Taxonomy and Systematics of Larval Indo-Pacific Fishes

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy and Systematics of Larval Indo-Pacific Fishes Ichthyol Res DOI 10.1007/s10228-014-0426-7 REVIEW FOR IPFC9 SPECIAL ISSUE Ichthyology and Indo-Pacific Fish Conferences from the 1980s to the 2010s Taxonomy and systematics of larval Indo-Pacific fishes: a review of progress since 1981 Jeffrey M. Leis Received: 2 May 2014 / Revised: 24 June 2014 / Accepted: 8 July 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract This paper reviews progress in research on ontogeny to contribute to the study of phylogeny of marine taxonomy and systematics of larval marine and estuarine fishes has been underrealized. The ageing of current larval- fishes in the Indo-Pacific since the first Indo-Pacific Fish fish taxonomists, and the lack of positions for younger Conference in 1981. In 1981, the literature on development replacement researchers, is a major obstacle to further of fish larvae in the vast Indo-Pacific region was sparse, progress. scattered and of very uneven quality. During the inter- vening 33 years, taxonomy of adult Indo-Pacific fishes has Keywords Ontogeny Á Development Á Teleostei Á Larva Á improved greatly, the proceedings of the landmark Ahl- Identification strom Symposium were published, a large number of lar- val-fish atlases, or identification guides, have been produced, and the quality of descriptions of larval-fish Introduction development in journals has greatly increased. This has resulted in a great improvement in our ability to identify The vast majority of marine teleost fishes—regardless of Indo-Pacific fish larvae, particularly oceanic taxa. How- their adult habitat—have a pelagic larval phase that differs ever, much remains to be done, with the large majority of greatly in morphology from the adult. The larvae of epi- families having \50 % of species with described larvae, pelagic species share the same habitat with their adults. In and with only a small proportion of species descriptions contrast, larvae of meso- and bathypelagic species are based on full developmental series of larvae. DNA tech- typically found in the epipelagic zone, much closer to the nology has helped to establish identities of larvae, but only surface than their adults, and undergo an ontogenetic des- a small proportion of the larvae so identified have been cent as they grow and develop (e.g. Loeb 1979). In described, so the potential for DNA to advance larval demersal species, only a handful of taxa are known to have taxonomy is largely untapped. An integrative approach larvae that are not epipelagic, so the adults and larvae of combining genetics and morphology is required. Online most species occupy very different habitats: the larvae are publication of descriptions of larval development and of in open water and faced with the challenge of finding interactive identification guides to larvae is the most effi- appropriate demersal settlement habitat at the end of their cient way to make such information available and useful to pelagic phase. Typically, large morphological changes are a variety of users. The great potential for larval-fish associated with the transition between pelagic and demer- sal phases, although in several major clades (e.g. Tetra- odontiformes), there is an extended pelagic phase that J. M. Leis (&) Institute for Marine and Antarctic Studies, University of differs little morphologically from the adult. Attempts to Tasmania, Hobart, Tasmania 7007, Australia develop clear, widely used terminology to describe these e-mail: [email protected] morphological and ecological ontogenetic changes and transitions have failed, largely due to wide variability J. M. Leis Ichthyology, Australian Museum, Sydney, among taxa in mode of development or ecology (Kendall New South Wales 2010, Australia et al. 1984). For the purposes of this paper, I will include 123 J. M. Leis all of the post-hatching, but pre-settlement stages of description of the serranid genus Flagelloserranus by demersal species (i.e. the pelagic phase, an ecological Kotthaus (1970), but within a year, Flagelloserranus was criterion). It is common to declare the larval stage of identified by Fourmanoir (1971) as the pelagic larval form pelagic species to end at a somewhat arbitrarily chosen of the serranid genus Liopropoma. In some cases, these morphological milestone, for example, the attainment of generic names have been retained to describe the mor- full fin-ray counts, or the presence of scales. But, I would phology of the pelagic larval stage (e.g. leptocephalus, prefer to be a bit flexible with pelagic species, so some of rhynchichthys, dikellorhynchus, tholichthys, acronurus, the more spectacular larval morphologies can be included. Fig. 2). The large morphological differences between lar- Larvae frequently bear little resemblance to the adults val and adult stages make identification of the larvae for two reasons: 1) the larvae are, at least initially, challenging, and the larvae of many species and higher taxa incompletely developed and lack structures found in adults remain undescribed. (e.g. scales or fins), and 2) the larvae frequently