Studies of a Site-Specific Recombination System and Analysis of New Modulators of Notch Signaling in Caenorhabditis Elegans

Total Page:16

File Type:pdf, Size:1020Kb

Studies of a Site-Specific Recombination System and Analysis of New Modulators of Notch Signaling in Caenorhabditis Elegans Studies of a site-specific recombination system and analysis of new modulators of Notch signaling in Caenorhabditis elegans. Marcus L. Vargas Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 © 2012 Marcus L. Vargas All Rights Reserved Abstract Studies of a site-specific recombination system and analysis of new modulators of Notch signaling in C. elegans. Marcus L. Vargas The ability to make transgenic animals has been a great tool for biologists to study living organisms. In C. elegans, the way transgenes are generated makes them problematic in many circumstances, and there is no single, simple, reliable approach that circumvents all of the problems with current methods of introducing transgenes into C. elegans. In Chapter 2, I discuss my attempt to develop a transgenic system in C. elegans using the bacteriophage φC31 integrase system. I show evidence that φC31 integrase is active in C. elegans somatic tissue. I have successfully integrated a transgene into the C. elegans genome in single-copy using φC31 dependent recombination-mediated cassette exchange. However, attempts to repeat φC31-mediated integration has been unsuccessful. In Chapter 3, I use genetic analysis to test many genes that were reported to be associated with the γ-secretase complex in a mammalian tissue culture system. The γ- secretase complex is an important component in the Notch signaling pathway. Not only is the γ-secretase complex essential in the Notch pathway, it is also implicated in the pathology of familial Alzeheimer’s disease (FAD). As γ-secretase complex components show a Notch loss-of-function phenotype in C. elegans, a reverse genetic approach, using genes encoding proteins that associate with Presenilin was used to identify putative new Notch modulators. Several genes were identified that suppress a glp-1(gf) allele and one gene that suppress a gfp-1(lf) allele. These genes are unlikely to be core components of the Notch signaling pathway. Table of Contents: Table of Contents ......................................................................................................... i List of Figures ............................................................................................................ iv List of Tables ................................................................................................................v Acknowledgements .................................................................................................... vi Chapter 1. General Introduction ..........................................................................................1 Notch signaling ..............................................................................................................2 Notch signaling mechanism .....................................................................................3 Notch signaling in C. elegans development ..................................................................5 Germline development and Notch ...........................................................................5 Embryogenesis and inductive signaling by Notch ...................................................7 The somatic gonad and lateral inhibition by Notch .................................................9 Vulval precursor cells and Notch mediated cell-fate decision ...............................11 Genetic approaches for Notch components .................................................................13 Suppressors and enhancers of lin-12 (sel) .............................................................14 Enhancers of glp-1(lf) (ego) ...................................................................................14 Suppressors of glp-1(lf) (sog) ................................................................................15 Tumurous enhancers of glp-1(gf) (teg) ..................................................................16 γ-secretase complex in Notch transduction and APP processing ................................16 Summary of results ......................................................................................................20 Chapter 1. Figures and Tables ...........................................................................................22 i Chapter 2. φC31 integration in C. elegans .........................................................................30 Abstract ........................................................................................................................31 Introduction ..................................................................................................................31 Materials and methods .................................................................................................37 Results and discussion .................................................................................................55 φC31 can mediate recombination in C. elegans ....................................................55 φC31 can mediate recombination in the C. elegans germline ...............................56 Constructing suitable landing platforms in the C. elegans genome .......................57 RMCE in the germline of C. elegans .....................................................................58 Conclusion ...................................................................................................................61 Chapter 2. Figures and Tables ...........................................................................................63 Chapter 3. Modulation of Notch signaling pathway by Presenilin associated proteins .....80 Abstract ........................................................................................................................81 Introduction ..................................................................................................................81 Material and methods ...................................................................................................85 Results ..........................................................................................................................92 RNAi screen for positive modulators of Notch in C. elegans ...............................93 Positive modulators of GLP-1/Notch .....................................................................94 Negative regulators of GLP-1/Notch .....................................................................96 Discussion ....................................................................................................................97 G0alpha ...................................................................................................................99 CDC-48/p97 .........................................................................................................100 ii ERLIN ..................................................................................................................102 SEC-22 .................................................................................................................102 Glucose Transporters ...........................................................................................103 RAB-11 ................................................................................................................104 Chapter 3. Figures and Tables .........................................................................................106 Chapter 4: General Discussion .........................................................................................119 Summary of Results ...................................................................................................120 Discussion ..................................................................................................................120 φC31 potential uses and future prospects ............................................................120 Genetics and potential issues ...............................................................................121 Difference in assay types .....................................................................................122 Difference in alleles .............................................................................................123 Soma-to-germline interaction ..............................................................................125 Assessing γ-secretase activity ..............................................................................127 References ........................................................................................................................131 iii List of Figures: Chapter 1. Figures and Tables ...........................................................................................22 Figure 1: Domain organization of Notch receptors from C. elegans, D. melanogaster and H. sapiens ..............................................................................................................24 Figure 2: Overview of LIN-12 signaling in C. elegans ...............................................25 Figure 3: Germline development and proliferation maintenance ................................26 Figure 4: Embryogenesis and inductive signaling .......................................................27 Figure 5: AC specification and lateral inhibition .........................................................28 Figure 6: VPC fate specification and LIN-12 ..............................................................29
Recommended publications
  • Mechanical Forces Induce an Asthma Gene Signature in Healthy Airway Epithelial Cells Ayşe Kılıç1,10, Asher Ameli1,2,10, Jin-Ah Park3,10, Alvin T
    www.nature.com/scientificreports OPEN Mechanical forces induce an asthma gene signature in healthy airway epithelial cells Ayşe Kılıç1,10, Asher Ameli1,2,10, Jin-Ah Park3,10, Alvin T. Kho4, Kelan Tantisira1, Marc Santolini 1,5, Feixiong Cheng6,7,8, Jennifer A. Mitchel3, Maureen McGill3, Michael J. O’Sullivan3, Margherita De Marzio1,3, Amitabh Sharma1, Scott H. Randell9, Jefrey M. Drazen3, Jefrey J. Fredberg3 & Scott T. Weiss1,3* Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome. In cells from non-asthmatic donors, compression by itself was sufcient to induce infammatory, late repair, and fbrotic pathways. Remarkably, this molecular profle of non-asthmatic cells after compression recapitulated the profle of asthmatic cells before compression. Together, these results show that even in the absence of any infammatory stimulus, mechanical compression alone is sufcient to induce an asthma-like molecular signature. Bronchial epithelial cells (BECs) form a physical barrier that protects pulmonary airways from inhaled irritants and invading pathogens1,2. Moreover, environmental stimuli such as allergens, pollutants and viruses can induce constriction of the airways3 and thereby expose the bronchial epithelium to compressive mechanical stress. In BECs, this compressive stress induces structural, biophysical, as well as molecular changes4,5, that interact with nearby mesenchyme6 to cause epithelial layer unjamming1, shedding of soluble factors, production of matrix proteins, and activation matrix modifying enzymes, which then act to coordinate infammatory and remodeling processes4,7–10.
    [Show full text]
  • Maintenance of the Marginal Zone B Cell Compartment Specifically Requires the RNA-Binding Protein ZFP36L1
    Europe PMC Funders Group Author Manuscript Nat Immunol. Author manuscript; available in PMC 2017 October 10. Published in final edited form as: Nat Immunol. 2017 June ; 18(6): 683–693. doi:10.1038/ni.3724. Europe PMC Funders Author Manuscripts Maintenance of the marginal zone B cell compartment specifically requires the RNA-binding protein ZFP36L1 Rebecca Newman1,2, Helena Ahlfors1, Alexander Saveliev1, Alison Galloway1, Daniel J Hodson3, Robert Williams1, Gurdyal S. Besra4, Charlotte N Cook5, Adam F Cunningham5, Sarah E Bell1, and Martin Turner1,* 1Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom 2Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom 3Department of Haematology, University of Cambridge, The Clifford Allbutt Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, United Kingdom 4School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom 5MRC Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, United Kingdom Abstract Europe PMC Funders Author Manuscripts RNA binding proteins (RBP) of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU rich elements in the 3’UTR and promoting mRNA decay. Here we show an indispensible role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal zone (MZ) B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene expression program related to signaling, cell-adhesion and locomotion, in part by limiting the expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype.
