Randomized, Double-Blind, Multicenter Comparison of Oral

Total Page:16

File Type:pdf, Size:1020Kb

Randomized, Double-Blind, Multicenter Comparison of Oral CLINICAL THERAPEUTICS®/VOL. 24, NO. 7, 2002 Randomized, Double-Blind, Multicenter Comparison of Oral Cefditoren 200 or 400 mg BID with Either Cefuroxime 250 mg BID or Cefadroxil 500 mg BID for the Treatment of Uncomplicated Skin and Skin-Structure Infections Alicia D. Bucko, DO, 1 Barbara J. Hunt, MS,2 Sarah L. Kidd, BS,2 and Richard Hom, MD, PhD z 1Academic Dermatology Associates, Albuquerque, New Mexico, and 2TAP Pharmaceutical Products Inc, Lake Forest, Illinois ABSTRACT Background: Uncomplicated skin and skin-structure infections are commonly ob- served in medical practice. Because these infections typically are confined to the super- ficial layers and seldom lead to the destruction of skin structures and resultant systemic dissemination, in general they can be treated with an oral antibiotic with potent microbio- logic activity against gram-positive pathogens. Objective: This paper compares the efficacy and tolerability of 3 beta-lactam antibi- otics in patients with uncomplicated skin and skin-structure infections. Methods: Two double-blind, multicenter, parallel-group studies were conducted, in which patients aged >12 years with uncomplicated skin and skin-structure infections were ran- domized to receive cefditoren 200 or 400 mg, cefuroxime 250 mg, or cefadroxil 500 mg, each BID for 10 days. Study 1 compared cefditoren with cefuroxime; Study 2 compared cefditoren with cefadroxil. Clinical and microbiologic responses were assessed at a post- treatment visit (within 48 hours of treatment completion) and test-of-cure visit (7-14 days after treatment completion). Patients were monitored closely throughout the study with the use of physical examinations, clinical laboratory tests, and assessment of adverse events. Results: A total of 1685 patients (855 males, 830 females; mean age, 41.1 years [range, 12-95 years]) were enrolled. Within both studies, the 3 treatment groups were similar at baseline based on demographic characteristics and types of infection. Cellulitis (26%), wound infection (25%), and simple abscess (15%) were the most common infections. Clin- ical cure rates at the test-of-cure visit were 85% (443/523) for cefditoren 200 rag, 83% Presented in part at the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, September 17-20, 2000, Toronto, Ontario, Canada. Accepted for publication April 24, 2002. Printed in the USA. Reproduction in whole or part is not permitted, 1134 0149-2918/02/$19.00 A.D. BUCK0 ET AL. (427/516) for cefditoren 400 mg, 88% infections, and simple abscesses, are com- (234/265) for cefuroxime, and 85% monly encountered in ambulatory set- (21 l/248) for cefadroxil. At the test-of- tings.’ Staphylococcus aureus, group A cure visit, cefditoren 200 mg had eradi- streptococci (ie, Streptococcus pyogenes), cated significantly fewer of the causative and occasionally other beta-hemolytic pathogens isolated before treatment in mi- streptococci cause most of these infec- crobiologically evaluable patients than did tions, although gram-negative organisms cefuroxime in Study 1 (P = 0.043) but sig- (eg, Pseudomonas aeruginosa, Esch- nificantly more of the pathogens than did erichia co/i) are also isolated.2 Because cefadroxil in Study 2 (P = 0.018). Eradi- uncomplicated skin and skin-structure in- cation rates for the most commonly iso- fections typically are confined to the su- lated pathogens were generally similar in perficial layers and seldom lead to the de- the 3 treatment groups in both studies, with struction of skin structures and resultant the only significant difference favoring systemic dissemination, in general they cefditoren 200 and 400 mg over cefadroxil can be treated with an oral antibiotic with for Peptostreptococcus species in Study 2 potent microbiologic activity against (P = 0.016 and P = 0.003, respectively). A gram-positive pathogens. In select cases, minority of patients (1.5% in any treatment local dibridement or incision and drainage group) discontinued study-drug treatment also are used to facilitate cure. prematurely due to a treatment-related ad- Among the antimicrobial agents used verse event, with statistically higher rates for treating uncomplicated skin and skin- for cefditoren 400 mg than for cefditoren structure infections, beta-lactams provide 200 mg and the