have A particular challenge for those who want to identify specializations to pelagic existence that result in some of larval fishes results from collection methods. Many studies the most spectacular marine creatures known (Fig 1.), but rely on towed nets or other relatively unselective methods these specializations are lost as development proceeds. Due to capture fish larvae. This means that larvae of species that to the great morphological differences between the adult live in a very wide variety of habitats as adults are captured and larval stages of many taxa, during the 19th and much in the same sample—thus, the researcher who wants, for of the 20th centuries, the larvae of a number of Indo-Pacific example, to study larvae of coral-reef fishes will encounter, fishes were described as distinct species, or even genera and must also be able to identify at least to family, larvae (e.g. holocentrids, acanthurids, malacanthids, many eels). from oceanic and coastal, pelagic habitats, from deep, The last example of this sort of confusion was the offshore waters, from soft bottoms on the continental shelf Fig. 1 Morphological diversity in larvae of Indo-Pacific fishes. ca 12 mm; c Serranidae, Epinephelinae, Diploprion bifasciatum,ca Photos by Frank Baensch—http://www.bluereefphoto.org (unless 22 mm; d Lethrinidae, Monotaxis grandoculis, 6.7 mm; e Chae- noted otherwise, all are reared from pelagic eggs taken in Hawaiian todontidae, Forcipiger flavissimus, 8.3 mm; f Acanthuridae, Zebra- waters), except c and f by Colin Wen (Great Barrier Reef, night light). soma veliferum, ca 26 mm; g Bothidae, Asterorhombus or Sizes are total length. a Serranidae, Anthiinae, Odontanthias fuci- Engyprosopon, 34.2 mm. Papua New Guinea, night light; h Molidae, pinnis, 20.3 mm; b Serranidae, Epinephelinae, Cephalopholis argus, Ranzania laevis, 5.1 mm 123 Taxonomy of Indo-Pacific fish larvae Fig. 2 Specialized larval stages originally described as new genera leptocephalus stage, 15.0 mm; b Holocentridae, Myripristis sp, and the common names for their morphology derived from the rhynchichthys stage, 13.4 mm, Papua New Guinea, night light; generic name. Photos by Frank Baensch—http://www.bluereefphoto. c Malacanthidae, Malacanthus brevirostris, dikellorhynchus stage, org. All are reared from pelagic eggs taken in Hawaiian waters, 18.3 mm; d Chaetodontidae, Chaetodon sp, tholichthys stage, except for b. Sizes are total length. a Anguilliformes, unidentified eel, 6.6 mm; e Acanthuridae, Acanthurus sp, acronurus stage, 6.9 mm and, in many cases, from estuaries and even freshwater. As light on the relationships and evolution of a broad range of a result, the larval-fish researcher must be familiar with a fish taxa. Unfortunately, the number of such researchers is much wider variety of fishes than the typical researcher small relative to the task and, in spite of the potential of who works on adult fishes. Among researchers who work this research approach, is not growing fast and may well be on fishes—including taxonomists—the common perception decreasing. is that larval-fish biology is a separate discipline, and there In 1981, the literature on Indo-Pacific larval-fish are relatively few researchers who have either the incli- development and identification was scattered, uneven in nation or the ability to identify both adult and larval fishes. quality, often in obscure journals or expedition reports, and This perception has limited the development of larval-fish frequently in languages that rendered much of the content biology. inaccessible to many potential users. Larvae of many This paper is an assessment of progress through early families had not been described in 1981 and few of the 2014 in the taxonomy of larval fishes of the marine Indo- existing descriptions met desirable quality criteria. In 2014, Pacific during the life of the Indo-Pacific Fish Conference we are fortunate to have hard-copy identification guides (IPFC) series, starting in 1981. This 33 year period has that cover a variety of Indo-Pacific regions, and from areas been an active time for larval-fish taxonomy, not only in outside the Indo-Pacific that include Indo-Pacific taxa, and the Indo-Pacific, but also worldwide. During this period a are therefore highly relevant to the Indo-Pacific researcher. need was identified and partially filled for larval-fish Hundreds of descriptions have been published in conven- identification guides to document for a range of potential tional journals, and the overall quality of descriptions is users, primarily fishery biologists, the hard-won ability to much improved. Larvae in 83 % of Indo-Pacific fish fam- identify fish larvae of a generation of larval-fish biologists, ilies that possess a pelagic larval stage have now been primarily those working in fishery agencies and to a lesser described. Importantly, much of this information is freely extent at universities and museums. In addition, a number available on the www, and we are beginning to see the of enthusiastic workers not employed as larval-fish biolo- development of interactive websites that assist the user to gists have made major contributions to larval-fish taxon- identify fish larvae.
