Indication for a Volatile Element 114

Total Page:16

File Type:pdf, Size:1020Kb

Indication for a Volatile Element 114 Radiochim. Acta 98, 133–139 (2010) / DOI 10.1524/ract.2010.1705 © by Oldenbourg Wissenschaftsverlag, München Indication for a volatile element 114 By R. Eichler1,2,∗,N.V.Aksenov3, Yu. V. Albin3, A. V. Belozerov3 ,G.A.Bozhikov3, V. I. Chepigin3 , S. N. Dmitriev3, R. Dressler1,H.W.Gäggeler1 ,2, V. A. Gorshkov3, R. A. Henderson4, A. M. Johnsen4,J.M.Kenneally4 , V. Ya. Lebedev3, O. N. Malyshev3, K. J. Moody4, Yu. Ts. Oganessian3,O.V.Petrushkin3, D. Piguet1,A.G.Popeko3, P. Rasmussen1, A. Serov1,2, D. A. Shaughnessy4, S. V. Shishkin3, A. V. Shutov3,M.A.Stoyer4,N.J.Stoyer4, A. I. Svirikhin3, E. E. Tereshatov3, G. K. Vostokin3, M. Wegrzecki5 , P. A. Wilk4, D. Wittwer2 and A. V. Yeremin3 1 Labor für Radio- und Umweltchemie, Paul Scherrer Institut, 5232 Villigen, Switzerland 2 Departement für Chemie und Biochemie, Universität Bern, 3012 Bern, Switzerland 3 Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Russia 4 Lawrence Livermore National Laboratory, Livermore, CA 94551, USA 5 Insitute of Electron Technology, 02-668 Warsaw, Poland (Received June 30, 2009; accepted in revised form November 2, 2009) Transactinides / Element 114 / Adsorption / into group 14 together with carbon, silicon, germanium, Thermochromatography tin, and lead. The enhancement of the metallic character with increasing atomic number Z is an obvious trend ob- served along the main groups 13–17 of the periodic table. Summary. Recently, the chemical investigation of element Thus, a metallic character can be expected for element 112 revealed a highly volatile, noble metallic behaviour, as 114 [9, 10]. However, relativistic calculations of the elec- expected for the last group 12 member of the periodic table. tronic structures of transactinides suggest contraction of The observed volatility and chemical inertness were ascribed the spherical s-andp / -electron orbitals [11–13], thus to the growing influence of relativistic effects on the chemical 1 2 increasing the chemical stability of the elemental atomic properties of the heaviest elements with increasing nuclear state for element 114 with an electronic ground state con- charge. Here, we report for the first time on gas phase chem- 14 10 2 2 ical experiments aiming at a determination of element 114 figuration of Rn: 5 f 6d 7s 7p1/2 [11–13]. Therefore, properties. This element was investigated using its isotopes a high volatility and chemical inertness were postulated 287114 and 288114 produced in the nuclear fusion reactions of for this element [14–19]. Modern relativistic calculation 48Ca with 242Pu and 244Pu, respectively. Identification of three methods predict atomic properties for element 114 indi- atoms of element 114 in thermochromatography experiments cating a higher chemical inertness compared to that of and their deposition pattern on a gold surface indicates that the lighter group 14 metal lead, but still with pronounced this element is at least as volatile as simultaneously investi- metallic properties [15–21]. In this work, we describe gated elements Hg, At, and element 112. This behaviour is experiments which have been conducted to assess these rather unexpected for a typical metal of group 14. chemical properties of element 114 based on the meas- urement of its adsorption properties on a gold surface. In 1. Introduction general, the thermochromatographic method allows for the most efficient determination of the deposition pattern of The enhanced nuclear stability around the closed nuclear single atoms of a volatile species on a chromatographic shells predicted by microscopic theory [1–3] motivated an surface, where a stationary negative temperature gradient extensive experimental quest for elements with Z ∼ 114. is applied. The characteristic interaction potential between However, searches in nature (for review see [4]) and among the single atomic species and the surface can be quanti- the products of fusion reactions or nuclear transfer [5–7] fied from this deposition behaviour [22]. This method is were not successful before 1999. Finally, element 