Acknowledgements Acknowl

Total Page:16

File Type:pdf, Size:1020Kb

Acknowledgements Acknowl 1277 Acknowledgements Acknowl. A.1 The Properties of Light by Helen Wächter, Markus W. Sigrist by Richard Haglund The authors thank a number of coworkers for their The author thanks Prof. Emil Wolf for helpful discus- valuable input, notably R. Bartlome, Dr. C. Fischer, sions, and gratefully acknowledges the financial support D. Marinov, Dr. J. Rey, M. Stahel, and Dr. D. Vogler. of a Senior Scientist Award from the Alexander von The financial support by the Swiss National Science Humboldt Foundation and of the Medical Free-Electron Foundation and ETH Zurich for the isotopomer studies Laser program of the Department of Defense (Con- is gratefully acknowledged. tract F49620-01-1-0429) during the preparation of this chapter. by Jürgen Helmcke In writing the chapter on frequency-stabilized lasers, A.4 Nonlinear Optics the author has greatly benefited from fruitful coopera- by Aleksei Zheltikov, Anne L’Huillier, Ferenc Krausz tion and helpful discussions with his colleagues at PTB, We acknowledge the support of the European Com- in particular with Drs. Fritz Riehle, Harald Schnatz, munity’s Human Potential Programme under contract Uwe Sterr, and Harald Telle. Special thanks belong to HPRN-CT-2000-00133 (ATTO) and the Swedish Sci- Dr. Fritz Riehle for his careful and critical reading of the ence Council. manuscript. Part of the work discussed in this chapter was supported by the Deutsche Forschungsgemeinschaft A.5 Optical Materials and Their Properties (DFG) under SFB 407. by Klaus Bonrad The author of Sect. 5.9.2 is grateful to Dr. Thomas C.12 Femtosecond Laser Pulses: Däubler, Dr. Dirk Hertel, and Dr. Frank Vogesfor fruitful Linear Properties, Manipulation, and stimulating discussions. Generation and Measurement by Matthias Wollenhaupt, Andreas Assion, C.11 Lasers and Coherent Light Sources Thomas Baumert by Gerd Marowsky, Uwe Brinkmann Finally the authors would like to acknowledge Marc As well as the acknowledgements mentioned in the foot- Winter for help in preparing various figures and like notes within the text, we would like to acknowledge to thank Andrea Klumpp as well as Marc Winter for very helpful discussions with A. Borisov, A. Görtler, carefully proofreading the manuscript. J. Ihlemann, R. Pätzel and C. Peth. The patient assis- tance of T. Eggers and J. Jethwa is greatly appreciated D.13 Optical and Spectroscopic Techniques as their support has been central to the edited version by Sune Svanberg of the text. The part Beam Characterization of Excimer The author gratefully acknowledges a most stimulat- Lasers is based upon a contribution from K. Mann and ing collaboration with a large number of colleagues and coworkers, Laserlaboratorium Göttingen. The part UV graduate students in the field of laser-based remote sens- Femtosecond Material Processing is based on a contri- ing. This work was supported by the Swedish Space bution from P. Simon and coworkers, Laserlaboratorium Board, the Swedish Natural Sciences Research Coun- Göttingen. The part High-Intensity UV Femtosecond cil, the FORMAS Research Council, the Knut and Alice Studies is based on a contribution from C. K. Rhodes Wallenberg Foundation and the European Community and coworkers from the University of Chicago, Illinois. within the EUREKA-LASFLEUR (EU380), and the The part 13.5nmTechnology is based on a contribution Access to Large Scale Facility/Research Infrastructure from U. Stamm and coworkers, XTREME technologies, programmes. Göttingen and Jena, Germany. D.16 Optics far Beyond the Diffraction Limit: by Dennis Lo† Stimulated Emission Depletion Microscopy This work was supported in part by RGC Earmarked by Stefan W. Hell Research Grant of the Hong Kong SAR Government The results summarized in this chapter have been accom- CUHK 4366/99E, and CUHK 4233/03E. plished by collaborative research within the department. 1278 Acknowledgements Acknowl. We thank M. Bossi and R. Medda for preparation of samples, and A. Schönle, C. Eggeling and V. Westphal for valuable discussions. D.20 Holography and Optical Storage by Mirco Imlau, Martin Fally The authors acknowledge financial support by the Austrian Science Fund (P-15642) and the Deutsche Forschungsgemeinschaft. Mirco Imlau is indebted for a visiting professorship with the University of Vienna that considerably facilitated this work. We thank Romano Rupp for valuable comments and remarks. 