper airway obstruction Signs & Symptoms of Sore roat w/ Complications • Trismus • Inability to swallow liquids • Increased salivation or drooling • Peritonsillar edema • Deviation of uvula -
C3gc42589d1.Pdf
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2014 Supporting Information Highly Efficient, NiAu-catalyzed Hydrogenolysis of Lignin into Phenolic Chemicals Jiaguang Zhang, Hiroyuki Asakura, Jeaphianne van Rijn, Jun Yang, Paul Duchesne, Bin Zhang, Xi Chen, Peng Zhang, Mark Saeys* and Ning Yan* Contents 1 Materials ............................................................................................................................................. 3 2 Synthesis of substrates ....................................................................................................................... 3 2.1 Organosolv Lignin ......................................................................................................................... 3 2.2 2‐phenoxy‐1‐phenethanol ........................................................................................................... 3 2.3 2‐(2‐methoxyphenyl)oxy‐1‐phenethanol ..................................................................................... 4 2.4 2‐(2,6‐dimethoxyphenyl)oxy‐1‐phenethanol ............................................................................... 4 2.5 1‐benzyloxy‐2‐methoxybenzene .................................................................................................. 4 3 Catalyst preparation and reaction ...................................................................................................... 4 3.1 Catalyst preparation .................................................................................................................... -
NINDS Custom Collection II
ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC -
Quantitative Assessment of Antimicrobial Activity of PLGA Films Loaded with 4-Hexylresorcinol
Journal of Functional Biomaterials Article Quantitative Assessment of Antimicrobial Activity of PLGA Films Loaded with 4-Hexylresorcinol Michael Kemme * and Regina Heinzel-Wieland Department of Chemical Engineering and Biotechnology, Hochschule Darmstadt, University of Applied Sciences, Stephanstrasse 7, 64295 Darmstadt, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-6151-1638631 Received: 18 December 2017; Accepted: 9 January 2018; Published: 11 January 2018 Abstract: Profound screening and evaluation methods for biocide-releasing polymer films are crucial for predicting applicability and therapeutic outcome of these drug delivery systems. For this purpose, we developed an agar overlay assay embedding biopolymer composite films in a seeded microbial lawn. By combining this approach with model-dependent analysis for agar diffusion, antimicrobial potency of the entrapped drug can be calculated in terms of minimum inhibitory concentrations (MICs). Thus, the topical antiseptic 4-hexylresorcinol (4-HR) was incorporated into poly(lactic-co-glycolic acid) (PLGA) films at different loadings up to 3.7 mg/cm2 surface area through a solvent casting technique. The antimicrobial activity of 4-HR released from these composite films was assessed against a panel of Gram-negative and Gram–positive bacteria, yeasts and filamentous fungi by the proposed assay. All the microbial strains tested were susceptible to PLGA-4-HR films with MIC values down to 0.4% (w/w). The presented approach serves as a reliable method in screening and quantifying the antimicrobial activity of polymer composite films. Moreover, 4-HR-loaded PLGA films are a promising biomaterial that may find future application in the biomedical and packaging sector. -
European Patent Office of Opposition to That Patent, in Accordance with the Implementing Regulations