114 was suitable to investigate transactinide elements produced in first ever detected at the Flerov Laboratory for Nuclear nuclear reactions on a one-atom-at-a-time basis and was Reactions (FLNR), Dubna, Russia in 2004, where the for- used already for chemical investigations of transactinide mation of the isotopes 286−289114 was observed in the nu- elements Rf [23], Db [24], Sg [25], Hs [26], and element clear fusion reactions of 48Ca with 242,244Pu (for review 112 [27, 28]. see [8]). The observed longer half-lives of up to several seconds indicate an enhanced nuclear stability of these heaviest nuclei. As an important consequence, chemical in- vestigations of element 114 appeared to be feasible. The 2. Experimental systematic order of the periodic table places element 114 The experiments were performed with the insitu volatiliza- tion and on-line detection technique [29] in combination *Author for correspondence (E-mail: [email protected]). with the cryo-online detector (COLD) [27, 28, 30, 31]. The 134 R. Eichler et al. products of the heavy ion induced nuclear fusion reaction re- coil out of the target, are stopped in a carrier gas, and are subsequently transported through a perfluoroalkoxy (PFA) Teflon capillary into a hot oven (850 ◦C). The oven contains a quartz wool filter and a small piece of tantalum metal, serving as a trap for aerosol particles, water, oxygen, and other reactive species. Only volatile and chemically inert products pass through this separation step and are further transported to the thermochromatographic detection system COLD described elsewhere [27, 28, 31]. Here, species are deposited along the established temperature gradient accord- Fig. 1. Schematic section of the open COLD channel. The detec- tors considered to be reached by the particles emitted due to the ing to their adsorption interaction with the detector sur- alpha and SF decay of an atom adsorbed on a gold covered top de- faces. COLD was equipped with 32 silicon detector pairs, tector D of a detector pair mounted in the detector array COLD. of which one side was covered by a thin gold layer whereas Note, that the gold coverage (light grey) is slightly larger than the the opposite side was passivated by a thin layer of SiO .It active detector surface (inside the dashed-line square). Detector dimen- 2 h = . was assumed that single atoms of element 114 adsorbed on sions in the channel were: Gas slit thickness 1 52 mm, Detector size: x = 11.30 mm, y = 11.60 mm, Gold coverage: xmax = 10.6mm, the Au covered detectors due to the generally stronger in- ymax = 10.6 mm, Active detector surface: xa = 9.7mm, ya = 9.7mm. teraction observed for almost all elements in the periodic Hence, 83.74% of the gold surface covers the active detector surface. table with gold compared to SiO2. Moreover, the gold cov- ered side is at about 5 K lower temperature compared to the uncovered side due to the cooling arrangement of the channel. The event-by-event measurement of α-decays and 233–251 MeV was calculated as explained above. Due to the spontaneous fission (SF) decays in COLD was analysed as longer half-lives, the transport efficiencies are 15% (288114) outlined in Fig. 1. This procedure should provide an on- and 56% (289114), respectively. The temperature range cov- line identification of single atoms. The same setup was al- ered within COLD in experiment (b) was established be- ready applied to investigate chemical properties of element tween +8 ◦Cand−170 ◦C. 112 [27, 28]. In both experiments, 185Hg was produced simultaneously In the first experiment (Experiment a), performed in 2007 due to a neodymium (50 µgcm−2, natural isotopic composi- at the U-400 cyclotron at FLNR Dubna, element 114 was tion) admixture to the target in the nuclear fusion reaction produced in the nuclear fusion reaction 242Pu(48Ca, 3n)287114 with 48Ca. 219Rn and isotopes of astatine were also perma- 242 (T1/2 ∼ 0.5s,α)[8]. A stationary grid-supported PuO2 tar- nently produced in multi-nucleon transfer reactions of the get (1.4mgcm−2; the target material was facing the beam) 48Ca beam with 242,244Pu and transported to the COLD. The deposited on a thin