Appendix 1 Figure A1–A5 Table A1–A8

Total Page:16

File Type:pdf, Size:1020Kb

Appendix 1 Figure A1–A5 Table A1–A8 Oikos OIK-04536 Guardiola, M., Stefanescu, C., Rodà, F. and Pino, J. 2017. Do asynchronies i n ex tinction debt af fect the s tructure of trophic networks? A case s tudy of antagonistic butterfly larvae–plant networks. – Oikos doi: 10.1111/oik.04536 Appendix 1 Figure A1–A5 Table A1–A8 1 Figure A1. Map showing the location of the study region in the Iberian Peninsula (black square), and distribution and main land cover around the 26 studied patches. 3 Figure A2. Overall plant (left, green boxes) and butterfly (right, red boxes) interaction networks including all plants and butterflies recorded in the 26 analysed patches. Each line between a butterfly and a plant corresponds to a trophic interaction between butterfly larvae and theirt hos plants: e.g. Colias alfacariensis (Photo: J. Corbera) is a butterfly specialist species that interact with Hippocrepis comosa (Photo: M. Guardiola). Codes of butterfly and plant identities are shown in Table A3 and Table A4 respectively. 4 P10-S B58.G P232-G B67.G P105-G P20-S B59.G P34-G B2.G P83-G B1.G P223-G B3.G P170-G B36.G P171-G P212-G B74.G P211-G B51.S P49-G B50.S P56-S B52.G P57-S B13.G P58-S P9-S B83.G P100-G B70.S P184-G P220-G B22.S P240-G B65.S P17-S B84.S P16-S B61.S P143-S B41.G P96-G B25.S P97-S P82-S B20.S P47-G B16.G P103-S P134-G B64.G P148-G P189-S B66.S P190-S B23.S P191-G B21.G P294-G P295-G B60.S P180-G B38.G P124-S B62.S P125-G P126-G B63.S P188-S B42.G P287-G B17.G P288-G B24.S P67-G P178-S B39.G P32-S B30.S P161-S B19.G P162-S B78.S P163-G P238-S B73.G P182-G B35.S P181-G B40.G P214-G B48.G P112-S B55.G P114-S B32.S P113-S B31.G P3-G B71.G P272-S B72.G P273-S B47.G P36-S B49.S P40-S B33.G P27-S B57.G P28-S B12.G P37-S B4.S P41-G P204-S B34.S P91-S B80.S P50-G B81.S P51-S B18.G P52-S P33-S B5.S P157-S B6.S P296-G B7.G P127-G B8.G P128-G B9.G P135-S B11.G P136-S P137-S B37.G P138-S B10.G P139-S B69.S P179-G B14.G P259-G P260-S B15.S P270-S B26.S P176-G B44.G P177-G B27.G P233-G B28.G P234-G P241-G B29.G P205-S B77.G P226-G B45.S P225-G B46.G P227-G B53.S P228-G B75.G P229-G P92-G B54.G P94-S B76.G P203-S P284-S B56.G P285-S B68.S P244-S B79.S P106-G B85.S 40 5 Figure A3. Interaction networks of all 26 studied patches, including all butterflies (top, red boxes) and host-plants (bottom, green boxes) recorded in each patch. Each line between a butterfly and a plant corresponds to a trophic interaction between butterfly larvae and their host plants. Codes of butterfly and plant identities are shown in Table A3 and Table A4 respectively. Patch Network B7.G B8.G B10.G B48.G B55.G B31.G B71.G B40.G B47.G B18.G B53.S B60.S B64.G B75.G 1 P40-S P36-S