    [Show full text]
  • NIH Public Access Author Manuscript Science
    NIH Public Access Author Manuscript Science. Author manuscript; available in PMC 2014 September 08. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Science. 2014 January 31; 343(6170): 506–511. doi:10.1126/science.1247363. Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders A full list of authors and affiliations appears at the end of the article. # These authors contributed equally to this work. Abstract Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease. Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative disorders with prevalence between 3 and 10 per 100,000 individuals (1). Hallmark features are axonal degeneration and progressive lower limb spasticity resulting from a loss of corticospinal tract (CST) function. HSP is classified into two broad categories, uncomplicated and complicated, on the basis of the presence of additional clinical features such as intellectual disability, seizures, ataxia, peripheral neuropathy, skin abnormalities, and visual defects.
    [Show full text]
  • Meta-Analysis of Nasopharyngeal Carcinoma
    BMC Genomics BioMed Central Research article Open Access Meta-analysis of nasopharyngeal carcinoma microarray data explores mechanism of EBV-regulated neoplastic transformation Xia Chen†1,2, Shuang Liang†1, WenLing Zheng1,3, ZhiJun Liao1, Tao Shang1 and WenLi Ma*1 Address: 1Institute of Genetic Engineering, Southern Medical University, Guangzhou, PR China, 2Xiangya Pingkuang associated hospital, Pingxiang, Jiangxi, PR China and 3Southern Genomics Research Center, Guangzhou, Guangdong, PR China Email: Xia Chen - [email protected]; Shuang Liang - [email protected]; WenLing Zheng - [email protected]; ZhiJun Liao - [email protected]; Tao Shang - [email protected]; WenLi Ma* - [email protected] * Corresponding author †Equal contributors Published: 7 July 2008 Received: 16 February 2008 Accepted: 7 July 2008 BMC Genomics 2008, 9:322 doi:10.1186/1471-2164-9-322 This article is available from: http://www.biomedcentral.com/1471-2164/9/322 © 2008 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Epstein-Barr virus (EBV) presumably plays an important role in the pathogenesis of nasopharyngeal carcinoma (NPC), but the molecular mechanism of EBV-dependent neoplastic transformation is not well understood. The combination of bioinformatics with evidences from biological experiments paved a new way to gain more insights into the molecular mechanism of cancer. Results: We profiled gene expression using a meta-analysis approach. Two sets of meta-genes were obtained. Meta-A genes were identified by finding those commonly activated/deactivated upon EBV infection/reactivation.
    [Show full text]
  • Conserved and Novel Properties of Clathrin-Mediated Endocytosis in Dictyostelium Discoideum" (2012)
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2012 Conserved and Novel Properties of Clathrin- Mediated Endocytosis in Dictyostelium Discoideum Laura Macro Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Macro, Laura, "Conserved and Novel Properties of Clathrin-Mediated Endocytosis in Dictyostelium Discoideum" (2012). Student Theses and Dissertations. Paper 163. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. CONSERVED AND NOVEL PROPERTIES OF CLATHRIN- MEDIATED ENDOCYTOSIS IN DICTYOSTELIUM DISCOIDEUM A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Laura Macro June 2012 © Copyright by Laura Macro 2012 CONSERVED AND NOVEL PROPERTIES OF CLATHRIN- MEDIATED ENDOCYTOSIS IN DICTYOSTELIUM DISCOIDEUM Laura Macro, Ph.D. The Rockefeller University 2012 The protein clathrin mediates one of the major pathways of endocytosis from the extracellular milieu and plasma membrane. Clathrin functions with a network of interacting accessory proteins, one of which is the adaptor complex AP-2, to co-ordinate vesicle formation. Disruption of genes involved in clathrin-mediated endocytosis causes embryonic lethality in multicellular animals suggesting that clathrin-mediated endocytosis is a fundamental cellular process. However, loss of clathrin-mediated endocytosis genes in single cell eukaryotes, such as S.cerevisiae (yeast), does not cause lethality, suggesting that clathrin may convey specific advantages for multicellularity.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Concerted Genomic and Epigenomic Changes Accompany Stabilization of Arabidopsis Allopolyploids