comparator cephalosporins excellent coverage of methicillin-susceptible (each P < 0.05). All 3 cephalosporins were S aureus and streptococci. Oral beta-lactam generally well tolerated. Most adverse agents with proven clinical efficacy for events (~93%) were categorized as mild uncomplicated skin and skin-structure in- to moderate, with the most common being fections include cefprozil, cefpodoxime diarrhea, nausea, and headache. proxetil, cefuroxime axetil, cefadroxil mono- Conclusion: In this population of pa- hydrate, and penicillin-beta-lactamase tients with uncomplicated skin and skin- inhibitor combinations (eg, amoxicillin/ structure infections, including those due clavulanate).‘-6 to Staphylococcus aureus or Streptococcus Cefditoren pivoxil is an oral, beta- pyogenes, the clinical cure rate and toler- lactamase-stable cephalosporin with bal- ability of cefditoren were comparable to anced in vitro activity against both gram- those of cefuroxime and cefadroxil. positive and gram-negative organisms?-” Key words: cefditoren, cefadroxil, cef- In particular, it possesses excellent in vitro uroxime, skin and soft tissue infection. activity against S aureus (minimum in- (C&z Ther. 2002;24: 1134-l 147) hibitory concentration [MIC] at which 90% of isolates are inhibited [MIC,,] = 0.5 pg/mL) and Spyogenes (MIC,, = 0.03 INTRODUCTION pg/mL).9 After oral administration, cef- Uncomplicated skin and adjacent skin- ditoren pivoxil is absorbed by the gas- structure infections, including impetigo, trointestinal tract and hydrolyzed to cef- erysipelas, cellulitis, folliculitis, wound ditoren by esterases. The maximal plasma 1135 CLINICAL THERAPEUTICS ® concentration of cefditoren averages legal guardians provided written informed 2.60 ± 0.65/~g/mL after a single 200-mg consent. dose and occurs 1.5 to 3.0 hours after dos- ing. Maximal concentrations of cefditoren Patients in blister fluid were observed 4 to 6 hours after administration of a 400-rag dose of Eligible patients included those aged cefditoren pivoxil, with a mean of 1.1 ± >12 years with mild to moderate uncom- 0.42 p g/mL.l 2 Mean cefditoren concentra- plicated skin or skin-structure bacterial tions in blister fluid at 12 hours after dos- infections that could be treated with an ing exceed 0.4/~g/mLJ 2 Because experi- oral antimicrobial agent. Eligible patients mental data with beta-lactams suggest that had at least 2 of the following local signs time above the MIC is related to outcome and symptoms: pain, tenderness, swelling, of infection 13 and concentrations of cefdi- erythema, associated warmth, purulent toren achieved in skin blister fluid exceed drainage/discharge, induration, and re- its MIC90 for the common gram-positive gional lymph node swelling or tenderness. skin pathogens over most of the 12-hour Women of childbearing potential were re- dosing interval, cefditoren is expected to quired to have a negative result of a have good clinical activity for treating skin prestudy serum or urine pregnancy test infections. In vitro data cannot substitute and agreed to use effective contraception for in vivo clinical data in humans. throughout the study. This article presents the results of 2 In addition to pregnancy or lactation, clinical trials that were designed to com- study exclusion criteria included a chronic pare the efficacy and tolerability of cefdi- or underlying skin condition at the site of toren with those of 2 comparator ceph- the infection(s) involving prosthetic mate- alosporins, cefuroxime and cefadroxil, rials; a wound caused by thermal injury or in patients with uncomplicated skin and acne vulgaris; a site that required surgical skin-structure infections. intervention; abscesses in an anatomic site at high risk for anaerobic infection (eg, rectal area); concomitant documented or PATIENTS AND METHODS suspected bacteremia; infections of the Study Design nail beds and scalp, as well as isolated fu- runculosis or folliculitis; immunodefi- Both multicenter studies (69 sites in the ciency; diabetes mellitus; significant vas- cefadroxil study and 63 sites in the cefur- cular disease; concomitant treatment with oxime study) were conducted in a double- oral or parenteral antibiotics or topical blind, randomized manner. The studies' agents (eg, corticosteroids or antimicro- protocols and procedures followed guide- bials) at the infection site; history of hy- lines established by the Infectious Dis- persensitivity reactions to beta-lactam eases Society of America and the US Food agents; known renal insufficiency (serum and Drug Administration for the evalua- creatinine concentration >2 mg/dL or tion of anti-infective agents. 