1279 About the Authors Andreas Assion Chapter C.12 Authors Femtolasers Produktions GmbH Andreas Assion joined Femtolasers in January of 2005. Prior to joining Femtolasers, Vienna, Austria he worked with ultrafast lasers on the observation and control of quantum optical [email protected] phenomena in atoms and molecules. He earned his diploma and doctorate studying molecular dynamical effects, including coherent control of complex molecules. After a post-doctoral position with the German Space Agency, he completed his Habilitation 2004. Thomas E. Bauer Chapter A.5,Sect.5.7 JENOPTIK Polymer Systems GmbH Thomas Bauer is a physicist working at Jenoptik Polymer Systems GmbH (former Coating Department WAHL optoparts) as head of coating department. His main areas of interest are plastic Triptis, Germany optics in general and coating of plastic optics in particular. [email protected] Thomas Baumert Chapter C.12 Universität Kassel Professor Baumert received is Ph.D. with Prof. Gerber, University of Institut für Physik Freiburg, Germany in 1992. Further positions in his carreer were: Kassel, Germany 1992–1993, post doc with Prof. Zewail, Caltech, Pasadena; 1993–1997, [email protected] “Habilitation”, University of Würzburg, Germany; 1998–1999, head of LIDAR group, DLR Oberpfaffenhofen, Germany; 1999 Full Professor of Experimental Physics at University of Kassel, Germany. His research area: Femtosecond spectroscopy and ultrafast laser control of matter. Awards: Gödecke thesis award (1992), Heisenberg-Scholarship of DFG (1997–1998), Philip-Morris-Award (2000). Dietrich Bertram Chapter C.10 Philips Lighting Prior to joining the CTO office at Philips Lighting as technical officer Aachen, Germany solid-state lighting, Dietrich Bertram headed a project on LED light [email protected] sources at Philips Research. His background education is physics, where he obtained a masters degree at Marburg University in epitaxy of III-V materials and a Ph.D. from the Max-Planck Institute of Solid State Research, Stuttgart, Germany. Klaus Bonrad Chapter A.5,Sects.5.9.2, 5.10 Schott Spezialglas AG Klaus Bonrad studied chemistry in Darmstadt and received his Ph.D. in Mainz at Division Luminescence Technology the Max-Planck-Institute of Polymer Research for synthesis and characterisation of Mainz, Germany electrooptical macrocycles. After a post-doc position at Virginia Polytechnic Institute [email protected] and State University in Blacksburg/USA he worked for IBM and SCHOTT Spezialglas AG in the field of organic light emitting diodes developing large area displays in Mainz. Matthias Born Chapter C.10 Philips Research Laboratories Aachen Matthias Born is a physicist and joined Philips Research Aachen, Germany, in 1992. Aachen, Germany He is leading several projects about plasma physics and diagnostics of gas discharges [email protected] with a major topic on mercury-free lamps for general and automotive lighting appli- cations. He is also working as a professor for physics at the Heinrich-Heine-University of Düsseldorf. 1280 About the Authors Annette Borsutzky Chapter C.11,Sect.11.9 Technische Universität Kaiserslautern Annette Borsutzky studied physics in Bielefeld and Hannover, Fachbereich Physik Germany, where she received in 1992 her Dr. rer. nat. working on Kaiserslautern, Germany nonlinear frequency mixing in crystals and gases. Joining the university [email protected] of Kaiserslautern studies of optical parametric oscillators, diode- pumped solid state lasers as well as the characterization of new Authors nonlinear and laser active materials are at the center of her work. Hans Brand Chapter C.11,Sect.11.4 Friedrich-Alexander-University of Hans Brand received the degrees Dipl.-Ing. in 1956, Dr.-Ing in 1962 and Erlangen-Nürnberg LHFT Dr.