P37-S P97-S P135-S P138-S P272-S P205-S P178-S P189-S P296-G P226-G P229-G B18.G B40.G B47.G B4.S B71.G B72.G B31.G B48.G B30.S B17.G B10.G B20.S B61.S B51.S B83.G B53.S B54.G B75.G B64.G 2 P51-S P52-S P36-S P37-S P40-S P17-S P97-S P272-S P273-S P113-S P135-S P138-S P143-S P205-S P189-S P211-G P184-G P229-G B2.G B59.G B8.G B32.S B40.G B31.G B33.G B71.G B48.G B73.G B41.G B53.S B68.S B75.G 3 P36-S P37-S P40-S P97-S P34-G P272-S P205-S P285-S P296-G P229-G 6 B17.G B48.G B31.G B47.G B49.S B71.G B18.G B26.S B38.G B75.G P40-S P37-S P51-S P52-S P113-S P272-S P124-S P176-G P126-G P226-G P229-G B18.G B78.S B49.S B40.G B4.S B71.G B33.G B31.G B73.G B48.G B55.G B10.G B52.G B83.G B13.G B21.G B60.S B27.G B29.G B77.G B36.G B53.S B61.S B68.S B79.S 4 7 6 5 P9-S P52-S P36-S P37-S P40-S P91-S P49-G P273-S P113-S P135-S P138-S P178-S P205-S P143-S P285-S P244-S P184-G P211-G P233-G P223-G P100-G B18.G B71.G B49.S B40.G B78.S B31.G B48.G B73.G B17.G B27.G B36.G B53.S B54.G B75.G B59.G B61.S P51-S P52-S P37-S P40-S P20-S P273-S P113-S P112-S P205-S P143-S P181-G P233-G P223-G P225-G P229-G B18.G B78.S B49.S B71.G B31.G B48.G B38.G B75.G B83.G P51-S P52-S P37-S P40-S P57-S P49-G P272-S P273-S P113-S P124-S P126-G P229-G 7 B8.G B30.S B17.G B48.G B73.G B31.G B33.G B71.G B18.G B21.G B60.S B52.G B61.S B75.G P40-S P36-S P37-S P51-S P52-S P57-S P113-S P272-S P178-S P143-S P296-G P226-G B18.G B40.G B4.S B71.G B31.G B17.G B73.G B48.G B80.S B10.G B23.S B66.S B38.G B62.S B63.S B21.G B64.G B41.G B25.S B61.S B52.G B75.G B79.S 11 10 8 9 P3-G P36-S P40-S P91-S P32-S P97-S P57-S P41-G P272-S P113-S P135-S P138-S P188-S P143-S P244-S P126-G P180-G P227-G P229-G B2.G B59.G B3.G B36.G B10.G B16.G B38.G B18.G B78.S B49.S B32.S B40.G B33.G B47.G B31.G B71.G B73.G B48.G B26.S B27.G B77.G B53.S B54.G B75.G B61.S B83.G P20-S P52-S P37-S P28-S P91-S P40-S P57-S P58-S P34-G P49-G P135-S P138-S P124-S P273-S P272-S P113-S P205-S P143-S P223-G P126-G P148-G P214-G P177-G P234-G P228-G P229-G P184-G P100-G B3.G B36.G B30.S B17.G B48.G B55.G B73.G B31.G B33.G B4.S B71.G B32.S B40.G B49.S B78.S B18.G B5.S B37.G B10.G B27.G B77.G B38.G B41.G B44.G B53.S B54.G B75.G B61.S B83.G P40-S P36-S P37-S P52-S P51-S P97-S P57-S P49-G P113-S P114-S P272-S P273-S P135-S P138-S P124-S P205-S P143-S P223-G P296-G P233-G P126-G P176-G P227-G P229-G P226-G 8 B3.G B17.G B48.G B31.G B33.G B4.S B71.G B81.S B40.G B47.G B49.S B78.S B18.G B6.S B7.G B8.G B9.G B37.G B10.G B16.G B64.G B21.G B60.S B61.S B66.S B75.G B76.G B79.S P40-S P36-S P37-S P51-S P52-S P97-S P114-S P272-S P273-S P135-S P138-S P124-S P189-S P178-S P143-S P188-S P244-S P223-G P296-G P126-G P226-G P229-G B18.G B71.G B40.G B47.G B49.S B33.G B31.G B48.G B17.G B36.G B61.S B75.G 12 15 14 13 P51-S P52-S P37-S P40-S P272-S P113-S