Recommended publications
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Checklist of Serranid and Epinephelid Fishes (Perciformes: Serranidae & Epinephelidae) of India
    Journal of the Ocean Science Foundation 2021, Volume 38 Checklist of serranid and epinephelid fishes (Perciformes: Serranidae & Epinephelidae) of India AKHILESH, K.V. 1, RAJAN, P.T. 2, VINEESH, N. 3, IDREESBABU, K.K. 4, BINEESH, K.K. 5, MUKTHA, M. 6, ANULEKSHMI, C. 1, MANJEBRAYAKATH, H. 7, GLADSTON, Y. 8 & NASHAD M. 9 1 ICAR-Central Marine Fisheries Research Institute, Mumbai Regional Station, Maharashtra, India. Corresponding author: [email protected]; Email: [email protected] 2 Andaman & Nicobar Regional Centre, Zoological Survey of India, Port Blair, India. Email: [email protected] 3 Department of Health & Family Welfare, Government of West Bengal, India. Email: [email protected] 4 Department of Science and Technology, U.T. of Lakshadweep, Kavaratti, India. Email: [email protected] 5 Southern Regional Centre, Zoological Survey of India, Chennai, Tamil Nadu, India. Email: [email protected] 6 ICAR-Central Marine Fisheries Research Institute, Visakhapatnam Regional Centre, Andhra Pradesh, India. Email: [email protected] 7 Centre for Marine Living Resources and Ecology, Kochi, Kerala, India. Email: [email protected] 8 ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India. Email: [email protected] 9 Fishery Survey of India, Port Blair, Andaman and Nicobar Islands, 744101, India. Email: [email protected] Abstract We provide an updated checklist of fishes of the families Serranidae and Epinephelidae reported or listed from India, along with photographs. A total of 120 fishes in this group are listed as occurring in India based on published literature, of which 25 require further confirmation and validation. We confirm here the presence of at least 95 species in 22 genera occurring in Indian marine waters.
    [Show full text]
  • Predator-Prey Relations at a Spawning Aggregation Site of Coral Reef Fishes
    MARINE ECOLOGY PROGRESS SERIES Vol. 203: 275–288, 2000 Published September 18 Mar Ecol Prog Ser Predator-prey relations at a spawning aggregation site of coral reef fishes Gorka Sancho1,*, Christopher W. Petersen2, Phillip S. Lobel3 1Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA 2College of the Atlantic, 105 Eden St., Bar Harbor, Maine 04609, USA 3Boston University Marine Program, Woods Hole, Massachusetts 02543, USA ABSTRACT: Predation is a selective force hypothesized to influence the spawning behavior of coral reef fishes. This study describes and quantifies the predatory activities of 2 piscivorous (Caranx melampygus and Aphareus furca) and 2 planktivorous (Melichthys niger and M. vidua) fishes at a coral reef fish-spawning aggregation site in Johnston Atoll (Central Pacific). To characterize preda- tor-prey relations, the spawning behavior of prey species was quantified simultaneously with mea- surements of predatory activity, current speed and substrate topography. The activity patterns of pis- civores was typical of neritic, daylight-active fish. Measured both as abundance and attack rates, predatory activity was highest during the daytime, decreased during the late afternoon, and reached a minimum at dusk. The highest diversity of spawning prey species occurred at dusk, when pisci- vores were least abundant and overall abundance of prey fishes was lowest. The abundance and predatory activity of the jack C. melampygus were positively correlated with the abundance of spawning prey, and therefore this predator was considered to have a flexible prey-dependent activ- ity pattern. By contrast, the abundance and activity of the snapper A. furca were generally not corre- lated with changes in abundance of spawning fishes.