Ti foil backing (0.7mgcm−2) was irra- simultaneous measurements of 185Hg turned out to be very diated during 16 d with an overall beam dose of 3.8 × 1018 important to determine the retention capability of the de- 48Ca particles at a projectile energy in the target material of tector gold surface. After typically one week, the detector 228–246 MeV. This energy was calculated from the beam surfaces started to be less able to retain 185Hg quantita- energy delivered by the accelerator of 273 ± 3MeV,anden- tively. At this point it was always decided to replace the ergy losses within an entrance window of 1.81 mg/cm2 Ti detectors and/or to clean their surfaces. To achieve this and a 5 mm thick slit of He/Ar (50%/50%) between the goal, a washing procedure was applied using methanol, vacuum window and the target using the SRIM code [32]. acetone, and diethylether. The origin of the contamination The target grid transmission was 80%. The gas flow rate in remained unclear, though minor impurities in the Ar car- the experiments was 1.5l/min. Because the measured mean rier gas seem the most likely cause. A water content of overall transport time of volatile reaction products was 2.2s, 0.1 ppm corresponding to a dew point of water of −95 ◦C the 287114 isotope is expected to be transported though the was obtained in the carrier gas by the drying compo- 8-m-long PFA Teflon capillary (1.56 mm inner diameter) nents installed in the gas loop consisiting of a 950 ◦CTa to the COLD thermochromatography detector with an effi- getter and two drying tubes filled with Siccapent.
Recommended publications
  • New Technologies for 211At Targeted Α-Therapy Research Using 211Rn and 209At
    New technologies for 211At targeted α-therapy research using 211Rn and 209At Jason Raymond Crawford BSc, University of British Columbia, 2007 MSc, University of Victoria, 2010 A dissertation submitted in partial fulfilment of the requirements for the degree of Doctorate of Philosophy in the Department of Physics and Astronomy c Jason Raymond Crawford, 2016 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part by photocopy or other means, without the permission of the author. ii New technologies for 211At targeted α-therapy research using 211Rn and 209At by Jason Raymond Crawford BSc, University of British Columbia, 2007 MSc, University of Victoria, 2010 Supervisory Committee Dr. Thomas J Ruth, Co-Supervisor Department of Physics and Astronomy Dr. Andrew Jirasek, Co-Supervisor Department of Physics and Astronomy Dr. Wayne Beckham, Committee Member Department of Physics and Astronomy Dr. Dean Karlen, Committee Member Department of Physics and Astronomy Dr. Julian Lum, Outside Member Department of Biochemistry & Microbiology iii Abstract The most promising applications for targeted α-therapy with astatine-211 (211At) in- clude treatments of disseminated microscopic disease, the major medical problem for cancer treatment. The primary advantages of targeted α-therapy with 211At are that the α-particle radiation is densely ionizing, translating to high relative biological effectiveness (RBE), and short-range, minimizing damage to surrounding healthy tissues. In addition, theranostic imaging with 123I surrogates has shown promise for developing new therapies with 211At and translating them to the clinic. Currently, Canada does not have a way of producing 211At by conventional methods because it lacks α-particle accelerators with necessary beam energy and intensity.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title PART A. AN X-RAY SPECTROMETER FOR USE IN RADIOACTIVITY MEASUREMENTS, THE L X- RAYS OF NEPTUNIUM AND PLUTONIUM. PART B. SOME LIGHTER ISOTOPES OF ASTATINE Permalink https://escholarship.org/uc/item/9ss952mr Author Barton, G.W. Publication Date 1950-05-02 eScholarship.org Powered by the California Digital Library University of California ·. l '; UCRL~67o · cy 2 UNIVERSITY OF CALIFORNIA TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545 BERKELEY, CALIFORNIA DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. • .\ UCRL-670 No Distribution II]ECLASSIF~ED UNIVERSITY OF CALIFORNIA Radiation Laboratory Contract No.
