The Early Years-Across the Bench from Bruce (1963-1966)

Total Page:16

File Type:pdf, Size:1020Kb

The Early Years-Across the Bench from Bruce (1963-1966) The Early Years—Across the Bench From Bruce (1963–1966) The Early Years—Across the Bench From Bruce (1963–1966) Garland R. Marshall1,2 1Department of Biochemistry and Molecular Biophysics, Center for Computational Biology, Washington University, St. Louis, MO 63110 2Department of Biomedical Engineering, Center for Computational Biology, Washington University, St. Louis, MO 63110 Received 14 July 2007; revised 20 September 2007; accepted 5 October 2007 Published online 16 October 2007 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/bip.20870 a Nobel Laureate, Chairman of the Department of Biology at ABSTRACT: Caltech and a member of the National Academy of Science, and was still willing to recommend me for graduate studies This personal reflection on the author’s experience as at Rockefeller. Bruce Merrifield’s first graduate student has been I was convinced at the time that I was chosen to study adapted from a talk given at the Merrifield Memorial neurophysiology, having failed miserably to isolate the acetyl- Symposium at the Rockefeller University on November choline receptor from denervated rabbit muscle as an under- graduate at Caltech. The outstanding neurophysiologists at 13, 2006. # 2007 Wiley Periodicals, Inc. Biopolymers Rockefeller including H. Keffer Hartline, Nobel Laureate, (Pept Sci) 90: 190–199, 2008. were more interested, however, in the wiring diagrams of the Keywords: solid phase synthesis; Merrifield; DNA synthe- eye of the horseshoe crab2 than in how a small molecule sis; combinatorial chemistry could trigger the action potential. Thus, my first laboratory experience at Rockefeller was with Prof. Henry Kunkel, a This article was originally published online as an accepted prominent immunologist.3 Prof. Kunkel suggested that I try preprint. The ‘‘Published Online’’ date corresponds to the preprint to develop a radioimmunoassay for angiotensin II, an eight- version. You can request a copy of the preprint by emailing the residue vasoactive peptide hormone, based on the seminal Biopolymers editorial office at [email protected] work of Berson and Yalow who had devised a radioimmuno- assay for insulin4 (for which Yalow shared a Nobel Prize). Karl Landsteiner, the prominent immunochemist who had explored antibodies against a variety of small-molecule hapt- INTRODUCTION ens,5 was still a legend at Rockefeller. The bottleneck for the he Rockefeller Institute for Medical Research1 was a experiments planned was a source of angiotensin II and a formidable institution in 1962, the year I was strategy for selectively attaching it to a protein carrier before accepted for admission with an undergraduate degree injecting rabbits. Henry suggested in early 1963 that I go see T in biology from the California Institute for Technol- Bruce Merrifield (Figure 1), a young faculty member in the ogy. In those days, admission effectively required a Woolley group, whose reputation indicated some experience letter of recommendation from a Nobel Laureate, from a in peptide/protein chemistry, a Rockefeller dominated area chairman of a department at a ‘‘recognized’’ university, or of research (Figure 2). Little did I know this suggestion from a member of the National Academy of Science. Rockef- would change the direction of my thesis research as well as eller President Detlev Bronk controlled the admission pro- dominate the rest of my career. cess, and candidates were personally interviewed before ac- ceptance. I was fortunate in that Prof. George W. Beadle was THE WOOLLEY GROUP First, I need to explain about the hierarchical system in place Correspondence to: Garland R. Marshall, Department of Biochemistry and Molecu- at Rockefeller at the time. Each research group was organized lar Biophysics, Center for Computational Biology, Washington University, 700 S. under the leadership of a Professor in a pyramidal/Prussian Euclid Ave., St. Louis, MO 63110, USA. e-mail: [email protected] or [email protected] manner. Prof. D. Wayne Woolley was a founder of the field of 6,7 VC 2007 Wiley Periodicals, Inc. antimetabolites and had two junior faculty working in his 190 PeptideScience Volume 90 / Number 3 The Early Years—Across the Bench From Bruce 191 FIGURE 1 Bruce Merrifield with new manual solid phase shaker as seen from across the lab bench in 1963. This picture appears on page 115 of Merrifield’s autobiography and on the cover of this special issue of Biopolymers: Peptide Science in honor of Professor Bruce Merrifield. group as well as postdocs and technicians. He was a powerful as there were few formal courses at Rockefeller in those days intellect as well as blind at 26 from diabetic retinopathy (only 12 graduate students were admitted in 1962). The title shortly after receiving his Ph.D. in biochemistry from the of the Institute was changed during my tenure to ‘‘The Rock- University of Wisconsin and moving to Rockefeller. Prof. efeller University.’’ It was a joke among the students that Woolley not only worked daily in the lab doing organic President Detlev Bronk sent an announcement to all the out- chemistry with assistance from his technician, but also had a standing universities in the world welcoming them to the ‘‘photographic’’ memory of the chemical literature. His wife same status as Rockefeller. and others spent hours each day reading the latest journals to Prof. Woolley to keep him up to date. I remember with amazement, when during a discussion of the mechanism of SOLID PHASE PEPTIDE SYNTHESIS cleavage of a benzyl ester by hydrogen bromide, Prof. Wool- Bruce had gotten his Ph.D. developing bacterial bioassays for ley cited the volume, page number, and location on the page amino acids8 in the lab of Prof. Max Dunn at UCLA and was of an experimental graph in an old JACS issue that was an extending this work on other growth factors,9 including pep- essential part of the evidence. I was terrified that he and tides under Dr. Woolley’s direction. But the synthetic tedium others in the lab would realize that my synthetic chemical and repetitiveness of solution peptide synthesis was problem- background was inadequate at best. Bruce had been recruited atic. With his characteristic insight, Bruce had decided that from UCLA, and John M. Stewart from the University of Illi- there had to be a better way to synthesize peptides and, ulti- nois and both had progressed to faculty appointments in mately, proteins. Thus, the famous entry ‘‘A New Approach Woolley’s group. John’s Ph.D. was in synthetic organic chem- to the Continuous, Stepwise Synthesis of Peptides’’ in his istry under the legendary Roger Adams, and I and a few other notebook of May 26, 1959 (Figure 3). Questions regarding students got John to tutor us in advanced organic chemistry the four years of research effort that Bruce had expended Biopolymers (Peptide Science) 192 Marshall technician, had already started to explore benzyl ester linkage to the polymer and t-butyloxycarbonyl (BOC) amino protec- tion (Figure 7) recently disclosed by Carpino.11 Angela related later that Bruce had jokingly suggested the use of a hammer to remove the peptide from the nitrobenzyl polymer due to possible overnitration of the polystyrene and potential production of analogs of TNT. Even though my interest in synthetic chemistry was nascent, I immediately realized the power of Bruce’s invention and never completed the radioimmunoassay project in the Kunkel lab. Having a graduate student in his lab allowed Bruce the luxury of having a new shaker designed and built (shown proudly with Bruce in Figure 1). His old reciprocal-arm shaker, noisy and slinging droplets of oil, was relocated across the bench from Bruce, and I began my life as a peptide chemist apprenticed to a future Nobel Laureate. As Bruce had no teaching responsibilities per se and Rockefeller scientists did not apply for grants at that time, I had the daily privilege of working across the lab bench from Bruce and Angela, while trying hard not to expose my ig- norance of science in general and chemistry in particular. Being treated as an intellectual equal from day one was a great incen- tive for me to learn as quickly as possible. Once Bruce’s first FIGURE 2 The Rockefeller heritage in peptide/protein chemistry note on SPPS appeared in 1963, a steady stream of prominent was very strong. Bergmann, who was trained in Emil Fisher’s lab scientists visited the lab. Almost each one mentioned at some where the first peptide bond was synthesized, and Zervas were refu- point in the visit how he had thought of using a filterable poly- gees from Germany. Bergmann trained most of the next generation meric support as a protecting group (the essence of solid phase of protein chemists [Stanford Moore, William Stein, Joseph Fruton synthesis), but, of course, none had spent the years exploring (Yale), Klaus Hoffman (Pittsburg), etc.] Lyman Craig brought ex- pertise in chemistry of unusual natural products including peptides alternative approaches until a practical solution was found. I as well as separation science to the Institute. (Copied from a picture particularly remember the visit of Sir Robert Robinson, the in the hallway of the Merrifield lab). British Nobel Laureate in Chemistry, who pulled me aside and told me how lucky I was to be Bruce’s student. He said that he exploring numerous alternative supports, linkages, amino was going to nominate Bruce for the Nobel Prize in Chemistry. protection, etc. was never discussed to any extent during my If I remember correctly that was in 1964; I listened every Octo- days across the bench. One could not buy functionalized ber for 20 years to learn that R. Bruce Merrifield had finally polymeric supports per se, for example, but had to modify been recognized by the Nobel Committee. Obviously, the delay the polystyrene-divinylbenzene beads (Figure 4) to allow for was due in some part to the reluctance of the entrenched solu- covalent attachment of the first amino acid.