P143-S P223-G P226-G P229-G B10.G B48.G B57.G B71.G B81.S B31.G B40.G B49.S B78.S B18.G B21.G B60.S B64.G B36.G B59.G B65.S B75.G P40-S P37-S P52-S P17-S P34-G P135-S P138-S P113-S P272-S P178-S P189-S P214-G P295-G P223-G P229-G B48.G B33.G B31.G B78.S B40.G B47.G B49.S B71.G B18.G B27.G B77.G B59.G B67.G B61.S B75.G B83.G P40-S P37-S P52-S P20-S P113-S P272-S P143-S P233-G P232-G P229-G P184-G 9 B78.S B18.G B40.G B49.S B33.G B31.G B71.G B4.S B48.G B10.G B15.S B38.G B21.G B60.S B53.S B59.G B61.S B75.G B83.G P52-S P37-S P36-S P40-S P20-S P57-S P34-G P272-S P135-S P138-S P260-S P124-S P178-S P205-S P143-S P126-G P226-G P229-G P184-G B4.S B71.G B48.G B31.G B33.G B18.G B78.S B53.S B60.S B61.S B75.G B77.G 16 19 18 17 P40-S P36-S P37-S P52-S P113-S P272-S P205-S P178-S P143-S P226-G P229-G P233-G B3.G B19.G B71.G B81.S B47.G B40.G B48.G B31.G B78.S B49.S B33.G B18.G B12.G B60.S B38.G B21.G B83.G B50.S B37.G B45.S B46.G B53.S B59.G B61.S B67.G B75.G B77.G B79.S P91-S P37-S P40-S P52-S P10-S P50-G P34-G P113-S P272-S P178-S P161-S P205-S P143-S P244-S P223-G P214-G P126-G P180-G P295-G P288-G P184-G P211-G P296-G P241-G P105-G P226-G P229-G P233-G P100-G B3.G B36.G B74.G B48.G B81.S B47.G B71.G B33.G B31.G B40.G B49.S B78.S B18.G B20.S B61.S B53.S B56.G B59.G B60.S B75.G B77.G P91-S P40-S P37-S P36-S P51-S P52-S P16-S P17-S P32-S P34-G P113-S P272-S P143-S P205-S P203-S P178-S P223-G P214-G P226-G P229-G P233-G P234-G 10 B3.G B18.G B34.S B71.G B72.G B4.S B80.S B81.S B48.G B47.G B73.G B40.G B33.G B35.S B30.S B7.G B8.G B10.G B14.G B45.S B46.G B52.G B53.S B61.S B64.G B75.G B77.G P51-S P52-S P33-S P91-S P37-S P36-S P40-S P27-S P49-G P157-S P204-S P113-S P135-S P139-S P205-S P143-S P189-S P223-G P296-G P128-G P179-G P241-G P191-G P229-G P234-G B17.G B30.S B39.G B78.S B24.S B35.S B40.G B49.S B31.G B47.G B33.G B73.G B48.G B55.G B80.S B81.S B71.G B4.S B12.G B18.G B5.S B21.G B64.G B36.G B46.G B52.G B53.S B61.S B77.G B85.S 20 23 22 21 P3-G P91-S P40-S P37-S P36-S P52-S P51-S P41-G P50-G P96-G P49-G P113-S P189-S P205-S P143-S P296-G P180-G P287-G P288-G P294-G P191-G P223-G P241-G P233-G P106-G B35.S B78.S B12.G B33.G B48.G B31.G B49.S B47.G B18.G B71.G B81.S B4.S B21.G B53.S P40-S P37-S P36-S P91-S P41-G P112-S P205-S P295-G B18.G B71.G B31.G B32.S B40.G B48.G B78.S B53.S B75.G P51-S P52-S P36-S P37-S P40-S P91-S P113-S P205-S P226-G 11 B9.G B17.G B30.S B78.S B48.G B32.S B18.G B71.G B41.G B84.S P40-S P36-S P37-S P52-S P97-S P113-S P272-S P296-G B10.G B30.S B48.G B31.G B33.G B78.S B40.G B49.S B71.G B18.G B53.S B64.G B76.G B85.S 47 24 26 25 P40-S P37-S P52-S P51-S P97-S P135-S P136-S P138-S P113-S P272-S P205-S P189-S P229-G P106-G B18.G B78.S B40.G B71.G B31.G B30.S B48.G B75.G P52-S P37-S P40-S P272-S P113-S P229-G 12 Figure A4.