    [Show full text]
  • Experimental Aspects of Geoneutrino Detection: Status and Perspectives
    Experimental Aspects of Geoneutrino Detection: Status and Perspectives O. Smirnov,1 1JINR, Joint Institute for Nuclear Research, Dubna, Russian Federation October 22, 2019 Abstract Neutrino geophysics, the study of the Earth's interior by measuring the fluxes of geologically produced neutrino at its surface, is a new interdisciplinary field of science, rapidly developing as a synergy between geology, geophysics and particle physics. Geoneutrinos, antineutrinos from long- lived natural isotopes responsible for the radiogenic heat flux, provide valuable information for the chemical composition models of the Earth. The calculations of the expected geoneutrino signal are discussed, together with experimental aspects of geoneutrino detection, including the description of possible backgrounds and methods for their suppression. At present, only two detectors, Borexino and KamLAND, have reached sensitivity to the geoneutrino. The experiments accumulated a set of ∼190 geoneutrino events and continue the data acquisition. The detailed description of the experiments, their results on geoneutrino detection, and impact on geophysics are presented. The start of operation of other detectors sensitive to geoneutrinos is planned for the near future: the SNO+ detector is being filled with liquid scintillator, and the biggest ever 20 kt JUNO detector is under construction. A review of the physics potential of these experiments with respect to the geoneutrino studies, along with other proposals, is presented. New ideas and methods for geoneutrino detection are reviewed. Contents 1 Introduction 2 2 Geoneutrinos and the Earth's heat 4 2.1 Long-lived radiogenic elements . 4 2.2 Radiogenic heat and geoneutrino luminosity of the Earth . 9 arXiv:1910.09321v1 [physics.geo-ph] 21 Oct 2019 3 Geoneutrino flux calculation 11 3.1 Neutrino oscillations .
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title PRODUCTION AND DECAY PROPERTIES OF THORIUM ISOTOPES OF MASS 221-224 FORMED IN HEAVY ION REACTIONS Permalink https://escholarship.org/uc/item/9bp2f39g Authors Valli, Kalevi Hyde, Earl K. Borggreen, Jorn. Publication Date 1969-10-01 eScholarship.org Powered by the California Digital Library University of California Submitted to Physical Review UCRL-18992 Preprint ,. 2 "'--' Ht:::.cE.l'VED l'VJRENCE RAD\AliOI'l lABORAlOR'l tEt3 Z6 1970 ..,. , L\BRARY AND N ""NTS sE.CTlO .1 0 ocut'J\r;;.. PRODUCTION AND DECAY PROPERTIES OF THORIUM ISOTOPES p• OF MASS 221-224 FORMED IN HEAVY ION REACTIONS Kalevi Valli, Earl K. Hyde, and Jprn Borggreen October 1969 AEC Contract No. W -7405-eng-48 TWO-WEEK LOAN COPY This is a library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call ··~~. Tech. Info. Division, Ext. 5545 ,.... -< () LAWRENCE RADIATION LABORATOR~ Z ~0~ UNI,1ERSI'"fY of C:AJ_.JIF'()RNIA BEllKELEry rt ·oce ' ' DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain coiTect information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any waiTanty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California.
    [Show full text]
  • ASTATINE Element Symbol: at Atomic Number: 85
    ASTATINE Element Symbol: At Atomic Number: 85 An initiative of IYC 2011 brought to you by the RACI LINDA ABBLITT www.raci.org.au ASTATINE Element symbol: At Atomic number: 85 Astatine is a highly radioactive chemical element. It is chemically similar to the other halogens above it in Group 17 of the periodic table. It is the heaviest known halogen. As chemists would expect, Astatine acts more like a metal than iodine, the element just above it in the table. Astatine is produced by radioactive decay in nature, but due to its short half-life it is found only in minute amounts. It is currently the rarest naturally occurring element, with less than 30 grams estimated to be contained in the entire Earth’s crust. This amounts to less than one teaspoon of the element. Isaac Asimov in a 1957 essay on large numbers, scientific notation and the size of the atom, wrote that in “all of North and South America to a depth of ten miles”, the number of astatine-215 atoms at any time is “only a trillion”. Guinness Book of Records lists it as the rarest element. It is found near thorium and uranium in the Earth’s crust. Astatine would be expected to be a nearly black solid, which, when heated, sublimes into a dark, purplish vapor (darker than iodine) Astatine (after Greek astatos meaning unstable) was first synthesized in 1940 by Dale R Corson, Kenneth Ross MacKenzie an Emilio Segrè at the University of California, Berkeley by bombarding bismuth with alpha particles in a cyclotron.