Recommended publications
  • Vincent Du Vigneaud
    Vincent du Vigneaud May 18, 1901 — December 11, 1978 Vincent du Vigneaud was born in Chicago in 1901. He majored in chemistry at the University of Illinois at Urbana and received the Master of Science degree in 1924. H. B. Lewis and W. C. Rose introduced him to biochemistry, which became his major field of interest. At Urbana he supported himself by working as a waiter and teaching cavalry tactics and equitation as a reserve second lieutenant. He received his Ph.D. degree in 1927 from the University of Rochester for work on the chemistry of insulin. Insulin is a protein containing sulfur, an atom that became his life-long center of interest, as vividly told in his book A Trail of Research (Cornell University Press, 1952). For his postdoctoral work du Vigneaud moved to Baltimore with his wife, Zella, whom he had married in 1924, to work with J. J. Abel at Johns Hopkins. There, in the first steps following the sulfur trail, he worked on cystine, a constituent of insulin which Abel had crystallized in 1925. Du Vigneaud helped to establish that insulin is indeed a protein, an unpopular veiwpoint at the time. After another year of postdoctoral fellowship in Europe, du Vigneaud returned to Urbana as an assistant professor in physiological chemistry (1930-32). He continued his work on cystine and developed an important method for the reduction of the disulfide bond by metallic sodium in liquid ammonia. These reagents remained valuable tools in his hand for his later synthetic work. In 1932, at age 31, he was appointed chairman of biochemistry at George Washington University School of Medicine, where he remained for six years.
    [Show full text]
  • Sequencing As a Way of Work
    Edinburgh Research Explorer A new insight into Sanger’s development of sequencing Citation for published version: Garcia-Sancho, M 2010, 'A new insight into Sanger’s development of sequencing: From proteins to DNA, 1943-77', Journal of the History of Biology, vol. 43, no. 2, pp. 265-323. https://doi.org/10.1007/s10739-009- 9184-1 Digital Object Identifier (DOI): 10.1007/s10739-009-9184-1 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Journal of the History of Biology Publisher Rights Statement: © Garcia-Sancho, M. (2010). A new insight into Sanger’s development of sequencing: From proteins to DNA, 1943-77. Journal of the History of Biology, 43(2), 265-323. 10.1007/s10739-009-9184-1 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 THIS IS AN ADVANCED DRAFT OF A PUBLISHED PAPER. REFERENCES AND QUOTATIONS SHOULD ALWAYS BE MADE TO THE PUBLISHED VERION, WHICH CAN BE FOUND AT: García-Sancho M.
    [Show full text]
  • Anfinsen Experiments
    Lecture Notes - 2 7.24/7.88J/5.48J The Protein Folding Problem Handouts: An Anfinsen paper Reading List Anfinsen Experiments The Problem of the title refers to how the amino acid sequence of a polypeptide chain determines the folded three-dimensional organization of the chain: • Does the sequence determine the structure?? • Protein Denaturation • Emergence of the Problem • Ribonuclease A • Refolding of ribonuclease in vitro. A. Protein Denaturation/Inactivation One of the features that identified proteins as distinctive polymers was 1) Unusual phase transition in semi purified proteins When exposed to relatively gentle conditions outside the range of physiological • heat • pH • salt • organic solvents, e.g. alcohols Lets consider the familiar transition I mentioned last week; • Heat denaturation; cooking the white of an egg • Acid denaturation; Milk turning sour Macroscopic changes in bulk solution; scatters visible light, increase in viscosity - white of egg: >>heat; opaque, hard; cool down; no change: Coagulation, Aggregation, precipitation, denaturation: One of the components is egg white lysozyme: activity assay; hydrolysis of bacterial cell walls: Activity remaining vs. temperature on same axes This transition: is Denaturation. These transitions were in general found to be irreversible: activity was not recovered upon cooling: Historically the study of the folding and unfolding of proteins emerged from trying to understand this unusual change of state or phase transitions. B. Emergence of the Protein Folding Problem In the period 1958-1960, the first structure of a protein molecule - myoglobin, the oxygen binding protein of muscle - was solved by John Kendrew in 1958, followed soon after by the related tetrameric red blood cell oxygen binding protein, hemoglobin, solved by Max Perutz, both of the British Medical Research Council Labs in Cambridge, U.K.