    [Show full text]
  • Annual Report
    -- 1~ OEC 19 95 ANNUAL REPORT A U S T R A L I A N M l l S E U M s ,. d n c .' A s 11 ISSN 1039- IJl41 - ANNUAL REPORT CONTENTS 4 Introduction and Highlights s Mission 7 Premier's Message 9 President's Message 11 Director's Message 1 3 Public Programs and Marketing 17 Science in the Museum 2 9 Commercial Activities 31 Administration 34 Financial Statements Appendices 47 Trust 48 Management Structure 51 Staff 55 Publications 63 Sponsors 64 Index 3 INTRODUCT ION AND H IGHLI G HTS The Australian Museum finds itse lf in the fortunate position of being located in the city of Sydney, host of HIGHLI GHTS OF THE Y EAR IN CL UDE: the Olympic Games in the ye ar 2000. Our plan s are influenced by the goal of full participation in the Games • 'Rediscovering Pompeii' exhibition received over lead -up program. the Cultural Olympiad. Sydney can 15o,ooo visitors; ga in from the creativity and expertise which Museum staff offer in both exhibition developm ent and • 'Search & Discover' resource centre In its first six environmental management. These are the two distinct, months, received 35,000 visitors an d over 4,000 yet interacting sides : the public face of the Museum and telephone enquiries; the expertise which lies behind the scenes. Over the years. ma ny changes have occurred in the Museum, just • Outreach Programs reached over 550,ooo people in as concepts of science. nature and humanity have regional centres and schools; changed and tech nological adva nce s have been forged.
    [Show full text]
  • Phylogeny of the Epinephelinae (Teleostei: Serranidae)
    BULLETIN OF MARINE SCIENCE, 52(1): 240-283, 1993 PHYLOGENY OF THE EPINEPHELINAE (TELEOSTEI: SERRANIDAE) Carole C. Baldwin and G. David Johnson ABSTRACT Relationships among epinepheline genera are investigated based on cladistic analysis of larval and adult morphology. Five monophyletic tribes are delineated, and relationships among tribes and among genera of the tribe Grammistini are hypothesized. Generic com- position of tribes differs from Johnson's (1983) classification only in the allocation of Je- boehlkia to the tribe Grammistini rather than the Liopropomini. Despite the presence of the skin toxin grammistin in the Diploprionini and Grammistini, we consider the latter to be the sister group of the Liopropomini. This hypothesis is based, in part, on previously un- recognized larval features. Larval morphology also provides evidence of monophyly of the subfamily Epinephelinae, the clade comprising all epinepheline tribes except Niphonini, and the tribe Grammistini. Larval features provide the only evidence of a monophyletic Epine- phelini and a monophyletic clade comprising the Diploprionini, Liopropomini and Gram- mistini; identification of larvae of more epinephelines is needed to test those hypotheses. Within the tribe Grammistini, we propose that Jeboehlkia gladifer is the sister group of a natural assemblage comprising the former pseudogrammid genera (Aporops, Pseudogramma and Suttonia). The "soapfishes" (Grammistes, Grammistops, Pogonoperca and Rypticus) are not monophyletic, but form a series of sequential sister groups to Jeboehlkia, Aporops, Pseu- dogramma and Suttonia (the closest of these being Grammistops, followed by Rypticus, then Grammistes plus Pogonoperca). The absence in adult Jeboehlkia of several derived features shared by Grammistops, Aporops, Pseudogramma and Suttonia is incongruous with our hypothesis but may be attributable to paedomorphosis.