    [Show full text]
  • Exploration of Astatine Chemistry in Solution : Focus on the Pourbaix Diagram in Noncomplexing Medium and Characterization of Astatine-Mediated Halogen Bonds Lu Liu
    Exploration of astatine chemistry in solution : focus on the Pourbaix diagram in noncomplexing medium and characterization of astatine-mediated halogen bonds Lu Liu To cite this version: Lu Liu. Exploration of astatine chemistry in solution : focus on the Pourbaix diagram in noncom- plexing medium and characterization of astatine-mediated halogen bonds. Radiochemistry. Ecole na- tionale supérieure Mines-Télécom Atlantique, 2020. English. NNT : 2020IMTA0205. tel-03123005 HAL Id: tel-03123005 https://tel.archives-ouvertes.fr/tel-03123005 Submitted on 27 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE ECOLE DOCTORALE N° 596 Matière, Molécules, Matériaux Spécialité : Chimie Analytique et Radiochimie Par Lu LIU Exploration de la chimie de l'astate en solution : Focalisation sur le diagramme de Pourbaix en milieu non complexant et caractérisation de liaisons halogènes induites par l'astate Thèse présentée et soutenue à Nantes,
    [Show full text]
  • INTC Minutes
    CERN-INTC-2013-018 INTC-044 July 22, 2013 ISOLDE AND NEUTRON TIME-OF-FLIGHT EXPERIMENTS COMMITTEE Minutes of the 44th meeting of the INTC held on Wednesday, June 26, and Thursday, June 27, 2013 OPEN SESSION Wednesday, June 26, 2013 at 11:00 in the Council Chamber. The chairman of the INTC, Klaus Blaum, opened the meeting, presented all members of the committee and announced the agenda. ISOLDE Technical Report The ISOLDE Technical Coordinator, Richard Catherall, made a summary of the works going on during the Long Shutdown period (LS1). The civil engineering in the ISOLDE hall (wall and new trench cutting) was described as well as the status of new buildings 198 and 199 for the HIE-ISOLDE services and the idea of a new building 508. The most important points concerning the ISOLDE machine were listed, which included the upgrade of robots in the target area, extension of the RILIS room, RFQ cooler alignment, and the EBIS upgrade. New developments in the targets and ion sources were also presented. Finally, the Medicis project was briefly introduced. Following the favourable safety review completed recently, the ground works will start in the beginning of July. It was announced that the HIE-ISOLDE workshop will be held on 28th - 29th November 2013 just after the ISOLDE workshop. ISOLDE Physics Report On behalf of the ISOLDE Physics Coordinator, Magdalena Kowalska, Marek Pfützner presented the summary of the year 2012, the current shift balance, and briefly listed research activities at ISOLDE between the last INTC meeting in October/November and the end of physics programme on December 17, 2012.
    [Show full text]
  • Cyclotron Produced Radionuclides: Principles and Practice
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/293816645 Cyclotron Produced Radionuclides: Principles and Practice Book · December 2008 CITATIONS READS 11 4,895 14 authors, including: Mohammad Haji-Saeid Pillai Mra International Atomic Energy Agency (IAEA) Molecular Global Group 69 PUBLICATIONS 1,127 CITATIONS 206 PUBLICATIONS 3,912 CITATIONS SEE PROFILE SEE PROFILE Thomas J Ruth Jožef J. Čomor TRIUMF ELEX Commerce d.o.o. 396 PUBLICATIONS 14,205 CITATIONS 66 PUBLICATIONS 668 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Radiopharmaceuticals View project The Extraction of Negative Carbon Ions from a Volume Cusp Ion Source View project All content following this page was uploaded by Pillai Mra on 17 January 2018. The user has requested enhancement of the downloaded file. Cyclotron Produced Isotopes: Principles and Practice XXXX 2007 The originating Section of this publication in the IAEA was: Industrial Applications and Chemistry Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria Theory and Practice of Radioisotope Production Using Cyclotrons IAEA, VIENNA, 2007 IAEA-TRS-xxxx ISSN 1011–4289 © IAEA, 2007 Printed by the IAEA in Austria XXXX 2007 FOREWORD Application of radioisotopes has shown a significant growth in the last decade and one of the major factors contributing towards this increased growth is the availability of a large number of cyclotrons exclusively dedicated to the production of radioisotopes for medical applications. As per a recent IAEA survey, it is estimated that there are more than 350 cyclotrons available in the Member States (MS) [Directory of Cyclotrons Used for Radionuclide Production in Member States, IAEA- DCRP/2006].
