All-dielectric thermonanophotonics George P. Zograf, 1 Mihail I. Petrov, 1 Sergey V. Makarov, 1 and Yuri S. Kivshar 1;2;∗ April 6, 2021 1 Department of Physics, ITMO University, Saint-Petersburg, 197101, Russia 2 Nonlinear Physics Centre, Australian National University, Canberra ACT 2601, Australia ∗
[email protected] Abstract Nanophotonics is an important branch of modern optics dealing with light- matter interaction at the nanoscale. Nanoparticles can exhibit enhanced light absorption under illumination by light, and they become nanoscale sources of heat that can be precisely controlled and manipulated. For metal nanoparticles, such effects have been studied in the framework of thermo- plasmonics which, similar to plasmonics itself, has a number of limitations. Recently emerged all-dielectric resonant nanophotonics is associated with optically-induced electric and magnetic Mie resonances, and this field is de- veloping very rapidly in the last decade. As a result, thermoplasmonics is being replaced by all-dielectric thermonanophotonics with many important applications such as photothermal cancer therapy, drug and gene delivery, nanochemistry, and photothermal imaging. This review paper aims to intro- arXiv:2104.01964v1 [physics.optics] 5 Apr 2021 duce this new field of non-plasmonic nanophotonics and discuss associated thermally-induced processes at the nanoscale. 1 Contents 1 Introduction 4 2 Fundamentals of optical heating at the nanoscale 7 2.1 Ultrafast optical heating: Two-temperature regime . .7 2.2 Slow optical heating: One-temperature regime . .9 3 Optical heating of dielectric nanoparticles 14 3.1 Absorption of light by resonant nanoparticles . 14 3.1.1 A brief summary of the Mie theory .