-Ing. habil. in 1962 at the RWTH Aachen, Germany. In 1969 he Department of Electrical, Electronic became professor at the Chair for Microwave Engineering at the FAU and Communication Engineering Erlangen, Germany. His main fields of research are microwaves, Erlangen, Germany [email protected] millimeter wave and terahertz components and systems as well as gas laser and infrared laser technology. In 1996 he became Fellow of the IEEE. He is emeritus since 1998. Robert P. Breault Chapter B.7 Breault Research Organization, Inc. Robert P. Breault is the Chairman and founder of the Breault Research Organization. Tucson, AZ, USA He works on stray light analysis and suppression. He is the author of the APART stray [email protected] light analysis program, used to analyze the Hubble telescope and many others. He received the B.S. in mathematics from Yale University, and his M.S. and Ph.D. in optical sciences from the University of Arizona. He is a fellow of SPIE and founder and Co-chairman of the Arizona Optics Industry Association. Matthias Brinkmann Chapter A.5,Sects.5.1, 5.1.9, 5.10 University of Applied Sciences Darmstadt Dr. Brinkmann is a professor of optical engineering at the University of Applied Mathematics and Natural Sciences Sciences Darmstadt, Germany. He obtained his Ph.D. degree in Physics from the Darmstadt, Germany Ruhr-Universität Bochum,Germany in 1997
Recommended publications
  • Is the Universe Expanding?: an Historical and Philosophical Perspective for Cosmologists Starting Anew
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 6-1996 Is the Universe Expanding?: An Historical and Philosophical Perspective for Cosmologists Starting Anew David A. Vlosak Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Cosmology, Relativity, and Gravity Commons Recommended Citation Vlosak, David A., "Is the Universe Expanding?: An Historical and Philosophical Perspective for Cosmologists Starting Anew" (1996). Master's Theses. 3474. https://scholarworks.wmich.edu/masters_theses/3474 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. IS THEUN IVERSE EXPANDING?: AN HISTORICAL AND PHILOSOPHICAL PERSPECTIVE FOR COSMOLOGISTS STAR TING ANEW by David A Vlasak A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements forthe Degree of Master of Arts Department of Philosophy Western Michigan University Kalamazoo, Michigan June 1996 IS THE UNIVERSE EXPANDING?: AN HISTORICAL AND PHILOSOPHICAL PERSPECTIVE FOR COSMOLOGISTS STARTING ANEW David A Vlasak, M.A. Western Michigan University, 1996 This study addresses the problem of how scientists ought to go about resolving the current crisis in big bang cosmology. Although this problem can be addressed by scientists themselves at the level of their own practice, this study addresses it at the meta­ level by using the resources offered by philosophy of science. There are two ways to resolve the current crisis.
    [Show full text]
  • Emil Wolf Institutional Interviews Journal Interviews EMERGING RESEARCH FRONTS - 2009 Podcasts
    Home About Scientific Press Room Contact Us ● ScienceWatch Home ● Inside This Month... ● Interviews Featured Interviews Author Commentaries 2009 : April 2009 - Emerging Research Fronts : Emil Wolf Institutional Interviews Journal Interviews EMERGING RESEARCH FRONTS - 2009 Podcasts April 2009 ● Analyses Emil Wolf talks with ScienceWatch.com and answers a few questions about this month's Featured Analyses Emerging Research Front Paper in the field of Physics. What's Hot In... Article: Unified theory of coherence and polarization of random Special Topics electromagnetic beams Authors: Wolf, E Journal: PHYS LETT A, 312 (5-6): 263-267 JUN 16 2003 ● Data & Rankings Addresses: Univ Rochester, Dept Phys & Astron, 601 Elmwood Ave, Rochester, NY 14627 USA. Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. Sci-Bytes Univ Rochester, Inst Opt, Rochester, NY 14627 USA. Fast Breaking Papers New Hot Papers Emerging Research Fronts Fast Moving Fronts Corporate Research Fronts Why do you think your paper is highly cited? Research Front Maps Because the theory presented in that paper makes it possible to provide solutions to a number of scientific, technological, and medical problems which could not have been done previously. Current Classics Top Topics Does it describe a new discovery, methodology, or synthesis of knowledge? Rising Stars The discovery reported in the paper provides a synthesis of two branches of optics, known as the theory of coherence and the theory of polarization of light. Until the publication of my paper, these two subjects New Entrants had always been treated independently of each other. Prior to the invention of the laser, almost 50 years Country Profiles ago, the available sources which generate light, such as a light bulb and the sun, may be shown to have, on a short time scale, irregularities (called fluctuations) which make it impossible to use such light for some applications.