    [Show full text]
  • Aqua, International Journal of Ichthyology AQUA19(1):AQUA 24/01/13 12:37 Pagina 1
    AQUA19(1):AQUA 24/01/13 12:37 Pagina 101 aqua International Journal of Ichthyology Vol. 19 (1), 21 January 2013 Aquapress ISSN 0945-9871 AQUA19(1):AQUA 24/01/13 12:37 Pagina 102 aqua - International Journal of Ichthyology Managing Editor: Scope aqua is an international journal which publishes original Heiko Bleher scientific articles in the fields of systematics, taxonomy, Via G. Falcone 11, bio geography, ethology, ecology, and general biology of 27010 Miradolo Terme (PV), Italy fishes. Papers on freshwater, brackish, and marine fishes Tel. & Fax: +39-0382-754129 will be considered. aqua is fully refereed and aims at pub- E-mail: [email protected] lishing manuscripts within 2-4 months of acceptance. In www.aqua-aquapress.com view of the importance of color patterns in species identi - fication and animal ethology, authors are encouraged to submit color illustrations in addition to descriptions of Scientific Editor: coloration. It is our aim to provide the international sci- entific community with an efficiently published journal Frank Pezold meeting high scientific and technical standards. College of Science & Engineering Texas A&M University – Corpus Christi Call for papers 6300 Ocean Drive – Corpus Christi, TX 78412-5806 The editors welcome the submission of original manu- Tel. 361-825-2349 scripts which should be sent in digital format to the scien- E-mail: [email protected] tific editor. Full length research papers and short notes will be considered for publication. There are no page charges and color illustrations will be published free of charge. Authors will receive one free copy of the issue in which Editorial Board: their paper is published and an e-print in PDF format.
    [Show full text]
  • Doctorat De L'université De Toulouse
    En vue de l’obt ention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Discipline ou spécialité : Ecologie, Biodiversité et Evolution Présentée et soutenue par : Joeri STRIJK le : 12 / 02 / 2010 Titre : Species diversification and differentiation in the Madagascar and Indian Ocean Islands Biodiversity Hotspot JURY Jérôme CHAVE, Directeur de Recherches CNRS Toulouse Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Frédéric MEDAIL, Professeur à l'Université Paul Cezanne Aix-Marseille Christophe THEBAUD, Professeur à l'Université Paul Sabatier Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 5174 CNRS-UPS Evolution & Diversité Biologique Directeur(s) de Thèse : Christophe THEBAUD Rapporteurs : Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Contents. CONTENTS CHAPTER 1. General Introduction 2 PART I: ASTERACEAE CHAPTER 2. Multiple evolutionary radiations and phenotypic convergence in polyphyletic Indian Ocean Daisy Trees (Psiadia, Asteraceae) (in preparation for BMC Evolutionary Biology) 14 CHAPTER 3. Taxonomic rearrangements within Indian Ocean Daisy Trees (Psiadia, Asteraceae) and the resurrection of Frappieria (in preparation for Taxon) 34 PART II: MYRSINACEAE CHAPTER 4. Phylogenetics of the Mascarene endemic genus Badula relative to its Madagascan ally Oncostemum (Myrsinaceae) (accepted in Botanical Journal of the Linnean Society) 43 CHAPTER 5. Timing and tempo of evolutionary diversification in Myrsinaceae: Badula and Oncostemum in the Indian Ocean Island Biodiversity Hotspot (in preparation for BMC Evolutionary Biology) 54 PART III: MONIMIACEAE CHAPTER 6. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana (accepted in Journal of Biogeography) 72 CHAPTER 7 General Discussion 86 REFERENCES 91 i Contents.
    [Show full text]
  • Of Spermonde Archipelago, South Sulawesi
    Jurnal Iktiologi Indonesia, 10(1): 83-92, 2010 THE SNAPPER (LUTJANIDAE) OF SPERMONDE ARCHIPELAGO, SOUTH SULAWESI Andi Iqbal Burhanuddin1 and Yukio Iwatsuki2 1 Laboratory of Marine Biology, Faculty of Marine Science and Fisheries, Hasanuddin University 2 Division of Fisheries Science, Faculty of Agriculture, Miyazaki University, Japan Faculty of Marine Science and Fisheries, Hasanuddin University Jl. Perintis Kemerdekaan Km 10 Makassar 90245 correspondence author e-mail: [email protected] Received: 12 Mei 2010, Accepted: 15 Juni 2010 ABSTRACT Fish diversity monitoring could be used as a basis for formulating management of the fisheries resources. This study was conducted to describe the snapper of the family Lutjanidae from the Spermonde Archipelago, South Sulawesi. Spe- cimens were collected in Rajawali and Paotere Fish Landing Port Makassar, South Sulawesi from November 2005 to August 2009. The result showed that there was 42 species representing eight genera of family Lutjanidae inhabiting the area were examined and identified: Aphareus furca, A. rutilans, Aprion virescens, Etelis carbunculus, E. radiosus, Lut- janus argentimaculatus, L. bengalensis, L. biguttatus, L. bohar, L. boutton, L. carponotatus, L. decussatus, L. fulvus, L. sebae, L. fulviflamma, L. fuscescens. L. johnii, L. kasmira, L. gibbus, L. lemniscatus, L. lunulatus, L. lutjanus, L. mala- baricus, L. monostigma, L. quinquelineatus, L. rivulatus, L. russelli, L. sebae, L. timorensis, L. vitta, Macolor macularis, M. niger, Paracaesio kusakarii, Pristipomoides argyrogrammicus, P. auricilla, P. filamentosus, P. flavipinnis, P. mul- tidens, P. typus, P. zonatus, Symphorichthys spilurus, S. nematophorus. The local name available of each species was given. Key words: Lutjanidae, Snapper, South Sulawesi, Spermonde. INTRODUCTION diversity monitoring and could hopefully be used Spermonde archipelago (Spermonde shelf) as a basic data for formulating management regu- located in the Southern Makassar Strait, south- lation of the fisheries resources for the Spermon- west coast of Sulawesi Island.