14 Before pa- blood urea nitrogen >30 mg/dL); and clin- tient enrollment, the institutional review ically significant hepatic disease (alanine board of each site approved the study pro- aminotransferase, aspartate aminotrans- tocol, and all participating patients or their ferase, or total bilirubin >2 times the up- 1136 A.D. BUCKO ET AL. per limit of normal or alkaline phos- visits conducted at regular intervals phatase >1.25 times the upper limit of throughout the 2 studies: (1) before the normal). Exclusion criteria also included start of dosing on the first study day, (2) the use of a systemic antibiotic within
Recommended publications
  • Cefditoren Pivoxil) Tablets 200 and 400 Mg
    SPECTRACEF® (cefditoren pivoxil) Tablets 200 and 400 mg. To reduce the development of drug-resistant bacteria and maintain the effectiveness of SPECTRACEF® and other antibacterial drugs, SPECTRACEF® should be used only to treat infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION SPECTRACEF® tablets contain cefditoren pivoxil, a semi-synthetic cephalosporin antibiotic for oral administration. It is a prodrug which is hydrolyzed by esterases during absorption, and the drug is distributed in the circulating blood as active cefditoren. Chemically, cefditoren pivoxil is (-)-(6R,7R)-2,2-dimethylpropionyloxymethyl 7-[(Z)-2-(2-aminothiazol-4-yl)-2-methoxy­ iminoacetamido]-3-[(Z)-2-(4-methylthiazol-5-yl)ethenyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate. The empirical formula is C25H28N6O7S3 and the molecular weight is 620.73. The structural formula of cefditoren pivoxil is shown below: cefditoren pivoxil The amorphous form of cefditoren pivoxil developed for clinical use is a light yellow powder. It is freely soluble in dilute hydrochloric acid and soluble at levels equal to 6.06 mg/mL in ethanol and <0.1 mg/mL in water. SPECTRACEF® (cefditoren pivoxil) tablets contain 200 mg or 400 mg of cefditoren as cefditoren pivoxil and the following inactive ingredients: croscarmellose sodium, D-mannitol, hydroxypropyl cellulose, hypromellose, magnesium stearate, sodium caseinate (a milk protein), and sodium tripolyphosphate. The tablet coating contains carnauba wax, hypromellose, polyethylene glycol, and titanium dioxide. Tablets are printed with ink containing D&C Red No. 27, FD&C Blue No. 1, propylene glycol, and shellac. CLINICAL PHARMACOLOGY Pharmacokinetics Absorption Oral Bioavailability Following oral administration, cefditoren pivoxil is absorbed from the gastrointestinal tract and hydrolyzed to cefditoren by esterases.
    [Show full text]
  • Medical Review(S) Clinical Review
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 200327 MEDICAL REVIEW(S) CLINICAL REVIEW Application Type NDA Application Number(s) 200327 Priority or Standard Standard Submit Date(s) December 29, 2009 Received Date(s) December 30, 2009 PDUFA Goal Date October 30, 2010 Division / Office Division of Anti-Infective and Ophthalmology Products Office of Antimicrobial Products Reviewer Name(s) Ariel Ramirez Porcalla, MD, MPH Neil Rellosa, MD Review Completion October 29, 2010 Date Established Name Ceftaroline fosamil for injection (Proposed) Trade Name Teflaro Therapeutic Class Cephalosporin; ß-lactams Applicant Cerexa, Inc. Forest Laboratories, Inc. Formulation(s) 400 mg/vial and 600 mg/vial Intravenous Dosing Regimen 600 mg every 12 hours by IV infusion Indication(s) Acute Bacterial Skin and Skin Structure Infection (ABSSSI); Community-acquired Bacterial Pneumonia (CABP) Intended Population(s) Adults ≥ 18 years of age Template Version: March 6, 2009 Reference ID: 2857265 Clinical Review Ariel Ramirez Porcalla, MD, MPH Neil Rellosa, MD NDA 200327: Teflaro (ceftaroline fosamil) Table of Contents 1 RECOMMENDATIONS/RISK BENEFIT ASSESSMENT ......................................... 9 1.1 Recommendation on Regulatory Action ........................................................... 10 1.2 Risk Benefit Assessment.................................................................................. 10 1.3 Recommendations for Postmarketing Risk Evaluation and Mitigation Strategies ........................................................................................................................