    [Show full text]
  • Ionization Based State Read out of a Single 87-Rb Atom
    Ionization Based State Read Out of a single 87Rb Atom Michael Krug M¨unchen2017 Ionization Based State Read Out of a single 87Rb Atom Michael Krug Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Michael Krug aus M¨unchen M¨unchen, den 8. Dezember 2017 Erstgutachter: Prof. Dr. Harald Weinfurter Zweitgutachter: Prof. J¨orgSchreiber Tag der m¨undlichen Pr¨ufung:30. Januar 2018 "After sleeping through a hundred million centuries we have finally opened our eyes on a sumptuous planet sparkling with color, bountiful with life. Within decades, we must close our eyes again. Isn't it a noble, enlightened way of spending our brief time in the sun to work at understanding the universe and how we have come to wake up in it? This is how I answer when I am asked, as I am surprisingly often, why I bother to get up in the mornings." Richard Dawkins Zusammenfassung Verschr¨ankung ist nach E. Schr¨odingerdie fundamentale Charakteristik der 1 Quantenmechanik. Einerseits lebt ein verschr¨ankterZustand zweiter Spin- 2 -Teilchen auf einem vier-dimensionalem Hilbert-Raum und die Theorie, um diesen Zustand zu beschreiben, ist hinreichend verstanden. Auf der anderen Seite ist die experimentelle Realisierung verschr¨ankter Systeme, im Besonderen hybride Licht-Materie-Systeme und deren Nachweis noch immer ein anspruchsvoller Prozess. Ausgehend von einem Quantensystem, das aus einem verschr¨anktenAtom-Photon-Paar besteht, wird hier die experimentelle Anwendung des entanglement swapping Protokolls verwendet, um einen Grundknotenpunkt einer Quanten-Repeater Verbindung aufzubauen, die aus zwei verschr¨anktenAtomen besteht. Die angek¨undigteErzeugung von Ver- schr¨ankungzwischen zwei Atomen bereitet den Weg hin zu einem beweiskr¨aftigem Experiment, um eine lokal-realistische Beschreibung der Welt zu falsifizieren.
    [Show full text]
  • Physics 305, Fall 2008 Problem Set 8 Due Thursday, December 3
    Physics 305, Fall 2008 Problem Set 8 due Thursday, December 3 1. Einstein A and B coefficients (25 pts): This problem is to make sure that you have read and understood Griffiths 9.3.1. Consider a system that consists of atoms with two energy levels E1 and E2 and a thermal gas of photons. There are N1 atoms with energy E1, N2 atoms with energy E2 and the energy density of photons with frequency ! = (E2 − E1)=~ is W (!). In thermal equilbrium at temperature T , W is given by the Planck distribution: ~!3 1 W (!) = 2 3 : π c exp(~!=kBT ) − 1 According to Einstein, this formula can be understood by assuming the following rules for the interaction between the atoms and the photons • Atoms with energy E1 can absorb a photon and make a transition to the excited state with energy E2; the probability per unit time for this transition to take place is proportional to W (!), and therefore given by Pabs = B12W (!) for some constant B12. • Atoms with energy E2 can make a transition to the lower energy state via stimulated emission of a photon. The probability per unit time for this to happen is Pstim = B21W (!) for some constant B21. • Atoms with energy E2 can also fall back into the lower energy state via spontaneous emission. The probability per unit time for spontaneous emission is independent of W (!). Let's call this probability Pspont = A21 : A21, B21, and B12 are known as Einstein coefficients. a. Write a differential equation for the time dependence of the occupation numbers N1 and N2.
