Digitized and Provided by the College Archives, Gustavus Adolphus College

Total Page:16

File Type:pdf, Size:1020Kb

Digitized and Provided by the College Archives, Gustavus Adolphus College 6 I General Information a major religious sculpture program depicting the history of the Church. Paul Gran­ lund, Gustavus graduate, Guggenheim Fellow and Gustavus Artist-in-Residence, is commissioned for this project. EDGAR M. CARLSON ADMINISTRATION BUILDING: Built in 1972 on the site of the former Auditorium building, this 1% story structure houses all of the College's ad­ ministrative offices and computer facilities. This new building honors Dr. Edgar M. Carlson, president of Gustavus from 1944-1968. THE EDWIN J. VICKNER LANGUAGE HALL: This English and Foreign Language Hall was made possible by the generosity of Mrs. Edwin J. Vickner, in fulfillment of the wishes of her late husband, Dr. Edwin J. Vickner. In addition to sixteen faculty offices, there are 12 classrooms, several seminar and conference rooms, a lounge containing period Scandinavian furnishings, and the Clifford Russell Language Laboratory. The building, along with Paul Granlund's sculpture, "Jacob and the Angel," was dedicated in 1962. NOBEL LAUREATES PARTICIPATING IN 1975 NOBEL CONFERENCE Dr. Christian Anfinsen, Chemistry-1972; Dr. George Beadle, Medicine -1958; Dr. Hans Bethe, Physics- 1967; Dr. Felix Bloch, Physics -1952; Dr. Walter Brattain, Physics -1956; Dr. Leon Cooper, Physics-1972; Dr. Andre Cournand, Medicine-1956; Dr. Christian De Duve, Medicine-1974; Dr. John Eccles, Medicine -1963; Dr. Gerald Edelman, Medicine-1972; Dr. Robert Hofstadter, Physics-1961 ; Dr. Charles Huggins, Medicine - 1966; Dr. Polykarp Kusch, Physics - 1955; Dr. Simon Kuznets, Economics -1971; Dr. Willis Lamb , Physics - 1955; Dr. Willard Libby, Chemistry - 1960; Dr. Fritz Lipmann, Medicine - 1953 ; Dr. Robert Mulliken, Chemistry -1966; Dr. Lars Onsager, Chemistry-1968; Dr. Julian Schwinger, Physics - 1965; Dr. Glenn Seaborg, Chemistry - 1951; Dr. Emilio Segre, Physics - 1959; Dr. William Shockley, Physics -1956; Dr. Ulf von Euler, Medicine -1970; Dr. Ernest Walton, Physics-1951; Dr. Thomas Weller, Medicine - 1954; Dr. Chen Ning Yang, Physics - 1957 Digitized and Provided by the College Archives, Gustavus Adolphus College.
Recommended publications
  • Famous Physicists Himansu Sekhar Fatesingh
    Fun Quiz FAMOUS PHYSICISTS HIMANSU SEKHAR FATESINGH 1. The first woman to 6. He first succeeded in receive the Nobel Prize in producing the nuclear physics was chain reaction. a. Maria G. Mayer a. Otto Hahn b. Irene Curie b. Fritz Strassmann c. Marie Curie c. Robert Oppenheimer d. Lise Meitner d. Enrico Fermi 2. Who first suggested electron 7. The credit for discovering shells around the nucleus? electron microscope is often a. Ernest Rutherford attributed to b. Neils Bohr a. H. Germer c. Erwin Schrödinger b. Ernst Ruska d. Wolfgang Pauli c. George P. Thomson d. Clinton J. Davisson 8. The wave theory of light was 3. He first measured negative first proposed by charge on an electron. a. Christiaan Huygens a. J. J. Thomson b. Isaac Newton b. Clinton Davisson c. Hermann Helmholtz c. Louis de Broglie d. Augustin Fresnel d. Robert A. Millikan 9. He was the first scientist 4. The existence of quarks was to find proof of Einstein’s first suggested by theory of relativity a. Max Planck a. Edwin Hubble b. Sheldon Glasgow b. George Gamow c. Murray Gell-Mann c. S. Chandrasekhar d. Albert Einstein d. Arthur Eddington 10. The credit for development of the cyclotron 5. The phenomenon of goes to: superconductivity was a. Carl Anderson b. Donald Glaser discovered by c. Ernest O. Lawrence d. Charles Wilson a. Heike Kamerlingh Onnes b. Alex Muller c. Brian D. Josephson 11. Who first proposed the use of absolute scale d. John Bardeen of Temperature? a. Anders Celsius b. Lord Kelvin c. Rudolf Clausius d.