    [Show full text]
  • Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and Its Application
    Infect Dis Ther (2017) 6:57–67 DOI 10.1007/s40121-016-0144-8 REVIEW Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and its Application Juwon Yim . Leah M. Molloy . Jason G. Newland Received: November 10, 2016 / Published online: December 30, 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com ABSTRACT infections, CABP caused by penicillin- and ceftriaxone-resistant S. pneumoniae and Ceftaroline is a novel cephalosporin recently resistant Gram-positive infections that fail approved in children for treatment of acute first-line antimicrobial agents. However, bacterial skin and soft tissue infections and limited data are available on tolerability in community-acquired bacterial pneumonia neonates and infants younger than 2 months (CABP) caused by methicillin-resistant of age, and on pharmacokinetic characteristics Staphylococcus aureus, Streptococcus pneumoniae in children with chronic medical conditions and other susceptible bacteria. With a favorable and those with invasive, complicated tolerability profile and efficacy proven in infections. In this review, the microbiological pediatric patients and excellent in vitro profile of ceftaroline, its mechanism of action, activity against resistant Gram-positive and and pharmacokinetic profile will be presented. Gram-negative bacteria, ceftaroline may serve Additionally, clinical evidence for use in as a therapeutic option for polymicrobial pediatric patients and proposed place in therapy is discussed. Enhanced content To view enhanced content for this article go to http://www.medengine.com/Redeem/ 1F47F0601BB3F2DD. Keywords: Antibiotic resistance; Ceftaroline J. Yim (&) fosamil; Children; Methicillin-resistant St. John Hospital and Medical Center, Detroit, MI, Staphylococcus aureus; Streptococcus pneumoniae USA e-mail: [email protected] L.
    [Show full text]
  • Comparative Study of 5-Day and 10-Day Cefditoren Pivoxil Treatments for Recurrent Group a Β-Hemolytic Streptococcus Pharyngitis in Children
    Hindawi Publishing Corporation International Journal of Pediatrics Volume 2009, Article ID 863608, 5 pages doi:10.1155/2009/863608 Clinical Study Comparative Study of 5-Day and 10-Day Cefditoren Pivoxil Treatments for Recurrent Group A β-Hemolytic Streptococcus pharyngitis in Children Hideaki Kikuta, Mutsuo Shibata, Shuji Nakata, Tatsuru Yamanaka, Hiroshi Sakata, Kouji Akizawa, and Kunihiko Kobayashi Pediatric Clinic, Touei Hospital, N-41, E-16, Higashi-ku, Sapporo 007-0841, Japan Correspondence should be addressed to Hideaki Kikuta, [email protected] Received 20 November 2008; Accepted 23 January 2009 Recommended by Samuel Menahem Efficacy of short-course therapy with cephalosporins for treatment of group A β-hemolytic streptococcus (GABHS) pharyngitis is still controversial. Subjects were 226 children with a history of at least one episode of GABHS pharyngitis. Recurrence within the follow-up period (3 weeks after initiation of therapy) occurred in 7 of the 77 children in the 5-day treatment group and in 1 of the 149 children in the 10-day treatment group; the incidence of recurrence being significantly higher in the 5-day treatment group. Bacteriologic treatment failure (GABHS isolation without overt pharyngitis) at follow-up culture was observed in 7 of the 77 children in the 5-day treatment group and 17 of the 149 children in the 10-day treatment group. There was no statistical difference between the two groups. A 5-day course of oral cephalosporins is not always recommended for treatment of GABHS pharyngitis in children who have repeated episodes of pharyngitis. Copyright © 2009 Hideaki Kikuta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Antibiotic Review