    [Show full text]
  • Inis: Terminology Charts
    IAEA-INIS-13A(Rev.0) XA0400071 INIS: TERMINOLOGY CHARTS agree INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, AUGUST 1970 INISs TERMINOLOGY CHARTS TABLE OF CONTENTS FOREWORD ... ......... *.* 1 PREFACE 2 INTRODUCTION ... .... *a ... oo 3 LIST OF SUBJECT FIELDS REPRESENTED BY THE CHARTS ........ 5 GENERAL DESCRIPTOR INDEX ................ 9*999.9o.ooo .... 7 FOREWORD This document is one in a series of publications known as the INIS Reference Series. It is to be used in conjunction with the indexing manual 1) and the thesaurus 2) for the preparation of INIS input by national and regional centrea. The thesaurus and terminology charts in their first edition (Rev.0) were produced as the result of an agreement between the International Atomic Energy Agency (IAEA) and the European Atomic Energy Community (Euratom). Except for minor changesq the terminology and the interrela- tionships btween rms are those of the December 1969 edition of the Euratom Thesaurus 3) In all matters of subject indexing and ontrol, the IAEA followed the recommendations of Euratom for these charts. Credit and responsibility for the present version of these charts must go to Euratom. Suggestions for improvement from all interested parties. particularly those that are contributing to or utilizing the INIS magnetic-tape services are welcomed. These should be addressed to: The Thesaurus Speoialist/INIS Section Division of Scientific and Tohnioal Information International Atomic Energy Agency P.O. Box 590 A-1011 Vienna, Austria International Atomic Energy Agency Division of Sientific and Technical Information INIS Section June 1970 1) IAEA-INIS-12 (INIS: Manual for Indexing) 2) IAEA-INIS-13 (INIS: Thesaurus) 3) EURATOM Thesaurusq, Euratom Nuclear Documentation System.
    [Show full text]
  • Fundamentals of Radiative Transfer
    RADIATIVE PROCESSE S IN ASTROPHYSICS GEORGE B. RYBICKI, ALAN P. LIGHTMAN Copyright 0 2004 WY-VCHVerlag GmbH L Co. KCaA FUNDAMENTALS OF RADIATIVE TRANSFER 1.1 THE ELECTROMAGNETIC SPECTRUM; ELEMENTARY PROPERTIES OF RADIATION Electromagnetic radiation can be decomposed into a spectrum of con- stituent components by a prism, grating, or other devices, as was dis- covered quite early (Newton, 1672, with visible light). The spectrum corresponds to waves of various wavelengths and frequencies, related by Xv=c, where v is the frequency of the wave, h is its wavelength, and c-3.00~10" cm s-I is the free space velocity of light. (For waves not traveling in a vacuum, c is replaced by the appropriate velocity of the wave in the medium.) We can divide the spectrum up into various regions, as is done in Figure 1.1. For convenience we have given the energy E = hv and temperature T= E/k associated with each wavelength. Here h is Planck's constant = 6.625 X erg s, and k is Boltzmann's constant = 1.38 X erg K-I. This chart will prove to be quite useful in converting units or in getting a quick view of the relevant magnitude of quantities in a given portion of the spectrum. The boundaries between different regions are somewhat arbitrary, but conform to accepted usage. 1 2 Fundamentals of Radiatiw Transfer -6 -5 -4 -3 -2 -1 0 1 2 1 I 1 I I I I 1 1 log A (cm) Wavelength I I I I I log Y IHr) Frequency 0 -1 -2 -3 -4 -5 -6 I I I I I I I log Elev) Energy 43 21 0-1 I I 1 I I I log T("K)Temperature Y ray X-ray UV Visible IR Radio Figum 1.1 The electromagnetic spctnun.
    [Show full text]
  • Principles of Optics
    Principles of optics Electromagnetic theory of propagation, interference and diffraction of light MAX BORN MA, Dr Phil, FRS Nobel Laureate Formerly Professor at the Universities of Göttingen and Edinburgh and EMIL WOLF PhD, DSc Wilson Professor of Optical Physics, University of Rochester, NY with contributions by A.B.BHATIA, P.C.CLEMMOW, D.GABOR, A.R.STOKES, A.M.TAYLOR, P.A.WAYMAN AND W.L.WILCOCK SEVENTH (EXPANDED) EDITION CAMBRIDGE UNIVERSITY PRESS Contents Historical introduction xxv I Basic properties of the electromagnetic field 1 1.1 The electromagnetic field 1 1.1.1 Maxwells equations 1 1.1.2 Material equations 2 1.1.3 Boundary conditions at a surface of discontinuity 4 1.1.4 The energy law of the electromagnetic field 7 1.2 The wave equation and the velocity of light 11 1.3 Scalar waves 14 1.3.1 Plane waves 15 1.3.2 Spherical waves 16 1.3.3 Harmonie waves. The phase velocity 16 1.3.4 Wave packets. The group velocity 19 1.4 Vector waves 24 1.4.1 The general electromagnetic plane wave 24 1.4.2 The harmonic electromagnetic plane wave 25 (a) Elliptic polarization 25 (b) Linear and circular polarization 29 (c) Characterization of the state of polarization by Stoltes parameters 31 1.4.3 Harmonie vector waves of arbitrary form 33 1.5 Reflection and refraction of a plane wave 38 1.5.1 The laws of reflection and refraction 38 1.5.2 Fresnel formulae 40 1.5.3 The reflectivity and transmissivity; polarization an reflection and refraction 43 1.5.4 Total reflection 49 1.6 Wave propagation in a stratified medium.