    [Show full text]
  • Peptide Chemistry up to Its Present State
    Appendix In this Appendix biographical sketches are compiled of many scientists who have made notable contributions to the development of peptide chemistry up to its present state. We have tried to consider names mainly connected with important events during the earlier periods of peptide history, but could not include all authors mentioned in the text of this book. This is particularly true for the more recent decades when the number of peptide chemists and biologists increased to such an extent that their enumeration would have gone beyond the scope of this Appendix. 250 Appendix Plate 8. Emil Abderhalden (1877-1950), Photo Plate 9. S. Akabori Leopoldina, Halle J Plate 10. Ernst Bayer Plate 11. Karel Blaha (1926-1988) Appendix 251 Plate 12. Max Brenner Plate 13. Hans Brockmann (1903-1988) Plate 14. Victor Bruckner (1900- 1980) Plate 15. Pehr V. Edman (1916- 1977) 252 Appendix Plate 16. Lyman C. Craig (1906-1974) Plate 17. Vittorio Erspamer Plate 18. Joseph S. Fruton, Biochemist and Historian Appendix 253 Plate 19. Rolf Geiger (1923-1988) Plate 20. Wolfgang Konig Plate 21. Dorothy Hodgkins Plate. 22. Franz Hofmeister (1850-1922), (Fischer, biograph. Lexikon) 254 Appendix Plate 23. The picture shows the late Professor 1.E. Jorpes (r.j and Professor V. Mutt during their favorite pastime in the archipelago on the Baltic near Stockholm Plate 24. Ephraim Katchalski (Katzir) Plate 25. Abraham Patchornik Appendix 255 Plate 26. P.G. Katsoyannis Plate 27. George W. Kenner (1922-1978) Plate 28. Edger Lederer (1908- 1988) Plate 29. Hennann Leuchs (1879-1945) 256 Appendix Plate 30. Choh Hao Li (1913-1987) Plate 31.
    [Show full text]
  • Vincent Du Vigneaud: Following the Sulfur Trail to the Discovery of the Hormones of the Posterior Pituitary Gland at Cornell Medical College
    HISTORICAL VIGNETTE J Neurosurg 124:1538–1542, 2016 Vincent du Vigneaud: following the sulfur trail to the discovery of the hormones of the posterior pituitary gland at Cornell Medical College Malte Ottenhausen, MD,1 Imithri Bodhinayake, MD,1 Matei A. Banu, MD,1 Philip E. Stieg, PhD, MD,1 and Theodore H. Schwartz, MD1–3 1Department of Neurosurgery, Sackler Brain and Spine Center; 2Department of Otolaryngology; and 3Department of Neuroscience, Brain and Mind Institute, Weill Medical College of Cornell University, NewYork-Presbyterian Hospital, New York, New York In 1955, Vincent du Vigneaud (1901–1978), the chairman of the Department of Biochemistry at Cornell University Medical College, was awarded the Nobel Prize for Chemistry for his research on insulin and for the first synthesis of the posterior pituitary hormones—oxytocin and vasopressin. His tremendous contribution to organic chemistry, which began as an interest in sulfur-containing compounds, paved the way for a better understanding of the pituitary gland and for the development of diagnostic and therapeutic tools for diseases of the pituitary. His seminal research continues to impact neurologists, endocrinologists, and neurosurgeons, and enables them to treat patients who had no alternatives prior to du Vigneaud’s breakthroughs in peptide structure and synthesis. The ability of neurosurgeons to aggressively operate on parasellar pathology was directly impacted and related to the ability to replace these hormones after surgery. The authors review the life and career of Vincent du Vigneaud, his groundbreaking discoveries, and his legacy of the understanding and treatment of the pituitary gland in health and disease. http://thejns.org/doi/abs/10.3171/2015.5.JNS141952 KEY WORDS history; pituitary; Nobel Prize; Vincent du Vigneaud; chemistry; oxytocin; vasopressin ROUNDBREAKING scientific discoveries have paved tion in Illinois.