    [Show full text]
  • Vol. 25 No. 1 March, 2000 H a M a D R Y a D V O L 25
    NO.1 25 M M A A H D A H O V D A Y C R R L 0 0 0 2 VOL. 25NO.1 MARCH, 2000 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% HAMADRYAD Vol. 25. No. 1. March 2000 Date of issue: 31 March 2000 ISSN 0972-205X Contents A. E. GREER & D. G. BROADLEY. Six characters of systematic importance in the scincid lizard genus Mabuya .............................. 1–12 U. MANTHEY & W. DENZER. Description of a new genus, Hypsicalotes gen. nov. (Sauria: Agamidae) from Mt. Kinabalu, North Borneo, with remarks on the generic identity of Gonocephalus schultzewestrumi Urban, 1999 ................13–20 K. VASUDEVAN & S. K. DUTTA. A new species of Rhacophorus (Anura: Rhacophoridae) from the Western Ghats, India .................21–28 O. S. G. PAUWELS, V. WALLACH, O.-A. LAOHAWAT, C. CHIMSUNCHART, P. DAVID & M. J. COX. Ethnozoology of the “ngoo-how-pak-pet” (Serpentes: Typhlopidae) in southern peninsular Thailand ................29–37 S. K. DUTTA & P. RAY. Microhyla sholigari, a new species of microhylid frog (Anura: Microhylidae) from Karnataka, India ....................38–44 Notes R. VYAS. Notes on distribution and breeding ecology of Geckoella collegalensis (Beddome, 1870) ..................................... 45–46 A. M. BAUER. On the identity of Lacerta tjitja Ljungh 1804, a gecko from Java .....46–49 M. F. AHMED & S. K. DUTTA. First record of Polypedates taeniatus (Boulenger, 1906) from Assam, north-eastern India ...................49–50 N. M. ISHWAR. Melanobatrachus indicus Beddome, 1878, resighted at the Anaimalai Hills, southern India .............................
    [Show full text]
  • A New Member of the Ideopsis Gaura Superspecies (Lepidoptera: Danainae) from the Foja Mountains, Papua, Indonesia
    Suara Serangga Papua, 2009, 3 (4) April - Juni 2009 A new member OF the Ideopsis gaura superspecies (Lepidoptera: Danainae) from the Foja Mountains, Papua, Indonesia 1 3 D. PEGGIE , R.I. Vane-Wrighe & H. v. Mastrigt 'Entomology Laboratory, Zoological Division (Museum Zoologicum Bogoriense). Research Center for Biology, Indonesian Institute of Sciences (LIPI). JI. RayaJakarta Bogor Km. 46, Cibinong 16911, INDONESIA Email: [email protected];[email protected] 2Department of Entomology, the Natural History Museum, Cromwell Road, London SW7 SBD, U.K.;and Durrellinstitute of Conservation and Ecology (DICE). University of Kent, Canterbury CT2 7NR, U.K. Email: [email protected] 3Kelompok Entomologi Papua, Kotakpos 1078, Jayapura 99010, Papua, INDONESIA Email: [email protected] Suara Serangga Papua 3(4): 1 - 19 Abstract: A new member of the Jdeopsis gaura superspecies, Jdeopsis (ldeopsis) fojana sp. nov., from the Foja Mountains, Papua, Indonesia, is described. This new species is the most easterly representative of the superspecies yet discovered. Reasons for according this taxon status as a semispecies (rather than subspecies) within th is taxonomically challenging group are discussed. Ikhtisar: Satu anggota baru dari superspesies Jdeopsis gaura, ideopsis (ldeopsis) fojana sp. nov., dari Pegunungan Foja, Papua, Indonesia, dipertelakan. Spesies baru ini merupakan perwakilan yang dijumpai paling timur di antara anggota superspesies yang telah dikenal sebelumnya. Alasan pemberian status semispesies dan bukan subspecies kepada takson ini diuraikan dalam makalah ini. Keywords: Nymphalidae, milkweed butterflies, taxonomy, distribution, Jdeopsis fojana new species, Jdeopsis vitrea, subspecies. 2 Suara Serangga Papua, 2009, 3 (4) April - Juni 2009 Depositories BMNH - The Natural History Museum, London, U.K.