    [Show full text]
  • Colloquiumcolloquium
    ColloquiumColloquium History and solution of the phase problem in the theory of structure determination of crystals from X-ray diffraction experiments Emil Wolf Department of Physics and Astronomy Institute of Optics University of Rochester 3:45 pm, Wednesday, Nov 18, 2009 B.Sc. and Ph.D. Bristol University Baush & Lomb 109 D.Sc. University of Edinburgh U. of Rochester 1959 - Tea 3:30 B&L Lobby Wilson Professor of Optical Physics JointlyJointly sponsoredsponsored byby The most important researches carried out in this field will be reviewed and a recently DepartmentDepartment ofof PhysicsPhysics andand AstronomyAstronomy obtained solution of the phase problem will be presented. History and solution of the phase problem in the theory of structure determination of crystals from X-ray diffraction experiments Emil Wolf Department of Physics and Astronomy and The Institute of Optics University of Rochester Abstract Since the pioneering work of Max von Laue on interference and diffraction of X-rays carried out almost a hundred years ago, numerous attempts have been made to determine structures of crystalline media from X-ray diffraction experiments. Usefulness of all of them has been limited by the inability of measuring phases of the diffracted beams. In this talk the most important researches carried out in this field will be reviewed and a recently obtained solution of the phase problem will be presented. Biography Emil Wolf is Wilson Professor of Optical Physics at the University of Rochester, and is reknowned for his work in physical optics. He has received many awards, including the Ives Medal of the Optical Society of America, the Albert A.
    [Show full text]
  • Emil Wolf: ‘A Scientist and Friend Like No Other’ a Student of the Noted Physicist Counts up Some of His Mentor’S Contributions to Science and to His Colleagues
    CLASS NOTES TRIBUTE Emil Wolf: ‘A Scientist and Friend Like No Other’ A student of the noted physicist counts up some of his mentor’s contributions to science and to his colleagues. Emil Wolf, the former Wilson Professor of Optical Physics, a In 1958, Robert Hopkins, then director of the institute, traveled faculty member in the University’s Institute of Optics and the to England for a conference and to meet with Emil. The meet- 1 3 Department of Physics and Astronomy, died in June at the age ing nearly didn’t happen. The letter from Hopkins got misfiled by of 95. He is survived by his children, Bruno and Paula, and his a secretary and was only discovered by Emil as he was searching beloved wife, Marlies. He was decorated with numerous presti- for another misfiled document. “It was all a matter of luck, par- gious national and international awards, honorary degrees, and ticularly that phone call in Paris at three in the morning saying appointments. He was my mentor and my friend and my measuring stick for what is good and what is decent. He was a refugee. When the Nazis in- vaded Czechoslovakia in 1939, Emil’s 2 brother, Karel, joined the Czech army. Emil was too young for the army and their parents sent him to Italy in hopes that he could somehow get to France or England. Trading valuable stamps his father had collected, Emil made his way from Prague to the Italian coast and then illegally into France by boat. Once in Paris, he found work with the Czech government in exile with whom he evacuated to Britain when Paris fell.