Recommended publications
  • OCHRANA DENNÍCH MOTÝLŮ V ČESKÉ REPUBLICE Analýza Stavu
    OCHRANA DENNÍCH MOTÝL Ů V ČESKÉ REPUBLICE Analýza stavu a dlouhodobá strategie Pro Ministerstvo životního prost ředí ČR zpracovali: Martin Konvi čka, Ji ří Beneš, Zden ěk Fric Přírodov ědecká fakulta Jiho české university (katedra zoologie) & Entomologický ústav BC AV ČR (odd ělení ekologie a ochrany p řírody) V Českých Bud ějovicích, 2010 SOUHRN Fauna českých denních motýl ů je v žalostném stavu – ze 161 autochtonních druh ů jich p řes 10 % vyhynulo, polovina zbytku ohrožená nebo zranitelná, vrší se d ůkazy o klesající po četnosti hojných druh ů. Jde o celovropský trend, ochrana motýl ů není uspokojivá ani v zemích našich soused ů. Jako nejznám ější skupina hmyzu motýli indikují špatný stav p řírody a krajiny v ůbec, jejich ú činná aktivní ochrana zast řeší ochranu v ětšiny druhového bohatství terrestrických bezobratlých. Příčinou žalostného stavu je dalekosáhlá prom ěna krajiny v posledním století. Denní motýli prosperují v krajin ě poskytující r ůznorodou nabídku zdroj ů v těsné blízkosti. Jako pro převážn ě nelesní živo čichy je pro n ě ideální jemnozrnná dynamická mozaika nejr ůzn ější typ ů vegetace, udržovaná disturbancí a následnou sukcesí. Protože sou časé taxony jsou starší než geologické období čtvrtohor, v ětšina z nich se vyvinula v prost ředí ovliv ňovaném, krom ě i dnes p ůsobících ekologických činitel ů, pastevním tlakem velkých býložravc ů. Řada velkých evropských býložravc ů b ěhem mladších čtvrtohor vyhynula, zna čnou m ěrou p řisp ěním člov ěka. Člov ěk však nahradil jejich vliv svým hospoda řením udržoval v krajin ě, jež dlouho do 20. století udrželo jemnozrnnou dynamickou mozaiku, podmínku prosperity mnoha druh ů.
    [Show full text]
  • Révision Taxinomique Et Nomenclaturale Des Rhopalocera Et Des Zygaenidae De France Métropolitaine
    Direction de la Recherche, de l’Expertise et de la Valorisation Direction Déléguée au Développement Durable, à la Conservation de la Nature et à l’Expertise Service du Patrimoine Naturel Dupont P, Luquet G. Chr., Demerges D., Drouet E. Révision taxinomique et nomenclaturale des Rhopalocera et des Zygaenidae de France métropolitaine. Conséquences sur l’acquisition et la gestion des données d’inventaire. Rapport SPN 2013 - 19 (Septembre 2013) Dupont (Pascal), Demerges (David), Drouet (Eric) et Luquet (Gérard Chr.). 2013. Révision systématique, taxinomique et nomenclaturale des Rhopalocera et des Zygaenidae de France métropolitaine. Conséquences sur l’acquisition et la gestion des données d’inventaire. Rapport MMNHN-SPN 2013 - 19, 201 p. Résumé : Les études de phylogénie moléculaire sur les Lépidoptères Rhopalocères et Zygènes sont de plus en plus nombreuses ces dernières années modifiant la systématique et la taxinomie de ces deux groupes. Une mise à jour complète est réalisée dans ce travail. Un cadre décisionnel a été élaboré pour les niveaux spécifiques et infra-spécifique avec une approche intégrative de la taxinomie. Ce cadre intégre notamment un aspect biogéographique en tenant compte des zones-refuges potentielles pour les espèces au cours du dernier maximum glaciaire. Cette démarche permet d’avoir une approche homogène pour le classement des taxa aux niveaux spécifiques et infra-spécifiques. Les conséquences pour l’acquisition des données dans le cadre d’un inventaire national sont développées. Summary : Studies on molecular phylogenies of Butterflies and Burnets have been increasingly frequent in the recent years, changing the systematics and taxonomy of these two groups. A full update has been performed in this work.