(19) TZZ __T (11) EP 2 416 766 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/045 (2006.01) A61K 45/06 (2006.01) 09.04.2014 Bulletin 2014/15 A61K 8/34 (2006.01) A61P 17/00 (2006.01) A61P 17/16 (2006.01) A61Q 19/00 (2006.01) (2006.01) (2006.01) (21) Application number: 09701247.0 A23L 1/30 A23L 2/02 A23L 2/39 (2006.01) A23C 9/13 (2006.01) A23C 11/10 (2006.01) A61Q 5/02 (2006.01) (22) Date of filing: 09.04.2009 A61Q 11/00 (2006.01) A61Q 15/00 (2006.01) A61Q 17/04 (2006.01) A61Q 19/02 (2006.01) A61K 8/02 (2006.01) A61Q 19/04 (2006.01) (86) International application number: PCT/EP2009/054336 (87) International publication number: WO 2009/087242 (16.07.2009 Gazette 2009/29) (54) COMPOSITIONS COMPRISING TRANS-TERT-BUTYL CYCLOHEXANOL AS SKIN IRRITATION- REDUCING AGENT ZUSAMMENSETZUNGEN MIT TRANS-TERT-BUTYL-CYCLOHEXANOL ALS MITTEL ZUR REDUZIERUNG VON HAUTREIZUNGEN COMPOSITIONS COMPRENANT DU TRANS-TERT-BUTYL CYCLOHEXANOL EN TANT QU’AGENT RÉDUISANT L’IRRITATION CUTANÉE (84) Designated Contracting States: • KROHN, Michael AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 64653 Lorsch (DE) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • ZINKE, Holger PT RO SE SI SK TR 64646 Heppenheim (DE) (43) Date of publication of application: (74) Representative: Eisenführ Speiser 15.02.2012 Bulletin 2012/07 Patentanwälte Rechtsanwälte PartGmbB Postfach 10 60 78 (73) Proprietor: Symrise AG 28060 Bremen (DE) 37603 Holzminden (DE) (56) References cited: (72) Inventors: EP-A2- 0 755 910 WO-A1-97/22332 • VIELHABER, Gabriele WO-A1-2008/117254 US-A- 2 927 127 75008 Paris (FR) • OERTLING, Heiko • SYMRISE GMBH & CO KG ET AL: "Trans-tert- 1012 Lausanne (CH) butyl cyclohexanol as skin irritation-reducing • GÖMANN, Claudia agent" RESEARCH DISCLOSURE, MASON 37640 Warbsen (DE) PUBLICATIONS, HAMPSHIRE, GB, vol. -
Opinion of the Scientific Committee on Consumer Safety on O
SCCS/1575/16 Final version of 6 October 2016 Version S Scientific Committee on Consumer Safety SCCS OPINION ON Phenoxyethanol The SCCS adopted this opinion at its 2nd plenary meeting on 6 October 2016 SCCS/1575/16 Final version of the Opinion on Phenoxyethanol ___________________________________________________________________________________________ About the Scientific Committees Two independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat. They are: the Scientific Committee on Consumer Safety (SCCS), the Scientific Committee on Health, Environmental and Emerging Risks (SCHEER) The Scientific Committees review and evaluate relevant scientific data and assess potential risks. Each Committee has top independent scientists from all over the world who are committed to work in the public interest. In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA). SCCS The Committee, on request of Commission services, provides Opinions on questions concerning health and safety risks (notably chemical, biological, mechanical and other physical risks) of non-food consumer products (e.g. cosmetic products and -
AP76: 4-Hexyl-Resorcinol CAS#: 136-77-6
the art and science of smart patch testingTM AP76: 4-hexyl-resorcinol CAS#: 136-77-6 Patient Information Your patch test result indicates that you have a contact allergy to 4-hexyl- resorcinol. This contact allergy may cause your skin to react when it is exposed to this substance although it may take several days for the symptoms to appear. Typical symptoms include redness, swelling, itching, and fluid-filled blisters. Where is 4-hexyl-resorcinol found? 4-hexyl-resorcinol has a long history of human pharmaceutical use as a topical skin and mucosal disinfectant for treatment of superficial wounds, and as a component of soaps, handwashes, and skin cleaners. 4-hexyl-resorcinol has been used in dilute solutions as antiseptic gargles or throat spray, and in lozenges. 4-hexyl-resorcinol is still marketed today as an ingredient of certain throat lozenges. How can you avoid contact with 4-hexyl-resorcinol? Avoid products that list any of the following names in the ingredients: 1,3-Benzenediol, 4-hexyl- Cystoids anthelmintic 1,3-Dihydroxy-4-hexylbenzene EINECS 205-257-4 1,3-Dihydroxy-4-n-hexylbenzene Gelovermin 4-(1-Hexyl)resorcinol Hexylresorcin [German] 4-06-00-06048 (Beilstein Handbook Ref) Hexylresorcinol 4-Hexyl-1,3-benzenediol Hexylresorcinolum 4-Hexyl-1,3-dihydroxybenzene Hexylresorzin 4-Hexylresorcine Hidesol 4-n-Hexylresorcinol HSDB 566 Adrover NCI-C55787 AI3-08055 NSC 1570 Antascarin Oxana Ascaricid p-Hexylresorcinol Ascarinol Prensol Ascaryl Resorcinol, 4-hexyl- BRN 2048312 S.T. 37 Caprokol ST 37 CCRIS 888 ST-37 Crystoids Worm-agen What are some products that may contain 4-hexyl-resorcinol? Cosmetics: Clearasil Adult Care Lotions and Skin Care: KOPNOL Mouthwash / Gargle Throat Lozenges: Sucrets Throat Spray *For additional information about products that might contain 4-hexyl-resorcinol, go to the Household Product Database online (http:/householdproducts.nlm.nih.gov) at the United States National Library of Medicine. -