    [Show full text]
  • Emerging Physics a Fresh Approach to Viewing the Complexity of the Universe
    GETTY IMAGES Emerging physics A fresh approach to viewing the complexity of the Universe. A Different Universe: Reinventing (an analogy that Robert Laughlin draws from with those of life,the biomolecules,for which Physics from the Bottom Down Christina Rossetti’s poem Who Has Seen the he has considerable admiration.Then we hear by Robert Laughlin Wind?). Our identity and perceptions are his own ideas on biology, which will not be Basic Books: 2005. 304 pp. $26, £19.99 all the collective behaviour of ‘ghosts’, who to everyone’s taste but are certainly thought- Philip Anderson borrow their reality from each other. provoking. Finally, his view of complexity Laughlin gives the reader a quick tour science surprised and pleased me with its I should make my interests clear right at the through much of physics (without a single relative benevolence. start. For many years I have thought that a equation). There is a slight emphasis on the Despite the above fulsome praise, this is book such as this should be written, and quantum theory of condensed matter, in so not by any means a perfect book, even for its have been urged to write it myself. I didn’t far as it explains such things as computers purpose.Laughlin is not reliably careful with do so, and couldn’t possibly have written (with a sceptical side glance at quantum facts, whether scientific or historical. For one as suited as this is for its target audience. computation), the properties of ordinary example, it has rhetorical value to give his A Different Universe is a book about what metals, and the like.
    [Show full text]
  • Radiocarbon After Four Decades RADIOCARBON R.E
    Radiocarbon After Four Decades RADIOCARBON R.E. Taylor A. Long R.S. Kra Editors Radiocarbon After Four Decades An Interdisciplinary Perspective With 148 Illustrations Springer Science+Business Media, LLC R.E. Thylor Austin Long Department of Anthropology Department of Geosciences Institute of Geophysics and Planetary Physics The University of Arizona University of California, Riverside Thscon, AZ 85721 USA Riverside, CA 92521-0418 USA Renee S. Kra Department of Geosciences The University of Arizona Thscon, AZ 85721 USA Library of Congress Cataloging-in-Publication Data Radiocarbon after four decades: an interdisciplinary perspective / [editors], R.E. Taylor, Austin Long, Renee S. Kra. p. cm. Includes bibliographical references and index. ISBN 978-1-4757-4251-0 ISBN 978-1-4757-4249-7 (eBook) DOI 1O.l007/978-1-4757-4249-7 1. Radiocarbon dating. I. Taylor, R. E. (Royal Ervin), 1938- II. Long, Austin. III. Kra, Renee S. QC798.D3R3 1992 546'.6815884-dc20 91-44448 Printed on acid-free paper. © 1992 Springer Science+BusinessMedia New York Originally published by Springer-Verlag New York, Inc. in 1992 Softcover reprint of the hardcover 1st edition 1992 All rights reserved. This work may not be translated or copied in whole or in part without the written per­ mission of the publisher,Springer Science+Bnsiness Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereaf­ ter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.