    ARTICLES https://doi.org/10.1038/s41559-021-01523-y Concerted genomic and epigenomic changes accompany stabilization of Arabidopsis allopolyploids Xinyu Jiang 1, Qingxin Song 1,2, Wenxue Ye 1 and Z. Jeffrey Chen 2 ✉ During evolution successful allopolyploids must overcome ‘genome shock’ between hybridizing species but the underlying pro- cess remains elusive. Here, we report concerted genomic and epigenomic changes in resynthesized and natural Arabidopsis suecica (TTAA) allotetraploids derived from Arabidopsis thaliana (TT) and Arabidopsis arenosa (AA). A. suecica shows con- served gene synteny and content with more gene family gain and loss in the A and T subgenomes than respective progenitors, although A. arenosa-derived subgenome has more structural variation and transposon distributions than A. thaliana-derived subgenome. These balanced genomic variations are accompanied by pervasive convergent and concerted changes in DNA methylation and gene expression among allotetraploids. The A subgenome is hypomethylated rapidly from F1 to resynthesized allotetraploids and convergently to the T-subgenome level in natural A. suecica, despite many other methylated loci being inher- ited from F1 to all allotetraploids. These changes in DNA methylation, including small RNAs, in allotetraploids may affect gene expression and phenotypic variation, including flowering, silencing of self-incompatibility and upregulation of meiosis- and mitosis-related genes. In conclusion, concerted genomic and epigenomic changes may improve stability and adaptation during polyploid evolution. olyploidy or whole-genome duplication (WGD) is a perva- species, including Aly24, Aha25 and Aka26, having been sequenced, sive feature of genome evolution in animals and flowering A. arenosa and A. suecica genomes are unavailable, except for a draft Pplants1–6.
    [Show full text]
  • Integrating Protein Copy Numbers with Interaction Networks to Quantify Stoichiometry in Mammalian Endocytosis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.361196; this version posted October 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Integrating protein copy numbers with interaction networks to quantify stoichiometry in mammalian endocytosis Daisy Duan1, Meretta Hanson1, David O. Holland2, Margaret E Johnson1* 1TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218. 2NIH, Bethesda, MD, 20892. *Corresponding Author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.29.361196; this version posted October 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Proteins that drive processes like clathrin-mediated endocytosis (CME) are expressed at various copy numbers within a cell, from hundreds (e.g. auxilin) to millions (e.g. clathrin). Between cell types with identical genomes, copy numbers further vary significantly both in absolute and relative abundance. These variations contain essential information about each protein’s function, but how significant are these variations and how can they be quantified to infer useful functional behavior? Here, we address this by quantifying the stoichiometry of proteins involved in the CME network. We find robust trends across three cell types in proteins that are sub- vs super-stoichiometric in terms of protein function, network topology (e.g.
    [Show full text]
  • Microarray Analysis of Differentially Expressed Lncrnas with Associated Co-Expression and Cerna Networks in Coronary Heart Disease
    Volume 3- Issue 1: 2018 DOI: 10.26717/BJSTR.2018.03.000886 Siying Wu. Biomed J Sci & Tech Res ISSN: 2574-1241 Research Article Open Access Microarray Analysis of Differentially Expressed LncRNAs with Associated Co-Expression and CeRNA Networks in Coronary Heart Disease Yi Sun1,a, Shuna Huang1,a, Qing Huang1,a, Guiqing Wu2, Qishuang Ruan2, Shaowei Lin1, Tingxing Zhang3, Huangyuan Li4*, Siying Wu1* 1Department of Epidemiology and Health Statistics, the Key Laboratory of Environment and Health among Universities and Colleges in Fujian, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, China 2 Department of Orthopedics, Fujian Medical University Union Hospital 3Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, China 4 Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, China a These authors contributed equally to this work Received: February 28, 2018; Published: March 26, 2018 *Corresponding author: Siying Wu, Department of Epidemiology and Health Statistics, the Key Laboratory of Environment and Health among Universities and Colleges in Fujian, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, China, Tel: ; Email: Huangyuan Li, Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, China, Tel: ; Email: Abstract Objectives: coronary heart disease (CHD) and to construct a lncRNA/microRNA (miRNA)/messenger RNA (mRNA) network for mechanism exploration. The present study aims to explore the expression profiles and biological functions of long-chain noncoding RNA (lncRNA) in Methods: miRNAs, and mRNAs were evaluated using microarray.