2-Phenoxyethanol
PATIENT INFORMATION SHEET 2-Phenoxyethanol (P-025) Your patch testing results indicate that you have a contact allergy to 2-Phenoxyethanol . It is important that you familiarize yourself with this chemical and take steps to avoid coming in contact with it. i What is 2-Phenoxyethanol and where is it found? This chemical is used as a fixative for perfumes, as well as a bactericide, an insect repellent, a topical antiseptic, a solvent for cellulose acetate, dyes, inks and resins. It can also be found in germicides, pharmaceuticals, cosmetics and in some preservatives. Further research may identify additional product or industrial usages of this chemical. i What else is 2-Phenoxyethanol called? This chemical can be identified by different names, including: 1‐Hydroxy ‐2‐phenoxyethane Emery 6705 Phenoxyl ethanol 2‐hydroxyethyl phenyl ether Ethanol ‐2‐phenoxy Phenoxytol Arosol Ethylene glycol phenyl ether Phenoxetol b‐Hydroxyethyl phenyl ether Ethylene glycol mono phenyl ether Phenoxyethyl alcohol Beta ‐phenoxyethyl alcohol Glycol monophenyl ether Phenylmonoglycol ether Dowanol ep, eph Phenyl cellosolve Rose ether Emeressence 1160 Phenoxethol This may not be a complete list as manufacturers introduce and delete chemicals from their product lines. THINGS YOU CAN DO TO HELP MANAGE YOUR CONTACT ALLERGY Be vigilant read the product label. Always take the time to read the ingredient listing on product packages. This should be your first step each time you purchase a product as manufacturers sometimes change product ingredients. If you have any concerns ask your pharmacist or your doctor. Test the product first. If you have purchased a new product you should test it on a small skin area to see if you get a reaction before using the product on larger skin areas. -
Item Name Ingredients
ITEM NAME INGREDIENTS Collagen Cream -150 Ml Aqua (Water) Cetearyl Alcohol Butylene Glycol Cetearyl Ethylhexanoate Ethylhexyl Stearate Caprylic/Capric Triglyceride Cetearyl Glucoside Soluble Collagen Phenoxyethanol Parfum (Fragrance) Chlorphenesin Polyacrylate-13 Ethylhexylglycerin Polyisobutene Benzoic Acid Hydrolyzed Soybean Fiber Dehydroacetic Acid Sodium Hydroxide Sorbitan Isostearate Polysorbate 20 Sorbic Acid CI 17200 (Red 33) Benzyl Salicylate Hydroxyisohexyl 3-Cyclohexene Carboxaldehyde Alpha-Isomethyl Ionone Citronellol Eugenol Hyaluronic Cream-150 Ml Aqua (Water) Cetearyl Alcohol Hexyl Laurate Diethylhexylcyclohexane Di-PPG-3 Myristyl Ether Adipate Glycerin Avena Sativa (Oat) Kernel Protein Cyclopentasiloxane Cetearyl Glucoside Butyrospermum Parkii (Shea Butter) Phenoxyethanol Cyclohexasiloxane Hydroxyethyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer Palmitoyl Proline Sodium Hyaluronate Alteromonas Ferment Filtrate Magnesium Palmitoyl Glutamate Sodium Palmitoyl Sarcosinate Parfum (Fragrance) Chlorphenesin Squalane Butylene Glycol Isohexadecane Polysorbate 60 Ethylhexylglycerin Sodium Hydroxide Benzoic Acid Hydroxypropyl Cyclodextrin Dehydroacetic Acid Sorbitan Isostearate Palmitoyl Tripeptide-38 BHT Hexyl Cinnamal Linalool Alpha-Isomethyl Ionon Limonene Hydroxycitronellal Hydroxyisohexyl 3- Cyclohexene Carboxaldehyde Citronellol Silicium Cream -150 Ml Aqua (Water) Glycerin Propanediol Simmondsia Chinensis (Jojoba) Seed Oil Pentaerythrityl Tetraethylhexanoate Glyceryl Stearate Cocoglycerides Dicaprylyl Carbonate Butyrospermum -
Sore Throat in Primary Care Project
Family Practice, 2015, Vol. 32, No. 3, 263–268 doi:10.1093/fampra/cmv015 Advance Access publication 25 March 2015 Epidemiology Sore throat in primary care project: a clinical score to diagnose viral sore throat Selcuk Mistika,*, Selma Gokahmetoglub, Elcin Balcic, and Fahri A Onukd Downloaded from https://academic.oup.com/fampra/article-abstract/32/3/263/695324 by guest on 31 July 2019 aDepartment of Family Medicine, bDepartment of Microbiology, cDepartment of Public Health, Erciyes University Medical Faculty, Kayseri, Turkey, and dBunyamin Somyurek Family Medicine Centre, Kayseri, Turkey. *Correspondence to Prof. S. Mistik, Department of Family Medicine, Erciyes University Medical Faculty, Kayseri 38039, Turkey; E-mail: [email protected] Abstract