    [Show full text]
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title The new prophet : Harold C. Urey, scientist, atheist, and defender of religion Permalink https://escholarship.org/uc/item/3j80v92j Author Shindell, Matthew Benjamin Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO The New Prophet: Harold C. Urey, Scientist, Atheist, and Defender of Religion A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History (Science Studies) by Matthew Benjamin Shindell Committee in charge: Professor Naomi Oreskes, Chair Professor Robert Edelman Professor Martha Lampland Professor Charles Thorpe Professor Robert Westman 2011 Copyright Matthew Benjamin Shindell, 2011 All rights reserved. The Dissertation of Matthew Benjamin Shindell is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ Chair University of California, San Diego 2011 iii TABLE OF CONTENTS Signature Page……………………………………………………………………...... iii Table of Contents……………………………………………………………………. iv Acknowledgements………………………………………………………………….
    [Show full text]
  • William Bradford Shockley
    William Bradford Shockley Born February 13, 1910, London, UK- died 1989, Santa Clara, Calif.; with Walter Brattain and John Bardeen, inventor of the transistor in 1947, the 1956 Nobel laureate. Education: BS, physics, California Institute of Technology, 1932; PhD, physics, MIT, 1936. Professional Experience: Bell Telephone Laboratories: member, Technical Staff, 1936- 1942 and 1945-1954, director, Transistor Physics Research Facility, 1954; director of research, Antisubmarine Warfare Operations Research Group, US Navy, 1942-1944; founder, Shockley Semiconductor Laboratory, 1954-1989; Stanford University: lecturer, 1958-1963, Alexander M. Poniatoff Professor of Engineering Science and Applied Science, 1963-1975, professor emeritus, 1975-1989. Honors and Awards: Nobel Prize in physics,1 1956. Co-inventor of the transistor in 1947 with John Bardeen and Walter Brattian, Shockley participated in one of the most important discoveries of the century. They applied for a patent in 1948; this device was described as a germanium “transfer resistance” unit, from which the name “transistor” was derived. Shockley continued his research on the device to create the germanium junction transfer transistor, which was much more reliable than the first unit. From this start he founded Shockley Semiconductor Laboratories in Santa Clara Valley in 1954. After he received the Nobel Prize in 1956, disenchantment with Shockley's management style and his propensity for pure research led to the defection of the “Fairchild Eight” in 1957, and the deterioration of his company. His controversial views on genetics and his racist theories have shocked the society around him, but he has continued his research into “grave world problems.” QUOTATION “The only heritage I can leave to Billy is the feeling of power and joy of responsibility for setting the world right on something.” (Shockley's mother, about her 8-year-old son) BIBLIOGRAPHY Biographical 1 Jointly with John Bardeen and Walter H.
    [Show full text]
  • Figuring out a Date Archaeologists Cannot Always Immediately Give a Date for Some Things They Find
    Figuring Out a Date Archaeologists cannot always immediately give a date for some things they find. One way archaeologists try to figure out dates is by comparing kinds of materials used to make things. Early people used stone tools. Eventually, people discovered metal, which was better than stone, and they began using that. Archaeologists know that stone was used before metal because they find stone in deeper layers in the stratigraphy. How the ax developed: 1. The first axes were held in the hand. 2. Polished stone axes were used by the earliest farmers to clear land. 3. The first bronze axes copied the stone ones 4. Bronze axes developed to fit in wooden handles. 5. A new development used a loop to hold the ax to the handle. 6. A strong modern ax has a steel head. In the 1940s, there was a revolution in archaeology. An American chemist named Willard Libby discovered a new method for dating objects from the distant past, called radiocarbon, or carbon-14 dating. It is based on the scientific principle that all living things contain a certain amount of radioactive carbon. Once a living thing dies, carbon begins to decay. Scientists know that half of the carbon decays in 5,730 years. Measuring how much radioactive carbon is present in a sample gives a date. This kind of dating can be used for rocks, pottery, and glass. Charcoal is always a good sample for radiocarbon dating. 'r'*~neuti6ts. nitrogen and fonn 'Th~'heutrons . radioactive carbon ;interact with (C14). ",-.' ... Plants take in this ... In living plants ..