    [Show full text]
  • New Method of Reducing Aero Acoustical Noise for a Quiet Propeller
    Journal of Engineering Mechanics and Machinery (2019) Vol. 4: 1-28 DOI: 10.23977/jemm.2019.41001 Clausius Scientific Press, Canada ISSN 2371-9133 ‘Butterfly acoustical skin’ – new method of reducing aero acoustical noise for a quiet propeller Igor S. Kovalev Science and Technology Laboratory, Kinneret College, Emek Hayarden, 15132, Israel Correspondence: [email protected] Keywords: ‘butterfly acoustical skin’, moth, noise reduction, porous scales, propeller. Abstract: An experimental investigation was conducted on the effect ‘butterfly acoustical skin’ (metallic version of the lepidopterans scale coverage) on the acoustic performances of two - bladed propeller (diameter of 1200 mm, airfoil sections of NACA 2415, rotating speed of 1780 rpm, Re ≈ 2 × 105) in a low – speed straight through a wind tunnel. Attention was initially directed to this problem by observation of the porous scales and porous scale coverage of lepidopterans as well as other studies indicating the noise suppression of flying lepidopterans by wing appendages. The property of the moth coverage allows these insects to overcome bat attacks at night. These appendages are very small (size: 30 – 200 µm) and have a various porous structures. I discuss both many different micro – and nanostructures of the porous scales, and many differences in details among various structures of the porous scale coverage of lepidonterans. I consider here only porous scales of butterflies Papilio nireus, Nieris rapae, Deelias nigrina, male Callophrys rubi, male Polyommatus daphnis, butterfly Papilio palinurus as well as porous scale coverage of cabbage moth, moth of Saturniidae family and moth of Noctuoidea family. The evolutionary history of lepidopterans and the properties of lepidopterans scale coverage are briefly discussed as well as different methods of reducing aero acoustic noise of aircrafts.
    [Show full text]
  • Arethusana Arethusa (Denis & Schiffermüller, 1775)
    Famille Nymphalidae Sous-famille Arethusana arethusa (Denis & Schiffermüller, 1775) Satyrinae le Mercure Statut Ce papillon, à la répartition discontinue dans la moitié sud de la France, subit une phase de régression très marquée dans nos régions. Son maintien est compromis en Franche-Comté où ses populations sont en plein effondrement. RE et son prolongement sur le plateau ni- CR Franche-Comté OINOT vernais, enfi n sur les côtes de calcaire crétacé du Sénonais. Une unique et sur- Claude V prenante micro-population survit sur une EN pâture maigre cristalline entre Autun et Le Creusot. VU Phénologie NT Bourgogne C’est une espèce univoltine de brève période d’apparition centrée sur la seconde quinzaine d’août. LC Dates extrêmes : (24 juillet 2011) 3 août – 19 septembre. DD Atteintes et menaces NA La fermeture des milieux par l’em- broussaillement (le plus souvent par NE le Buis, mais aussi par le Pin noir et le Prunellier) entraîne la réduction des Europe – LC surfaces de pelouses sèches auxquelles France – LC l’espèce est inféodée (Festuco-brome- tum) et permettant sa survie. Dans l’Yonne, des places de vol enchâssées Mâle (Saône-et-Loire, 2008). en zones de culture hébergeant l’espèce dans les années 1980 sont désormais désertées (Pays d’Othe). Écologie et biologie Distribution L’intensifi cation agricole détruit par Le Mercure (ou Petit Agreste) est A. arethusa est une espèce holo- ailleurs de nombreux habitats du Mer- un hôte préférentiel des côtes calcaires, méditerranéenne de répartition très mor- cure (destruction de placettes-relais, des pelouses sèches et maigres, de pré- celée en Europe et en France.