    [Show full text]
  • Ubiquitin-Dependent Regulation of the WNT Cargo Protein EVI/WLS Handelt Es Sich Um Meine Eigenständig Erbrachte Leistung
    DISSERTATION submitted to the Combined Faculty of Natural Sciences and Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Lucie Magdalena Wolf, M.Sc. born in Nuremberg, Germany Date of oral examination: 2nd February 2021 Ubiquitin-dependent regulation of the WNT cargo protein EVI/WLS Referees: Prof. Dr. Michael Boutros apl. Prof. Dr. Viktor Umansky If you don’t think you might, you won’t. Terry Pratchett This work was accomplished from August 2015 to November 2020 under the supervision of Prof. Dr. Michael Boutros in the Division of Signalling and Functional Genomics at the German Cancer Research Center (DKFZ), Heidelberg, Germany. Contents Contents ......................................................................................................................... ix 1 Abstract ....................................................................................................................xiii 1 Zusammenfassung .................................................................................................... xv 2 Introduction ................................................................................................................ 1 2.1 The WNT signalling pathways and cancer ........................................................................ 1 2.1.1 Intercellular communication ........................................................................................ 1 2.1.2 WNT ligands are conserved morphogens .................................................................
    [Show full text]
  • Datasheet: VMA00161 Product Details
    Datasheet: VMA00161 Description: MOUSE ANTI EPN2 Specificity: EPN2 Format: Purified Product Type: PrecisionAb™ Monoclonal Clone: OTI1H3 Isotype: IgG1 Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Product Form Purified IgG - liquid Preparation Mouse monoclonal antibody purified by affinity chromatography from ascites. Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 1% Bovine Serum Albumin 50% Glycerol Immunogen Full length recombinant human EPN2 (NP_055779) produced in HEK293T cells External Database Links UniProt: O95208 Related reagents Entrez Gene: 22905 EPN2 Related reagents Synonyms KIAA1065 Page 1 of 2 Specificity Mouse anti Human EPN2 antibody recognizes EPN2, also known as EPS-15-interacting protein 2, Eps15 binding protein and epsin-2. The EPN2 gene encodes a protein which interacts with clathrin and adaptor-related protein complex 2, alpha 1 subunit. The protein is found in a brain-derived clathrin-coated vesicle fraction and localizes to the peri-Golgi region and the cell periphery.
    [Show full text]
  • MOCHI Enables Discovery of Heterogeneous Interactome Modules in 3D Nucleome
    Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press MOCHI enables discovery of heterogeneous interactome modules in 3D nucleome Dechao Tian1,# , Ruochi Zhang1,# , Yang Zhang1, Xiaopeng Zhu1, and Jian Ma1,* 1Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA #These two authors contributed equally *Correspondence: [email protected] Contact To whom correspondence should be addressed: Jian Ma School of Computer Science Carnegie Mellon University 7705 Gates-Hillman Complex 5000 Forbes Avenue Pittsburgh, PA 15213 Phone: +1 (412) 268-2776 Email: [email protected] 1 Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The composition of the cell nucleus is highly heterogeneous, with different constituents forming complex interactomes. However, the global patterns of these interwoven heterogeneous interactomes remain poorly understood. Here we focus on two different interactomes, chromatin interaction network and gene regulatory network, as a proof-of-principle, to identify heterogeneous interactome modules (HIMs), each of which represents a cluster of gene loci that are in spatial contact more frequently than expected and that are regulated by the same group of transcription factors. HIM integrates transcription factor binding and 3D genome structure to reflect “transcriptional niche” in the nucleus. We develop a new algorithm MOCHI to facilitate the discovery of HIMs based on network motif clustering in heterogeneous interactomes. By applying MOCHI to five different cell types, we found that HIMs have strong spatial preference within the nucleus and exhibit distinct functional properties. Through integrative analysis, this work demonstrates the utility of MOCHI to identify HIMs, which may provide new perspectives on the interplay between transcriptional regulation and 3D genome organization.
    [Show full text]