    [Show full text]
  • The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus
    ISSN (Online) 2393-8021 IARJSET ISSN (Print) 2394-1588 International Advanced Research Journal in Science, Engineering and Technology Vol. 5, Issue 10, October 2018 The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus Dr.(Prof.) V.C.A NAIR* Educational Physicist, Research Guide for Physics at Shri J.J.T. University, Rajasthan-333001, India. *[email protected] Abstract: The Research Paper consists mainly of the birth dates of scientists and philosophers Before Christ (BC) and After Death (AD) starting from Thales of Miletus with a brief description of their work and contribution to the development of Physics. The author has taken up some 400 odd scientists and put them in a chronological order. Nobel laureates are considered separately in the same paper. Along with the names of researchers are included few of the scientific events of importance. The entire chain forms a cascade and a ready reference for the reader. The graph at the end shows the recession in the earlier centuries and its transition to renaissance after the 12th century to the present. Keywords: As the contents of the paper mainly consists of names of scientists, the key words are many and hence the same is not given I. INTRODUCTION As the material for the topic is not readily available, it is taken from various sources and the collection and compiling is a Herculean task running into some 20 pages. It is given in 3 parts, Part I, Part II and Part III. In Part I the years are given in Chronological order as per the year of birth of the scientist and accordingly the serial number.
    [Show full text]
  • ELEC3221 Digital IC & Sytems Design Iain Mcnally Koushik Maharatna Basel Halak ELEC3221 / ELEC6241 Digital IC & Sytems D
    ELEC3221 ELEC3221 / ELEC6241- module merge for 2016/2017 Digital IC & Sytems Design Digital IC & Sytems Design SoC Design Techniques Iain McNally Iain McNally 10 lectures 10 lectures ≈ ≈ Koushik Maharatna Koushik Maharatna 12 lectures 12 lectures ≈ ≈ Basel Halak Basel Halak 12 lectures 12 lectures ≈ ≈ 1001 1001 ELEC3221 / ELEC6241 Digital IC & Sytems Design Assessment Digital IC & Sytems Design • SoC Design Techniques 10% Coursework L-Edit Gate Design (BIM) 90% Examination Iain McNally Books • 10 lectures ≈ Integrated Circuit Design Koushik Maharatna a.k.a. Principles of CMOS VLSI Design - A Circuits and Systems Perspective Neil Weste & David Harris 12 lectures ≈ Pearson, 2011 Basel Halak Digital System Design with SystemVerilog Mark Zwolinski 12 lectures ≈ Pearson Prentice-Hall, 2010 1001 1002 Digital IC & Sytems Design History Iain McNally 1947 First Transistor Integrated Circuit Design John Bardeen, Walter Brattain, and William Shockley (Bell Labs) Content • 1952 Integrated Circuits Proposed – Introduction Geoffrey Dummer (Royal Radar Establishment) - prototype failed... – Overview of Technologies 1958 First Integrated Circuit – Layout Jack Kilby (Texas Instruments) - Co-inventor – CMOS Processing 1959 First Planar Integrated Circuit – Design Rules and Abstraction Robert Noyce (Fairchild) - Co-inventor – Cell Design and Euler Paths – System Design using Standard Cells 1961 First Commercial ICs – Wider View Simple logic functions from TI and Fairchild Notes & Resources 1965 Moore’s Law • http://users.ecs.soton.ac.uk/bim/notes/icd Gordon Moore (Fairchild) observes the trends in integration. 1003 1004 History 1947 Point Contact Transistor Collector Emitter 1947 First Transistor John Bardeen, Walter Brattain, and William Shockley (Bell Labs) Base 1952 Integrated Circuits Proposed Geoffrey Dummer (Royal Radar Establishment) - prototype failed..