    8/28/19 Disclosure 2 E. Monee’ Carter-Griffin DNP, MA, RN, ACNP-BC Antibiotic has no financial relationships with commercial Review interests to disclose. Any unlaBeled and/or E. Monee’ Carter-Griffin, DNP, MA, RN, ACNP-BC unapproved uses of drugs or products will Be Associate Chair for Advanced Practice Nursing disclosed. University of Texas at Arlington, College of Nursing & Health Innovation Dallas Pulmonary & Critical Care, PA • Identify the general characteristics of • SusceptiBility à determine which antibiotics. antibiotics a bacteria is sensitive to • Discuss the mechanism of action, • à pharmacokinetics, and spectrum of activity MIC lowest concentration of drug that inhiBits growth of the Bacteria for the most common antiBiotic drug classes. Antibiotic Objectives • Identify commonly prescriBed antiBiotics • Trough à lowest concentration of within the drug classes including dosage Lingo drug in bloodstream range and indication for prescribing. – Collect prior to administration of • Identify special considerations for specific drug antibiotics and/or drug classes. • Peak à highest concentration of • Practice appropriate prescriBing for common drug in bloodstream bacterial infections. • Review Basic antiBiotic stewardship 3 4 principles. • Penicillins • Bactericidal or bacteriostatic • Cephalosporins • Narrow or Broad spectrum • Carbapenems General • Can elicit allergic responses Antibiotic • MonoBactam Characteristics • Affect normal Body flora Drug Classes • Macrolides • Fluoroquinolones • Sulfonamides • Tetracyclines 5 6 1 8/28/19 • Penicillins – Natural penicillins 8 – Aminopenicillins Penicillins Penicillins – Anti-staphylococcal penicillins • Mechanism of action àbactericidal à – Anti-pseudomonal penicillins interrupts cell wall synthesis 7 • Pharmacokinetics • Spectrum of Activity – Gram positive organisms Natural – Penicillin G à mostly given IM, But Natural • Streptococcus species (e.g. S. Penicillins one variation can Be given IV Penicillins pyogenes) • Poorly aBsorBed via PO • Some enterococcus species (e.g.
    [Show full text]
  • Dissertation Chengwen Teng
    Copyright by Chengwen Teng 2019 The Dissertation Committee for Chengwen Teng Certifies that this is the approved version of the following dissertation: ADVERSE DRUG REACTIONS ASSOCIATED WITH ANTIBIOTICS: AN ANALYSIS OF THE FDA ADVERSE EVENT REPORTING SYSTEM Committee: Christopher R. Frei, Supervisor Kelly R. Reveles James P. Wilson Elizabeth A. Walter Carlos A. Alvarez ADVERSE DRUG REACTIONS ASSOCIATED WITH ANTIBIOTICS: AN ANALYSIS OF THE FDA ADVERSE EVENT REPORTING SYSTEM by Chengwen Teng Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin December 2019 Dedication I dedicated this dissertation to my family, who have supported and loved me unconditionally. Acknowledgements I would like to thank my supervisor, Dr. Christopher Frei, for his mentoring and support. Dr. Frei has guided me in every aspect of research, including literature review, generating research ideas, research proposal writing, data analysis, interpretation of data, and manuscript writing. He is a great mentor. In addition, I express my appreciation to my dissertation committee members, Dr. Kelly Reveles, Dr. James Wilson, Dr. Elizabeth Walter, and Dr. Carlos Alvarez. Thank you for your guidance and support throughout this dissertation project. Moreover, I express my gratitude to Dr. Kirk Evoy for his guidance on manuscript writing. I would also like to thank Dr. Frei’s research group members Dr. Obiageri Obodozie-Ofoegbu, Xavier Jones, Dr. Daryl Gaspar, Kaitlin Kennedy, Taylor Patek, Courtney Baus, Dr. Lindsey Groff, Dr. Victor Encarnacion, and Dr. Huda Razzack. I really appreciate your kind help.
    [Show full text]
  • WO 2010/025328 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 4 March 2010 (04.03.2010) WO 2010/025328 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US2009/055306 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 28 August 2009 (28.08.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/092,497 28 August 2008 (28.08.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): FOR¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, EST LABORATORIES HOLDINGS LIMITED [IE/ ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, —]; 18 Parliament Street, Milner House, Hamilton, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, Bermuda HM12 (BM).