    [Show full text]
  • Morphological Characters of the Immature Stages of Henotesia Narcissus
    224 Nachr. entomol. Ver. Apollo, N. F. 23 (4): 225–236 (2003) 225 Morphological characters of the immature stages of Henotesia narcissus (Fabricius, 1798): description and phylogenetic significance (Lepidoptera: Nymphalidae, Satyrinae, Satyrini, Mycalesina)1 Peter H. Roos Dr. Peter H. Roos, Goethestrasse 1a, D-45549 Sprockhövel, Germany; e-mail: [email protected] Abstract: Development and morphological characters of mathematisch adäquat durch eine Exponentialfunktion the immature stages of Henotesia narcissus (Fabricius, 1798) beschrieben werden. Ähnliche Funktionen können zur from Madagascar were studied. The aims were to find phy- Charakterisierung des Längenwachstums des Körpers sowie logenetically relevant characters to analyze the systematic der Zunahme der Stemmatadurchmesser benutzt werden. relationships of the subtribe Mycalesina within the Satyrini Durch einfache Kalkulationen können einzelne Larvalsta- and to find criteria for distinction of the larval stages. Clear dien identifiziert werden, wodurch die Vorausetzung für synapomorphies have been found for Mycalesina and the vergleichende morphologische Studien geschaffen ist. subtribe Ypthimina in the larval stages such as clubbed setae and thoracic dorsal trichome fields in the last instar larvae. Thus, the close relationship between the Mycalesina and Introduction the Lethina/Elymniina as proposed by Miller (1968) is not The order Lepidoptera includes an estimated number confirmed by our results. Our conclusion is supported by fur- of about 1.4 million species (Gaston 1991, Simon 1996). ther common characters of the Mycalesina and Ypthimina which, however, cannot be easily interpreted in phylogenetic For many, if not most of the known species often nothing terms. Such characters which are not shared by the Lethina more than some characters of the wing pattern have and Elymniina are for example the shape of the scoli present been published which may allow the identification of on the head capsule in all larval instars, the enlargement the species in the mature stage.
    [Show full text]
  • The Radiation of Satyrini Butterflies (Nymphalidae: Satyrinae): A
    Zoological Journal of the Linnean Society, 2011, 161, 64–87. With 8 figures The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods CARLOS PEÑA1,2*, SÖREN NYLIN1 and NIKLAS WAHLBERG1,3 1Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden 2Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Apartado 14-0434, Lima-14, Peru 3Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland Received 24 February 2009; accepted for publication 1 September 2009 We have inferred the most comprehensive phylogenetic hypothesis to date of butterflies in the tribe Satyrini. In order to obtain a hypothesis of relationships, we used maximum parsimony and model-based methods with 4435 bp of DNA sequences from mitochondrial and nuclear genes for 179 taxa (130 genera and eight out-groups). We estimated dates of origin and diversification for major clades, and performed a biogeographic analysis using a dispersal–vicariance framework, in order to infer a scenario of the biogeographical history of the group. We found long-branch taxa that affected the accuracy of all three methods. Moreover, different methods produced incongruent phylogenies. We found that Satyrini appeared around 42 Mya in either the Neotropical or the Eastern Palaearctic, Oriental, and/or Indo-Australian regions, and underwent a quick radiation between 32 and 24 Mya, during which time most of its component subtribes originated. Several factors might have been important for the diversification of Satyrini: the ability to feed on grasses; early habitat shift into open, non-forest habitats; and geographic bridges, which permitted dispersal over marine barriers, enabling the geographic expansions of ancestors to new environ- ments that provided opportunities for geographic differentiation, and diversification.
    [Show full text]
  • Butterflies & Flowers of the Kackars
    Butterflies and Botany of the Kackars in Turkey Greenwings holiday report 14-22 July 2018 Led by Martin Warren, Yiannis Christofides and Yasemin Konuralp White-bordered Grayling © Alan Woodward Greenwings Wildlife Holidays Tel: 01473 254658 Web: www.greenwings.co.uk Email: [email protected] ©Greenwings 2018 Introduction This was the second year of a tour to see the wonderful array of butterflies and plants in the Kaçkar mountains of north-east Turkey. These rugged mountains rise steeply from Turkey’s Black Sea coast and are an extension of the Caucasus mountains which are considered by the World Wide Fund for Nature to be a global biodiversity hotspot. The Kaçkars are thought to be the richest area for butterflies in this range, a hotspot in a hotspot with over 160 resident species. The valley of the River Çoruh lies at the heart of the Kaçkar and the centre of the trip explored its upper reaches at altitudes of 1,300—2,300m. The area consists of steep-sided valleys with dry Mediterranean vegetation, typically with dense woodland and trees in the valley bottoms interspersed with small hay-meadows. In the upper reaches these merge into alpine meadows with wet flushes and few trees. The highest mountain in the range is Kaçkar Dağı with an elevation of 3,937 metres The tour was centred around the two charming little villages of Barhal and Olgunlar, the latter being at the fur- thest end of the valley that you can reach by car. The area is very remote and only accessed by a narrow road that winds its way up the valley providing extraordinary views that change with every turn.