    [Show full text]
  • 08 Golf-Men Guide-Bleeds.Pmd
    26 27 he San Francisco Bay Area is a major metropoli- tan area of approximately six million people and Tone of the most scenic regions in the United States. The Bay Area includes the major cities of San Francisco and Oakland, as well as Berkeley, home of the world- renowned University of California. Just south is the city of San Jose and the Silicon Valley, home to many of the world’s high-tech companies. The Bay Area also lies within easy driving distance of the high Sierra resorts of Lake Tahoe and Yosemite, the Monterey/Carmel penin- sula, the world famous Napa wine country, and the spec- tacular Mendocino Coast. Everyone knows “The City” - San Francisco - from count- less photographs, movies and television shows that cap- ture its magic. It is a city built on a series of more than 40 hills, offering panoramic views of every kind. The hub of a nine-county complex and the financial and insurance capi- tal of the world, San Francisco has a resident population of about 740,000. San Francisco is situated on a 46.6 square-mile peninsula bounded on the west by the Pa- cific Ocean, on the north by the Golden Gate strait, and from north to east by the San Francisco Bay. The City has been named the world’s top city twice by readers of Conde Nast Traveller and the top U.S. city seven times since 1988. The San Francisco Bay is spanned by two landmarks, the Golden Gate and San Francisco-Oakland Bay bridges, and graced by four islands: Alcatraz, Angel, Yerba Buena and Treasure.
    [Show full text]
  • William Shockley and Eugenics Collection SC0595
    http://oac.cdlib.org/findaid/ark:/13030/kt3t1nf3ft No online items Guide to the William Shockley and Eugenics Collection SC0595 Daniel Hartwig Department of Special Collections and University Archives October 2010 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the William Shockley SC059515653 1 and Eugenics Collection SC0595 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: William Shockley and eugenics collection Creator: Saunders, John Bertrand deCusance Morant Identifier/Call Number: SC0595 Identifier/Call Number: 15653 Physical Description: 2 Linear Feet Date (inclusive): 1965-1978 Abstract: This collection pertains to Shockley's embrace of and advocacy for eugenics, including his work on heredity, I.Q., and race. It includes papers and articles by Shockley, including several presented to the National Academy of Sciences; two issues of the PHI DELTA KAPPAN containing a debate between Shockley and N. L. Gage (Stanford professor of education) on heredity, environment, race, and I.Q., 1972; and clippings on Shockley's views as well as reactions to them, particularly in the academic world. Some of the clippings concern the controversy at Stanford when Shockley's proposed graduate class on dysgenics (1972) was not approved. Immediate Source of Acquisition note Gift of Eleanor Thompson Wortz, 2000; Gift of W. E. Spicer, 2007; Purchase, 2013. Information about Access This collection is open for research. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064.
    [Show full text]
  • The Glacial World According to Wally
    THE GLACIAL WORLD ACCORDING TO WALLY W.S. BROECKER ELDIGO PRESS 2002 THE GLACIAL WORLD ACCORDING TO WALLY W.S. BROECKER LAMONT-DOHERTY EARTH OBSERVATORY OF COLUMBIA UNIVERSITY Palisades, NY 10964 September 1992 Second Revised Edition June 1995 Third Revised Edition August 2002 FOREWORD In 1990 I started a book on glacial climates. I planned four sections, one on indicators, one on clocks, one on records and finally, one on the physics of the system. After completing the first three of these, I got stuck in my attempt to come up with a conceptual view of what might be driving these changes. However, having taught a course on climate change for many years, I know that much of the information one needs is not available in textbook form. Instead, we all depend heavily on reprints. As this proves to be an inefficient route for students interested in learning the basics of our field, I have tried to capture many of these basics in the first three sections of my would-be book. As I realized that it would be several years before I completed this project, I thought it might be useful to the community if I were to make available the three largely completed sections. This was done in 1992. In preparation for use in a short course to be taught at the Geological Society of America in November 2002, I undertook an effort to update the first three sections and the references during the early part of 2002. I encourage purchasers of the book to make as many copies as they wish for use by students and colleagues.
    [Show full text]