    [Show full text]
  • Numerical Analysis of Focusing by a Metamaterial Lens
    Numerical analysis of focusing by a metamaterial lens Ali Eren Culhaoglu1, Andrey Osipov1 and Peter Russer2 1 Microwaves and Radar Institute, German Aerospace Center 82234 Wessling Germany email: [email protected] 2 Institute for High Frequency Engineering, Technische Universitat¨ Munchen¨ Arcisstrasse 21, 80333 Munich Germany email: [email protected] Abstract Over the last several years there has been a surge of interest in artificial materials because of their potential to expand the range of electromagnetic properties in materials. The so called metamate- rials, also known as left-handed (LHM) or double-negative (DNG) materials with negative permittivity and permeability have attracted growing interest. An important application area is the realization of flat superlenses with imaging properties beyond that of conventional lenses. This work investigates the focusing properties of a lossless planar DNG slab with a relative permittivity and permeability both ap- proaching the value -1. The relation between the imaging quality and the material parameters is examined both analytically and numerically. Results obtained from numerical simulations via the transmission line matrix method are compared to the analytical solution. 1. Introduction Incident and emerging waves from a DNG slab will undergo negative refraction [1]. As a consequence p a slab with finite thickness d and material parameters "r = µr = -1 (refractive index n = "rµr = -1) focuses waves emitted from a point source located at a distance l in front of the slab to a point at a distance of d − l behind the slab [2, 3]. As seen in Fig. 1(a) the waves emitted from a point source are focused inside and outside the slab due to negative refraction at the slab interfaces.
    [Show full text]
  • 44. the Reality of Physical Optics at the Institute
    AJC-05.qxd 21/06/04 11:38 AM Page 226 44. The Reality of Physical Optics at the Institute Brian J. Thompson The model that President Rush Rhees used in conjunction with his industrial counterparts and backers, George Eastman and Edward Bausch, for “his Institute” was the already suc- cessful Technical Optics Department at the Royal College of Science of the Imperial College of Science & Technology in London, England. Not only was this the model, but he hired the first two faculty members in England: Rudolf Kingslake, who had graduated from that Technical Optics Department in the second graduating class, for geometrical optics and A. Maurice Taylor for physical optics. These subjects were viewed as the two fundamental branches of the field so those of us who are working, or who have worked in the Institute in physical optics and developed that limb of the “optics tree” can trace our ancestry in part to 1929 and Maurice Taylor. He was a Ph.D. graduate from Cambridge University and co-author of a book, The Infrared Analysis of Molecular Structures, with F. I. G. Rawlins. While Kinglake had been appointed by the board of trustees in June of 1929, they didn’t act on Taylor’s appointment until November of 1929. The long and productive road from 1929 to 2003 has seen an explosion of under- standing, of new fundamental knowledge, and of diverse and interesting, and yes impor- tant, applications of physical optics. Maurice Taylor returned to England in 1934 and later became the chairman of the physics department at Southampton University.
    [Show full text]
  • Astronomy 700: Radiation. 1 Basic Radiation Properties
    Astronomy 700: Radiation. 1 Basic Radiation Properties 1.1 Basic definitions Fundamental importance to Astronomy: Almost exclusive carrier of information Radiation: Energy transport by electromagnetic fields Other forms of energy transport: cosmic rays • stochastic transport (micro: conduction, macro: convection) • gravitational waves • bulk transport (organized flows) • plasma waves • ... • Transport time variability (see section of E&M) → 1.1.1 The spectrum The most natural description of electromagnetic radiation is through Fourier decomposition into waves: f(~r, t) f(~k,ν) (1.1) ↔ where E is some variable describing the radiation field. Question: Why is this so natural? As we will shortly see, electromagnetic radiation naturally decomposes into waves with wave- length λ and frequency ν 1 Often, it is convenient to write the wave vector ~k =2πk/λˆ and angular frequency ω =2πν. In vacuum, group and phase velocity of those waves are equal: 10 1 λν = ∂ω/∂k c 2.99792... 10 cms− (1.2) ≡ ≡ × Fourier decomposition allows us to describe the local spectrum of the radiation at a fixed point in space as the Fourier transform ∞ f f(ν)= dtei2πνtf(t) (1.3) F ≡ Z−∞ and the inverse Fourier transform 1 ∞ i2πνt − f f(t)= dνe− f(ν) (1.4) F ≡ Z−∞ Without going into any details on Lebesque integration, it is worth pointing out the following identity: The inverse Fourier transform of a delta function in frequency is ∞ 1 i2πνt i2πν0t − δ(ν ν )= dνe− δ(ν ν )= e− (1.5) F − 0 − 0 Z−∞ i2πν0 t Thus, the Fourier transform of e− is ∞ i2πν0t i2π(ν ν0)t e− = dte − = δ(ν ν ) (1.6) F − 0 Z−∞ as one would expect for a decomposition into a spectrum of different exponentials.
    [Show full text]