Objective. Viral agents cause the majority of sore throats. However, there is not currently a score to diagnose viral sore throat. The aims of this study were (i) to find the rate of bacterial and viral causes, (ii) to show the seasonal variations and (iii) to form a new scoring system to diagnose viral sore throat. Methods. A throat culture for group A beta haemolytic streptococci (GABHS) and a nasopharyngeal swab to detect 16 respiratory viruses were obtained from each patient. Over a period of 52 weeks, a total of 624 throat cultures and polymerase chain reaction analyses were performed. Logistic regression analysis was performed to find the clinical score. Results. Viral infection was found in 277 patients (44.3%), and GABHS infection was found in 116 patients (18.5%). An infectious cause was found in 356 patients (57.1%). Rhinovirus was the most commonly detected infectious agent overall (highest in November, 34.5%), and the highest GABHS rate was in November (32.7%). -
Randomised, Double-Blind, Placebo-Controlled Study of A
J Pharm Pharmaceut Sci (www.cspsCanada.org) 15(2) 281 - 294, 2012 Randomised, Double-Blind, Placebo-Controlled Study of a Single Dose of an Amylmetacresol/2,4-dichlorobenzyl Alcohol Plus Lidocaine Lozenge or a Hexylresorcinol Lozenge for the Treatment of Acute Sore Throat Due to Upper Respiratory Tract Infection Damien McNally,1 Adrian Shephard,2 Emma Field3 1 Ormeau Health Centre, Belfast, UK; 2 Professional Relations, Reckitt Benckiser, Slough, UK; 3 Global Medical Affairs, Reckitt Benckiser Healthcare, Hull, UK. Received, January 31, 2012; Revised, February 24, 2012; Accepted, April 1, 2012; Published, April 2, 2012. ABSTRACT - Purpose: Sore throat is a frequent reason for seeking medical care but few prescription options are available. Lozenges are effective in delivering active ingredients to the throat. This study was conducted to determine the analgesic efficacy of two lozenges one containing amylmetacresol (AMC)/2,4- dichlorobenzyl alcohol (DCBA) and lidocaine and one containing hexylresorcinol versus placebo in patients with acute sore throat due to upper respiratory tract infection (URTI). Methods: This was a multicentre, randomised, double-blind, parallel group, placebo-controlled study. In total, 190 patients were randomised 1:1:1 to a single dose of AMC/DCBA + lidocaine, hexylresorcinol or placebo lozenge. Subjective ratings of throat soreness, difficulty swallowing, swollen throat, numbing, and sore throat relief were obtained up to 2 hours post dose. Patient and investigator global ratings and a consumer questionnaire -
2-Phenoxyethanol.Pdf
2-Phenoxyethanol Other names: 1-Hydroxy-2-phenoxyethane; 2-Fenoxyethanol; 2-Hydroxyethyl phenyl ether; 2-Phenoxyethanol; 2-Phenoxyethanol (rose ether); 2-Phenoxyethyl alcohol; Arosol; Dowanol EP; Dowanol eph; Emeressence 1160; Emery 6705; Ethylene glycol monophenyl ether; Ethylene glycol phenyl ether; Fenyl-cellosolve; Fenylcelosolv; Glycol monophenyl ether; NSC 1864; Phenoxethol; Phenoxetol; Phenoxyethanol; Phenoxyethyl alcohol; Phenoxyl ethanol; Phenoxytol; Phenyl cellosolve; Phenylmonoglycol ether; Rose ether; «beta»-Hydroxyethyl phenyl ether; «beta»-Phenoxyethanol; «beta»-Phenoxyethyl alcohol. InChI: InChI=1S/C8H10O2/c9-6-7-10-8-4-2-1-3-5-8/h1-5,9H,6-7H2 InChI Key: QCDWFXQBSFUVSP-UHFFFAOYSA-N Formula: C8H10O2 SMILES: OCCOc1ccccc1 Molecular Weight: 138.16 CAS: 122-99-6 Physical Properties Property Value Unit Source ∆ G° -112.93 kJ/mol Joback Method f ∆ H° -256.37 Joback Method f gas kJ/mol ∆ H° 15.79 Joback Method fus kJ/mol ∆ H° 54.77 Joback Method vap kJ/mol logP 1.06 Crippen Method oct/wat P 4005.77 Joback Method c kPa T 510.20 NIST Webbook boil K T 518.20 NIST Webbook boil K T 719.69 Joback Method c K T 289.39 Joback Method fus K V 0.41 3 Joback Method c m /kg-mol Temperature Dependent Properties Property Value Unit Temperature (K) Source C 245.88 J/mol×K 523.72 Joback Method p,gas C 294.63 298.15 NIST Webbook p,liquid J/mol×K η 0.00 Pa×s 523.72 Joback Method ∆ H 66.00 435.0 NIST Webbook vap kJ/mol Sources Joback Method: https://en.wikipedia.org/wiki/Joback_method NIST Webbook: http://webbook.nist.gov/cgi/inchi/InChI=1S/C8H10O2/c9-6-7-10-8-4-2-1-3-5-8/h1-5,9H,6-7H2 Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l Legend C : Ideal gas heat capacity (J/mol×K).