    [Show full text]
  • Catálogo Y Atlas De Los Ropalóceros De La Finca Ribavellosa
    CATÁLOGO Y ATLAS DE LOS ROPALÓCEROS DE LA FINCA RIBAVELLOSA. (LA RIOJA) ORGANISMO AUTÓNOMO PARQUES NACIONALES MEMORIA FINAL 2011 INFFE S.L. Ingeniería para el Medio Ambiente Índice 1. Introducción..................................................................................................................1 2. Agradecimientos ..........................................................................................................3 3. La zona de estudio .......................................................................................................4 3.1. Situación ....................................................................................................................4 3.2. Historia .......................................................................................................................5 3.3. Medio físico................................................................................................................6 3.4. Vegetación .................................................................................................................6 3.5. Fauna..........................................................................................................................7 4. Antecedentes................................................................................................................8 5. Objetivos .......................................................................................................................8 6. Material y métodos.......................................................................................................9
    [Show full text]
  • Biology of the Queen of Spain Fritillary, Issoria Lathonia (Lepidoptera: Nymphalidae)
    Zobar & Genc: Biology of Queen of Spain Fritillary 237 BIOLOGY OF THE QUEEN OF SPAIN FRITILLARY, ISSORIA LATHONIA (LEPIDOPTERA: NYMPHALIDAE) DAMLA ZOBAR1 AND HANIFE GENC1 1Department of Plant Protection, Agricultural Faculty, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey ABSTRACT The biology and the life cycle of Issoria lathonia (Nymphalidae) (Linnaeus 1758) on its host plant, Viola tricolor L. (Violaceae), are described from laboratory studies. In the laboratory eggs are laid singly on the host plant leaves as well as on the surfaces of plastic screen cages. Newly hatched larvae aggregate and feed on the host plant leaves. Later instars disperse on the plant and continue to feed on leaves and flowers. Head capsule widths, and weight and size measurements show that larvae develop through 5 instars. The larvae crawl off the host plant and pupate off the host. The life cycle from egg to adult requires 23-31 d at 26°C, and 16:8 (L:D) photoperiod in the laboratory. The butterfly has been reared continuously in the laboratory for about 2 years. Key Words: Issoria lathonia, Nymphalidae, Argynnini, Viola tricolor RESUMEN Se describe la biología y el ciclo de vida de Issoria lathonia (Linnaeus, 1758) sobre su planta hospedera, Viola tricolor L. (Violaceae) basado sobre estudios de laboratorio. En el laborato- rio los huevos están puestos individualmente sobre las hojas de la planta hospedera igual como sobre la superficie de la tela plástica de las jaulas. Las larvas recién nacidas se agregan y se alimentan sobre las hojas de la planta hospedero. Los instares posteriores se dispersan sobre la planta y continúan su alimentación sobre las hojas y flores.