    [Show full text]
  • JUAN MANUEL 2016 NOBEL PEACE PRIZE RECIPIENT Culture Friendship Justice
    Friendship Volume 135, № 1 Character Culture JUAN MANUEL SANTOS 2016 NOBEL PEACE PRIZE RECIPIENT Justice LETTER FROM THE PRESIDENT Dear Brothers, It is an honor and a privilege as your president to have the challenges us and, perhaps, makes us question our own opportunity to share my message with you in each edition strongly held beliefs. But it also serves to open our minds of the Quarterly. I generally try to align my comments and our hearts to our fellow neighbor. It has to start with specific items highlighted in each publication. This with a desire to listen, to understand, and to be tolerant time, however, I want to return to the theme “living our of different points of view and a desire to be reasonable, Principles,” which I touched upon in a previous article. As patient and respectful.” you may recall, I attempted to outline and describe how Kelly concludes that it is the diversity of Southwest’s utilization of the Four Founding Principles could help people and “treating others like you would want to be undergraduates make good decisions and build better treated” that has made the organization successful. In a men. It occurred to me that the application of our values similar way, Stephen Covey’s widely read “Seven Habits of to undergraduates only is too limiting. These Principles are Highly Effective People” takes a “values-based” approach to indeed critical for each of us at this particularly turbulent organizational success. time in our society. For DU to be a successful organization, we too, must As I was flying back recently from the Delta Upsilon be able to work effectively with our varied constituents: International Fraternity Board of Directors meeting in undergraduates, parents, alumni, higher education Arizona, I glanced through the February 2017 edition professionals, etc.
    [Show full text]
  • Proquest Dissertations
    IMPROVEMENTS TO FLUORESCENT AFFINITY LABELS AND THE RIBONUCLEASE S SYSTEM AND GENE EXPRESSION RESPONSE TO CLINICALLY RELEVANT RIBONUCLEASES by Rex Wayne Watkins A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biochemistry) at the UNIVERSITY OF WISCONSIN-MADISON 2010 UMI Number: 3437078 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UMI 3437078 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 IMPROVEMENTS TO FLUORESCENT AFFINITY LABELS AND THE RIBONUCLEASE S SYSTEM AND GENE EXPRESSION RESPONSE TO CLINICALLY RELEVANT RIBONUCLEASES submitted to the Graduate School of the University of Wisconsin-Madison in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Rex Wayne Watkins Date of final oral examination: ] g August 2010 Month and year degree to be awarded: August 2010 The dissertation is approved by the following members of the Final Oral Committee: Ronald T. Raines, Professor, Biochemistry Aseem Z. Ansari, Professor, Biochemistry Laura L. Kiessling, Professor, Biochemistry Douglas B. Weibel, Professor, Biochemistry Jon S. Thorson, Professor, Pharmaceutical Sciences 1 IMPROVEMENTS TO FLUORESCENT AFFINITY LABELS AND THE RIBONUCLEASE S SYSTEM AND GENE EXPRESSION RESPONSE TO CLINICALLY RELEVANT RIBONUCLEASES Rex Wayne Watkins Under the supervision of Professor Ronald T.