    [Show full text]
  • GROUP 7 Halogen the Group of Halogens Is the Only Periodic Table
    GROUP 7 Halogen The group of halogens is the only periodic table group that contains elements in all three familiar states of matter at standard temperature and pressure. All of the halogens form acids when bonded to hydrogen. Most halogens are typically produced from minerals of salts. The middle halogens, that is, chlorine, bromine and iodine, are often used as disinfectants. The halogens are also all toxic. Characteristics Chemical The halogens show trends in chemical bond energy moving from top to bottom of the periodic table column with fluorine deviating slightly. (It follows trend in having the highest bond energy in compounds with other atoms, but it has very weak bonds within the diatomic F2 element molecules.) Halogen bond energies (kJ/mol)[4] X X2 HX BX3 AlX3 CX4 F 159 574 645 582 456 Cl 243 428 444 427 327 Br 193 363 368 360 272 1 I 151 294 272 285 239 Halogens are highly reactive, and as such can be harmful or lethal to biological organisms in sufficient quantities. This high reactivity is due to the high electronegativity of the atoms due to their high effective nuclear charge. They can gain an electron by reacting with atoms of other elements. Fluorine is one of the most reactive elements in existence, attacking otherwise-inert materials such as glass, and forming compounds with the heavier noble gases. It is a corrosive and highly toxic gas. The reactivity of fluorine is such that, if used or stored in laboratory glassware, it can react with glass in the presence of small amounts of water to form silicon tetrafluoride (SiF4).
    [Show full text]
  • Astatine Production in a Lead-Bismuth Target Bombarded by a Proton Beam
    DOI: 10.15669/pnst.4.486 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 486-490 ARTICLE Astatine production in a lead-bismuth target bombarded by a proton beam: a detailed study using INCL4.6-Abla07 Jean-Christophe Davida, Alain Boudarda, Joseph Cugnonb, Salim Ghalia, Sylvie Leraya*, Davide Mancusia and Luca Zaninic aCEA/Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette Cedex, France; bUniversity of Liège, AGO Department, allée du 6 août 17, Bât. B5, B-4000 Liège 1, Belgium; cPSI, Zurich, Switzerland Liquid lead-bismuth eutectic (LBE) is often considered as a possible target in spallation neutron sources. An experiment has been performed in 2005 at ISOLDE (CERN), in which LBE has been irradiated by 1.0 and 1.4 GeV protons and isotopes of astatine, a volatile precursor of Po, have been found. Until recently no model was able to reproduce this astatine production, which is due either to double charge exchange reactions, Bi(p,π-xn)At, or to secondary reactions induced by helium nuclei. Recently, both parts of the spallation model combination INCL4-Abla have been improved leading to the new versions, INCL4.6-ABLA07. In particular, an additional mechanism to produce light and intermediate mass fragments has been added and special care has been paid to the low energy reactions. This paper first shows that all the basic features of the different reactions leading to astatine production are well predicted by the new model. The model, implemented into a beta version of MCNPX2.7 is then used to simulate the ISOLDE experiment. A very good agreement with the experimental data is observed.