    [Show full text]
  • Biological Monitoring Methods for Assessing Coral Reef Health and Management Effectiveness of Marine Protected Areas in Indonesia Version 1.0
    June 2009 TNC Indonesia Marine Program Report No 1/09 Biological monitoring methods for assessing coral reef health and management effectiveness of Marine Protected Areas in Indonesia Version 1.0 Report by: Joanne Wilson and Alison Green Published by: The Nature Conservancy, Indonesia Marine Program Contact details: Joanne Wilson: The Nature Conservancy, Jl Pengembak 2, Sanur, Bali, 80228, Indonesia Email: [email protected] Alison Green: The Nature Conservancy, 51 Edmondstone Street, South Brisbane,Qld 4101, Australia Email: [email protected] Suggested citation : Wilson J.R. & Green A.L. 2009. Biological monitoring methods for assessing coral reef health and management effectiveness of Marine Protected Areas in Indonesia. Version 1.0. TNC Indonesia Marine Program Report 1/09. 44 pp. ©2009, The Nature Conservancy All Rights Reserved Reproduction for any purpose is prohibited without prior permission Available from: TNC Indonesia Marine Program The Nature Conservancy Jl Pengembak 2 Sanur, Bali Indonesia Cover photography: Front cover: Recording benthic life form categories at Wakatobi National Pak. Image by M. Erdi Lazuardi. June 2009 TNC Indonesia Marine Program Report No 1/09 Biological monitoring methods for assessing coral reef health and management effectiveness of Marine Protected Areas in Indonesia Version 1.0 Report by: Joanne Wilson and Alison Green Acknowledgements: The authors would like to thank the many monitoring staff from numerous sites within TNC and partner organisations who have field tested various versions of this
    [Show full text]
  • Annotated Checklist of the Fishes of Wake Atoll1
    Annotated Checklist ofthe Fishes ofWake Atoll 1 Phillip S. Lobel2 and Lisa Kerr Lobel 3 Abstract: This study documents a total of 321 fishes in 64 families occurring at Wake Atoll, a coral atoll located at 19 0 17' N, 1660 36' E. Ten fishes are listed by genus only and one by family; some of these represent undescribed species. The first published account of the fishes of Wake by Fowler and Ball in 192 5 listed 107 species in 31 families. This paper updates 54 synonyms and corrects 20 misidentifications listed in the earlier account. The most recent published account by Myers in 1999 listed 122 fishes in 33 families. Our field surveys add 143 additional species records and 22 new family records for the atoll. Zoogeo­ graphic analysis indicates that the greatest species overlap of Wake Atoll fishes occurs with the Mariana Islands. Several fish species common at Wake Atoll are on the IUCN Red List or are otherwise of concern for conservation. Fish pop­ ulations at Wake Atoll are protected by virtue of it being a U.S. military base and off limits to commercial fishing. WAKE ATOLL IS an isolated atoll in the cen­ and Strategic Defense Command. Conse­ tral Pacific (19 0 17' N, 1660 36' E): It is ap­ quentially, access has been limited due to the proximately 3 km wide by 6.5 km long and military mission, and as a result the aquatic consists of three islands with a land area of fauna of the atoll has not received thorough 2 approximately 6.5 km • Wake is separated investigation.
    [Show full text]