    [Show full text]
  • The Road to Stockholm: [Dr. Bruce Merrifield] Fulvio Bardossi
    Rockefeller University Digital Commons @ RU Rockefeller University Research Profiles Campus Publications Spring 1985 The Road to Stockholm: [Dr. Bruce Merrifield] Fulvio Bardossi Judith N. Schwartz Follow this and additional works at: http://digitalcommons.rockefeller.edu/research_profiles Part of the Life Sciences Commons Recommended Citation Bardossi, Fulvio and Schwartz, Judith N., "The Road to Stockholm: [Dr. Bruce Merrifield]" (1985). Rockefeller University Research Profiles. Book 20. http://digitalcommons.rockefeller.edu/research_profiles/20 This Article is brought to you for free and open access by the Campus Publications at Digital Commons @ RU. It has been accepted for inclusion in Rockefeller University Research Profiles by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. THE ROCKEFELLER UNIVERSITY RESEARCH PROFILES Something to hang your peptide on. SPRING 1985 The Road to Stockholm Stockholm, December 10, 1984. In his Nobel Lecture lasr fall, Bruce Merrifield, John D. Rocke­ Bruce Merrifield greets his feller Jr. Professor of The Rockefeller University, quoted these family after the Nobel ceremony. words written in 1906 by the great German chemist Emil Fischer: "Whereas cautious professional colleagues fear that a rational study of this class of compounds, because of their complicated structure and their highly inconvenient physical charaeteristcs, would tOday still uncover insurmountable difficulties, other optimistically endowed observers, among which I count myself, are inclined to the view rhat an attempt should at least be made to besiege this virgin fortress .... " If Fischer's rhetoric sounded convoluted and old-fashioned, Sciences, "has created completely new possibilities in the field particularly as spoken by a Texas-born American, his message of peptide and protein chemistry ..
    [Show full text]
  • AWARDS, HONORS, DISTINGUISHED LECTURESHIPS Prof. Dr. Dieter Seebach
    AWARDS, HONORS, DISTINGUISHED LECTURESHIPS Prof. Dr. Dieter Seebach 1964 <> Wolf-Preis for the Ph.D. thesis, Universität Karlsruhe, Germany 1969 <> Dozentenpreis Fonds der Chemischen Industrie, Germany 1969/1970 – Visiting Professorship, University of Wisconsin, Madison, USA 1972 – "DuPont Travel Grantee", USA (lectures at 15 universities and companies) 1974 – Visiting Professorship, California Institute of Technology, Pasadena, USA 1977 – Visiting Professorship, Rand Afrikaans University, Johannesburg, South Africa – "Pacific Coast Lectureship“, USA/Canada (9 lectures at universities and companies along theUSA west coast) 1978 – Visiting Professorship, Polish Academy of Sciences (lectures in Warsaw and Lodz) 1980 – Visiting Professorship, Australian National University, Canberra, Australia – Visiting Professorship, Imperial College, London, U.K. 1981 – Visiting Professorship at the Weizmann Institute of Science, Rehovot, Israel –"Kolthoff Lectureship", University of Minnesota, Minneapolis, USA 1981 – „Carl Ziegler Visiting Professorship“, Max-Planck-Institut für Kohlenforschung, Mülheim a.d.Ruhr, Germany 1982 – "Vorhees Memorial Lectureship", University of Illinois, Urbana-Champaign, USA – "First Atlantic Coast Lectureship", (6 lectures at universities of the South-East of USA) – "Organic Syntheses Lectureship", Princeton University, Princeton, USA 1984 <> FRSC (Fellow of the Royal Society of Chemistry, U.K.) <> Elected member of the Deutsche Akademie der Naturforscher Leopoldina, D-Halle – "Greater Manchester Lectureship", University
    [Show full text]
  • Pdf-File to Download
    Explanations of honors and awards Aachen and Munich Prize for Since 1975, this prize has been conferred annually by the dr. Technique and Applied Natural Carl-Arthur-Pasto-Stiftung on an exceptional academic in the Sciences fields of sciences and engineering. AIAA Fellow The bestowing of the title of AIAA Fellow is one of the highest academic honors of the internationally renowned American Institute of Aeronautics and Astronautics (AIAA). Akabori Memorial Award The Japanese Peptide Society has been awarding this prize biennially since 2000 in memory of chemist Shiro Akabori to honor important contributions to research in life sciences.. Albers-Schönberg-Medal This medal was donated in 1932 in memory of the co-founder of the German Röntgen Society (Deutsche Röntgengesellschaft, DRG), Heinrich E. Albers-Schönberg (1865- 1921). It is awarded by the Deutsche Röntgengesellschaft in recognition of exceptional achievement in radiology diagnostics. Alexander Graham Bell Medal This medal was donated by the Alcatel-Lucent Bell Labs (USA) in memory of the inventor of the telephone, Alexander Graham Bell (1847-1922), and has been awarded annually since 1976 by the IEEE Board of Directors for exceptional achievement in communications engineering. Alwin Walther-Medal The information technology and mathematics departments of the Technische Universität Darmstadt, together with the Fraunhofer Institute for Computer Graphics Research, confers the Alwin-Walther-Medaille (medal) biennially on exceptional individuals who have paid great service to science. American Nuclear Society (ANS) Fellow Members of the ANS can be named a Fellow for Fellow exceptional achievement in nuclear sciences or nuclear energy technology Architecture Prize from the Architecture Prize from the Bavarian state capital of Munich.