    [Show full text]
  • Cephalosporins Can Be Prescribed Safely for Penicillin-Allergic Patients ▲
    JFP_0206_AE_Pichichero.Final 1/23/06 1:26 PM Page 106 APPLIED EVIDENCE New research findings that are changing clinical practice Michael E. Pichichero, MD University of Rochester Cephalosporins can be Medical Center, Rochester, NY prescribed safely for penicillin-allergic patients Practice recommendations an allergic reaction to cephalosporins, ■ The widely quoted cross-allergy risk compared with the incidence of a primary of 10% between penicillin and (and unrelated) cephalosporin allergy. cephalosporins is a myth (A). Most people produce IgG and IgM antibodies in response to exposure to ■ Cephalothin, cephalexin, cefadroxil, penicillin1 that may cross-react with and cefazolin confer an increased risk cephalosporin antigens.2 The presence of of allergic reaction among patients these antibodies does not predict allergic, with penicillin allergy (B). IgE cross-sensitivity to a cephalosporin. ■ Cefprozil, cefuroxime, cefpodoxime, Even penicillin skin testing is generally not ceftazidime, and ceftriaxone do not predictive of cephalosporin allergy.3 increase risk of an allergic reaction (B). Reliably predicting cross-reactivity ndoubtedly you have patients who A comprehensive review of the evidence say they are allergic to penicillin shows that the attributable risk of a cross- U but have difficulty recalling details reactive allergic reaction varies and is of the reactions they experienced. To be strongest when the chemical side chain of safe, we often label these patients as peni- the specific cephalosporin is similar to that cillin-allergic without further questioning of penicillin or amoxicillin. and withhold not only penicillins but Administration of cephalothin, cepha- cephalosporins due to concerns about lexin, cefadroxil, and cefazolin in penicillin- potential cross-reactivity and resultant IgE- allergic patients is associated with a mediated, type I reactions.
    [Show full text]
  • Pharmacy Update: Truth and Consequences of Beta-Lactam Allergy Management
    Pharmacy Update: Truth and Consequences of Beta-Lactam Allergy Management Penicillin (PCN) Allergy Background o PCN allergy is the most common drug-class allergy reported - ~8-12% of patients self-report a PCN allergy - Reported anaphylactic reaction to PCN commonly precludes prescribers from using β-lactams in these patients o 80-90% of patients reporting a PCN allergy will have a negative response to PCN skin testing Impact of Penicillin Allergies o Penicillin “allergies” lead to: - More costly, less effective therapy o Longer length of stay, more medications used, more treatment failures - Worse clinical outcomes o Increased mortality, more treatment failures - 2nd and 3rd line antibiotics commonly substituted for β-lactams in patients with a penicillin “allergy” o Suboptimal use of fluoroquinolones, clindamycin, vancomycin, and aztreonam (e.g. vancomycin for MSSA) o Macy et al. J Allergy Clin Immunol: - Significantly more fluoroquinolone, clindamycin, and vancomycin use - 23.4% more C. difficile (95% CI: 15.6%-31.7%) - 14.1% more MRSA (95% CI: 7.1%-21.6%) - 30.1% more VRE infections (95% CI: 12.5%-50.4%) The Myth of Cross-Reactivity between Penicillins & Cephalosporins o The widely quoted cross-reactivity rate of 10% was originally reported in the 1960s, studies were flawed due to cephalosporins being frequently contaminated with penicillin o More recent observational studies have Table 1. FDA-approved Beta-lactam Antibiotics with Similar Side Chainsa found cross-reactivity rates between 0.17% Agent Agents with Similar Side Chains
    [Show full text]
  • Appendix C Medication Tables
    Appendix C Medication Tables Note: The medication tables are not meant to be inclusive lists of all available therapeutic agents. Approved medication tables will be updated regularly. Discrepancies must be reported. See Resource Section of this manual for additional contact information. Release Notes: Aspirin Table Version 1.0 Table 1.1 Aspirin and Aspirin-Containing Medications Acetylsalicylic Acid Acuprin 81 Alka-Seltzer Alka-Seltzer Morning Relief Anacin Arthritis Foundation Aspirin Arthritis Pain Ascriptin Arthritis Pain Formula ASA ASA Baby ASA Baby Chewable ASA Baby Coated ASA Bayer ASA Bayer Children's ASA Buffered ASA Children's ASA EC ASA Enteric Coated ASA/Maalox Ascriptin Aspergum Aspir-10 Aspir-Low