    [Show full text]
  • Introduction
    BULGARIA Nick Greatorex-Davies. European Butterflies Group Contact ([email protected]) Local Contact Prof. Stoyan Beshkov. ([email protected]) National Museum of Natural History (NMNH), Sofia, Butterfly Conservation Europe Partner Bulgarian Academy of Sciences Stanislav Abadjiev compiled and collated butterfly records for the whole of Bulgaria and published a Local Recording Scheme distribution atlas in 2001 (see below). Records are still being gathered and can be sent to Stoyan Beshkov at NMNH, Sofia. Butterfly List See Butterflies of Bulgaria website (Details below) Introduction Bulgaria is situated in eastern Europe with its eastern border running along the Black Sea coast. It is separated from Romania for much of its northern border by the River Danube. It shares its western border with Serbia and Macedonia, and its southern border with Greece and Turkey. Bulgaria has a land area of almost 111,000 sq km (smaller than England but bigger than Scotland) and a declining human population of 7.15 million (as of 2015), 1.5 million of which live in the capital city, Sofia. It is very varied in both climate, topography and habitats. Substantial parts of the country are mountainous, particularly in the west, south-west and central ‘spine’ of the country and has the highest mountain in the Balkan Mountains (Musala peak in the Rila Mountains, 2925m) (Map 1). Almost 70% of the land area is above 200m and over 27% above 600m. About 40% of the country is forested and this is likely to increase through natural regeneration due to the abandonment of agricultural land. Following nearly 500 years under the rule of the Ottoman Empire, Bulgaria was independent for just a few years from 1908 before coming under the domination of the soviet communist regime in 1946.
    [Show full text]
  • The Utility of the Neglected Mitochondrial Control Region for Evolutionary Studies in Lepidoptera (Insecta)
    J Mol Evol (2004) 58:280–290 DOI: 10.1007/s00239-003-2550-2 The Utility of the Neglected Mitochondrial Control Region for Evolutionary Studies in Lepidoptera (Insecta) Marta Vila,1,2 Mats Bjo¨ rklund1 1 Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyva¨ gen 18 D, SE-752 36, Uppsala, Sweden 2 IUX-Edificio de Servicios Centrais de Investigacio´ n, University of A Corun˜ a, Campus de Elvin˜ a, E-15071, A Corun˜ a, Galicia, Spain Received: 24 February 2003 / Accepted: 15 September 2003 Abstract. The insect mitochondrial control region are straightforward over one part of the CR. The (=AT-rich-region) is a rarely used genetic marker in combination CR+COI appears to be a very prom- phylogeographic studies and population genetic sur- ising phylogenetic tool to resolve fast-evolving veys. Reasons for this are that the high AT content species-level phylogenies. and the presence of tandem repeats and indels pose technical and analytical problems. We provide a new Key words: mtDNA control region — Cyto- pair of primers and the first taxonomically wide-scale chrome oxidase I — Insecta — Lepidoptera — description of control region (CR) structure in an Erebia — Indels — Structure — Phylogeography insect order after sequencing it in 31 lepidopteran — Phylogeny species. We assessed levels of variation occurring in the CR and cytochrome oxidase I (COI) by se- quencing and comparison. Intrapopulation analyses Introduction in five species of butterflies showed that CR was more variable than COI. Interpopulation variation from During the last decade there has been a remarkable three populations of Erebia triaria and E.
    [Show full text]
  • Annexes to the Bioscore Report: a Tool to Assess the Impacts of European Community Policies on Europe’S Biodiversity
    Annexes to the BioScore report: A tool to assess the impacts of European Community policies on Europe’s biodiversity Edited by Ben Delbaere Ana Nieto Serradilla Mark Snethlage (Eds) ECNC, Tilburg, the Netherlands, 2009 The report can be consulted on www.bioscore.eu and www.ecnc.org Annex 1. List of environmental variables as derived from species data availability and literature sources Annex 2. Species list with sensitivity scores Annex 3. List of references considered in BioScore for distribution ranges and ecological requirements Annex 4. Technical description of the BioScore tool and database Annex 5. Additional results from case study on afforestation in Italy Annex 6. Additional results from prospective case study of biofuel crop production Annex 7. Test with random set of species Annex 1 List of environmental variables as derived from species data availability and literature sources Environmental variables Biogeographical region Land cover ( CLC classes) Dispersal capacity Dispersal capacity minimum Dispersal capacity maximum Elevation Minimum elevation Maximum elevation Optimum elevation minimum Optimum elevation maximum Light Temperature Continentality Soil moisture Soil acidity Nitrogen availability Salt tolerance Habitat patch size (minimum area requirement) Habitat patch size minimum Habitat patch size maximum Habitat structure Population size Host/nectar plant Influence roads Permanent water surface Temporary water availability Exchange between watersheds Water flow (reduced) Water quality sensitivity Water acidification Water
    [Show full text]