    [Show full text]
  • THE 101ST PRESENTATION of the WILLARD GIBBS MEDAL (Founded by William A
    Chicago Section http://chicagoacs.org MARCH • 2012 THE 101ST PRESENTATION OF THE WILLARD GIBBS MEDAL (Founded by William A. Converse) to PROFESSOR MARK A. RATNER sponsored by the CHICAGO SECTION AMERICAN CHEMCIAL SOCIETY FRIDAY, MAY 18, 2012 Casa Royale Seating will be available after the dinner 783 Lee Street for people not attending the dinner but Des Plaines, IL 60016 interested in hearing the speaker. 847-297-6640 (continued on page 2) Directions to Casa Royale are on page 2. AWARD CEREMONY 8:30 PM RECEPTION 6:00 P.M. Hors-d’oeuvres The Willard Gibbs Medal Two Complimentary Drinks Avrom C. Litin, Chair DINNER 7:00 P.M. Chicago Section, ACS The History of the Willard Gibbs Award Dinner reservations are required. To re- serve your tickets, please call the Chi- Introduction of the Medalist cago Section office at 847-391-9091 or register at http://ChicagoACS.org by Presentation of the Medal Monday, May 14 and pay $40 at the door, or fill out the reservation form on The Citation: Dr. Mark A. Ratner, Dumas University page 5 and mail it with your payment of Professor, Department of Chemistry, $40 by Wednesday, May 9 to the ad- For principal achievements in Northwestern University, Evanston, IL dress given on the form. If you are not • Molecular Electronics a member of the Chicago Local Section, ACCEPTANCE ADDRESS you are not eligible for half price tick- • Single-Molecule Aspects of Molecu- ets for students, unemployed, or retired lar Electronics “From Rectifying to Energy: Some Chicago Section members. Tickets and Reflections” nametags will be available at the door.
    [Show full text]
  • The Other Sanger Sequencing; September 2019 1
    The Other Sanger Sequencing; September 2019 1 The Other Sanger Sequencing George W. Preston E-mail: [email protected] Earlier this year, a plaque honouring the chromatographers Archer J. P. Martin (1910-2002) and Richard L. M. Synge (1914-1994) appeared in Headingley, Leeds, United Kingdom (Fig. 1A). The plaque, which was unveiled by Leeds Philosophical and Literary Society, can be found on Headingley Lane, near to where the laboratories of the Wool Industries Research Association once stood. It was in these laboratories in the 1940s that Martin and Synge developed partition chromatography – a method for which the pair would receive the 1952 Nobel Prize in Chemistry (Martin, 1952; Synge, 1952). Taking Martin and Synge’s work as a starting point, this article will examine the role of chromatography in efforts to elucidate primary structures of proteins and, latterly, to explore proteomes. Fig. 1. The work of Martin and Synge. (A) The plaque on Headingley Lane; (B) the structure of gramicidin S; (C) the structure of gramicidin S as a series overlapping fragments. PARTITIONING PEPTIDES Partition chromatography is the separation of substances based on how they distribute among different phases. Martin and Synge’s innovation was to support an aqueous phase on a material such as silica or paper, and to pass over this stationary phase an organic mobile phase. They imagined the resulting system as a stack of miniature liquid-liquid extractions, or ‘theoretical plates’, between which the mobile phase (and any analytes dissolved in it) could migrate (Levine, 1963). By enabling the breakdown products of proteins – i.e., amino acids and peptides – to be analysed independently of each other, chromatographic methods greatly accelerated research into protein structure.
    [Show full text]