    [Show full text]
  • Indication for a Volatile Element 114 135
    Radiochim. Acta 98, 133–139 (2010) / DOI 10.1524/ract.2010.1705 © by Oldenbourg Wissenschaftsverlag, München Indication for a volatile element 114 By R. Eichler1,2,∗,N.V.Aksenov3, Yu. V. Albin3, A. V. Belozerov3 ,G.A.Bozhikov3, V. I. Chepigin3 , S. N. Dmitriev3, R. Dressler1,H.W.Gäggeler1 ,2, V. A. Gorshkov3, R. A. Henderson4, A. M. Johnsen4,J.M.Kenneally4 , V. Ya. Lebedev3, O. N. Malyshev3, K. J. Moody4, Yu. Ts. Oganessian3,O.V.Petrushkin3, D. Piguet1,A.G.Popeko3, P. Rasmussen1, A. Serov1,2, D. A. Shaughnessy4, S. V. Shishkin3, A. V. Shutov3,M.A.Stoyer4,N.J.Stoyer4, A. I. Svirikhin3, E. E. Tereshatov3, G. K. Vostokin3, M. Wegrzecki5 , P. A. Wilk4, D. Wittwer2 and A. V. Yeremin3 1 Labor für Radio- und Umweltchemie, Paul Scherrer Institut, 5232 Villigen, Switzerland 2 Departement für Chemie und Biochemie, Universität Bern, 3012 Bern, Switzerland 3 Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Russia 4 Lawrence Livermore National Laboratory, Livermore, CA 94551, USA 5 Insitute of Electron Technology, 02-668 Warsaw, Poland (Received June 30, 2009; accepted in revised form November 2, 2009) Transactinides / Element 114 / Adsorption / into group 14 together with carbon, silicon, germanium, Thermochromatography tin, and lead. The enhancement of the metallic character with increasing atomic number Z is an obvious trend ob- served along the main groups 13–17 of the periodic table. Summary. Recently, the chemical investigation of element Thus, a metallic character can be expected for element 112 revealed a highly volatile, noble metallic behaviour, as 114 [9, 10]. However, relativistic calculations of the elec- expected for the last group 12 member of the periodic table.
    [Show full text]
  • Inverse Odd-Even Staggering in Nuclear Charge Radii and Possible Octupole Collectivity in $\Sideset{^{217218219}}
    PHYSICAL REVIEW C 99, 054317 (2019) Inverse odd-even staggering in nuclear charge radii and possible octupole collectivity in 217,218,219At revealed by in-source laser spectroscopy A. E. Barzakh,1,* J. G. Cubiss,2 A. N. Andreyev,2,3,4 M. D. Seliverstov,1,2 B. Andel,5 S. Antalic,5 P. Ascher,6 D. Atanasov,6 D. Beck,7 J. Bieron,´ 8 K. Blaum,6 Ch. Borgmann,6 M. Breitenfeldt,9 L. Capponi,10 T. E. Cocolios,4,11 T. Day Goodacre,4,11 X. Derkx,10,12 H. De Witte,9 J. Elseviers,9 D. V. Fedorov,1 V. N. Fedosseev,4 S. Fritzsche,13,14 L. P. Gaffney,9 S. George,6 L. Ghys,9,15 F. P. Heßberger,16,17 M. Huyse,9 N. Imai,4,18 Z. Kalaninová,5,19 D. Kisler,6 U. Köster,20 M. Kowalska,4 S. Kreim,6,4 J. F. W. Lane,10 V. Liberati,10 D. Lunney,21 K. M. Lynch,4,11 V. Manea,4,21 B. A. Marsh,4 S. Mitsuoka,3 P. L. Molkanov,1 Y. Nagame,3 D. Neidherr,7 K. Nishio,3 S. Ota,3 D. Pauwels,15 L. Popescu,15 D. Radulov,9 E. Rapisarda,4 J. P. Revill,22 M. Rosenbusch,23,24 R. E. Rossel,4,25 S. Rothe,4,25 K. Sandhu,10 L. Schweikhard,23 S. Sels,9 V. L. Truesdale,2 C. Van Beveren,9 P. Van den Bergh,9 P. Van Duppen,9 Y. Wakabayashi,3 K. D. A. Wendt,25 F. Wienholtz,23,4 B.
    [Show full text]