Aspir-Lox Aspir-Mox Aspir-Trin Aspirbuf Aspircaf Aspirin Aspirin Baby Aspirin Bayer Aspirin Bayer Children's Aspirin Buffered Aspirin Child Aspirin Child Chewable Aspirin Children's Aspirin EC Aspirin Enteric Coated Specifications Manual for National Appendix C-1 Hospital Quality Measures Table 1.1 Aspirin and Aspirin-Containing Medications (continued) Aspirin Litecoat Aspirin Lo-Dose Aspirin Low Strength Aspirin Tri-Buffered Aspirin, Extended Release Aspirin/butalbital/caffeine Aspirin/caffeine Aspirin/pravachol Aspirin/pravastatin Aspirtab Bayer Aspirin Bayer Aspirin PM Extra Strength Bayer Children’s Bayer EC Bayer Enteric Coated Bayer Low Strength Bayer Plus Buffered ASA Buffered Aspirin Buffered Baby ASA Bufferin Bufferin Arthritis Strength Bufferin Extra Strength Buffex Cama Arthritis Reliever Child’s Aspirin Coated Aspirin
    [Show full text]
  • Cefditoren in Upper and Lower Community-Acquired Respiratory Tract Infections
    Drug Design, Development and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Cefditoren in upper and lower community-acquired respiratory tract infections Francisco Soriano1 Abstract: This article reviews and updates published data on cefditoren in the evolving scenario María-José Giménez1,2 of resistance among the most prevalent isolates from respiratory tract infections in the community Lorenzo Aguilar1,2 (Streptococcus pyogenes, Haemophilus influenzae, and Streptococcus pneumoniae). By relating the in vitro activity of cefditoren (in national and multinational surveillance and against isolates 1PRISM-AG, Madrid, Spain; 2Microbiology Department, School with emerging resistant genotypes/phenotypes) to its pharmacokinetics, the cefditoren pharma- of Medicine, University Complutense, codynamic activity predicting efficacy (in humans, animal models, and in vitro simulations) is Madrid, Spain analyzed prior to reviewing clinical studies (tonsillopharyngitis, sinusitis, acute exacerbations of chronic bronchitis, and community-acquired pneumonia) and the relationship between bacterial eradication and clinical efficacy. The high in vitro activity of cefditoren against the most For personal use only. prevalent respiratory isolates in the community, together with its pharmacokinetics (enabling a twice daily regimen) leading to adequate pharmacodynamic indexes covering all S. pyogenes, H. influenzae, and at least 95% S. pneumoniae isolates, makes cefditoren an antibiotic that will play a significant role in the treatment of respiratory tract infections in the community. In the clinical setting, studies carried out with cefditoren showed that treatments with the 400 mg twice daily regimen were associated with high rates of bacteriological response, even against penicillin-nonsusceptible S. pneumoniae, with good correlation between bacteriological efficacy/ response and clinical outcome.
    [Show full text]
  • Anti-Infective Drug Poster
    Anti-Infective Drugs Created by the Njardarson Group (The University of Arizona): Edon Vitaku, Elizabeth A. Ilardi, Daniel J. Mack, Monica A. Fallon, Erik B. Gerlach, Miyant’e Y. Newton, Angela N. Yazzie, Jón T. Njarðarson Streptozol Spectam Novocain Sulfadiazine M&B Streptomycin Chloromycetin Terramycin Tetracyn Seromycin Tubizid Illosone Furadantin Ethina Vancocin Polymyxin E Viderabin Declomycin Sulfamethizole Blephamide S.O.P. ( Sulfanilamide ) ( Spectinomycin ) ( Procaine ) ( Sulfadiazine ) ( Sulfapyridine ) ( Streptomycin ) ( Chloramphenicol ) ( Oxytetracycline ) ( Tetracycline ) ( Cycloserine ) ( Isoniazid ) ( Erythromycin ) ( Nitrofurantoin ) ( Ethionamide ) ( Vancomycin ) ( Colistin ) ( Vidarabine ) ( Demeclocycline ) ( Sulfamethizole ) ( Prednisolone Acetate & Sulfacetamide ) ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIMYCOBACTERIAL ANTIMYCOBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIMYCOBACTERIAL ANTIBACTERIAL ANTIBACTERIAL ANTIVIRAL ANTIBACTERIAL ANTIBACTERIAL ANTIBACTERIAL Approved 1937 Approved 1937 Approved 1939 Approved 1941 Approved 1942 Approved 1946 Approved 1949 Approved 1950 Approved 1950s Approved 1950s Approved 1952 Approved 1953 Approved 1953 Approved 1956 Approved 1958 Approved 1959 Approved 1960 Approved 1960 Approved 1960s Approved 1961 Coly-Mycin S Caprocin Poly-Pred Aureocarmyl Stoxil Flagyl NegGram Neomycin Flumadine Omnipen Neosporin G.U. Clomocycline Versapen-K Fungizone Vibramycin Myambutol Pathocil Cleocin Gentak Floxapen
    [Show full text]