Unravelling Pathobiological Molecular Mechanisms of T-Cell Acute Lymphoblastic Leukemia

Total Page:16

File Type:pdf, Size:1020Kb

Unravelling Pathobiological Molecular Mechanisms of T-Cell Acute Lymphoblastic Leukemia Unravelling Pathobiological Molecular Mechanisms of T-Cell Acute Lymphoblastic Leukemia Rui D. Mendes 1 Unravelling Pathobiological Molecular Mechanisms of T-Cell Acute Lymphoblastic Leukemia Rui D. Mendes 2 The research here described was conducted in the department of Pediatric Oncology/ Hematology at Erasmus Medical Center - Sophia Children’s Hospital, Rotterdam, the Netherlands. The studies described in this thesis were financially supported by Stichting Kinderen Kankervrij (KiKa). Publication of this thesis was financially supported by: Cover: Nathan Sawaya. The original picture displays a two metre sculpture named ‘Building Bricks of Life’ made by the artist Nathan Sawaya. “Just as each brick plays an important part in holding the sculpture together, each gene within the human genome helps us understand more about ourselves as humans and how we are all connected” - Nathan Sawaya Book design: Rui D. Mendes Printed by: ISBN: XXX-XX-XXXX-XXX-X Copyright © 2016 by Rui D. Mendes. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without prior permission of the author. 3 Unravelling Pathobiological Molecular Mechanisms of T-Cell Acute Lymphoblastic Leukemia Het ontrafelen van pathobiologische moleculaire mechanismes in T-cel acute lymphoblastische leukemie Thesis to obtain the degree of doctor from Erasmus University Rotterdam by command of the rector magnificus Prof.dr. H.A.P. Pols and in accordance with the decision of the Doctorate Board. The public defence shall be held on Tuesday December 13, 2016 at 13:30 hours by Rui Daniel Martins Nunes Mendes born in Lisbon, Portugal 4 Doctoral Committee: Promotor: Prof.dr. R. Pieters Leescommissie: Prof.dr. C.M. Zwaan Prof.dr. F.J. Staal Prof.dr. F.G. Grosveld Copromotor: Dr. J.P.P. Meijerink 5 To my beloved ones: Mariana, Joaquim e André, and in memory of my cousin João Martins. 6 Contents Chapter 1 General Introduction & Aims of the Thesis 9 Chapter 2 The relevance of PTEN-AKT in relation to 30 NOTCH1-directed treatment strategies in T-cell acute lymphoblastic leukemia Haematologica. 2016 Sep;101(9):1010-7 Chapter 3 PTEN microdeletions in T-cell acute lymphoblastic 49 leukemia are caused by illegitimate RAG-mediated recombination events. Blood, 2014, 124(4):567-78 Chapter 4 Lentiviral gene transfer into human and murine 77 hematopoietic stem cells: size matters BMC Res Notes. 2016 Jun 16;9:312 Chapter 5 Downregulation of CD44 functionally defines human 88 T-cell lineage commitment Manuscript submitted Chapter 6 T-Cell Acute Lymphoblastic Leukemia Oncogenes 113 hijack T-Cell Developmental Programs for Leukemogenesis: the arrest of Early T-cell programs by MEF2C, LYL1 or LMO2 Manuscript in preparation Chapter 7 General discussion & Future perspectives 135 Chapter 8 Summary/ Samenvatting 145 Supplementary data 151 Curriculum Vitae 181 List of Publications 182 Portfolio 183 Acknowledgements 184 7 8 Chapter 1 General Introduction & Aims of the Thesis 9 1. General introduction 1.1. Hematopoiesis and leukemia Daily, each person produces approximately 1011–1012 blood cells to maintain the number of cells in the peripheral circulation.[1] The continuous production of mature blood cells is essential as these cells have a limited lifespan. This renewal process is supported by hematopoietic stem cells (HSC) that are located in the medulla of the bone (bone marrow), especially in the pelvis, femur, and sternum. Although in smaller numbers, they can also be found in umbilical cord blood (UCB) and in peripheral blood. HSCs give rise to all types of mature blood cells (Figure 1) and have the capacity of self-renewal, since upon cellular division some of the daughter cells remain as HSCs.[2] Instead, the other daughters of HSCs differentiate into myeloid and lymphoid progenitor cells that further give rise to the development of all blood cell types. These changes can often be tracked by monitoring the presence of proteins on the surface of the cell, usually determined as Cluster of Differentiation (CD) markers. HSCs express CD34 and lack markers that are lineage-specific, such as the expression of CD3 in T-cells, CD19 in B-cells, CD33 in myeloid and CD56 in NK-lineage cells. The process of maturation from HSC to effector blood cells occurs in the bone marrow and/or secondary lymphoid organs, including thymus and spleen. Following specific stimuli, such as growth factors, chemokines and contact with cells present in different microenvironments, the hematopoietic precursor cell undergoes changes in chromatin organization and gene expression that promote the differentiation of the cell towards a specific cell type, limiting the potential for differentiation into alternative lineages. [2] However, during the process of maturation, the blood precursor cells may acquire mutations, chromosomal rearrangements and epigenetic changes that prompt the cells to uncontrollable proliferation called leukemia.[3] As leukemic cells continue to grow and divide, they eventually outcompete the normal blood cells, which results in defective protection against infections and pathogens, and hemorrhages.[4] Clinically and pathologically, leukemias can be classified in four main categories. The first division is between acute and chronic leukemias. Acute leukemias are the most common forms of leukemia in children, which are characterized by a rapid increase in the number of leukemic cells.[5] Immediate treatment is required due to the rapid progression and accumulation of malignant cells that are released into the bloodstream and spread to other organs. Other symptoms can be manifested according to the tissue occupied; infiltration of the lymph nodes causes lymphadenopathy and infiltration of the central nervous system may provoke headaches. Chronic leukemia is characterized by the excessive 10 accumulation of relatively more mature leukemic cells, and typically it takes months or years to progress. Chronic leukemia mostly occurs in adults. In addition, leukemias can be classified into myeloid or lymphoblastic leukemia, according to the blood lineage of the affected cell. Furthermore, lymphoblastic leukemias can be further divided into B-cell or T-cell lymphoblastic leukemia. 1.2. Acute lymphoblastic leukemia Acute lymphoblastic leukemia (ALL) is the most common type of cancer in children, comprising approximately 25% of all childhood malignancies.[6] Almost three-fourths of childhood leukemia (ages 0-18) is ALL, while the most common form of acute leukemia in adults is acute myeloid leukemia (AML). In the majority of the cases the leukemic blasts are detected on a blood smear. Blood and bone marrow are used for further classification by immuno-phenotyping and genotyping. A lumbar puncture is performed to detect central nervous system involvement. Immunophenotypic analysis of the blasts indicates whether the leukemia is from myeloid (neutrophils, eosinophils, or basophils) or lymphoblastic origin (B- or T-lymphocytes). Genomic analysis is used to determine the underlying genetic abnormalities, which are associated with specific risks for relapse and survival.[6] Treatment protocols are based on combination chemotherapy, including different classes of drugs. Survival rates of ALL patients improved from less than 10% before 1970 to over 80%.[7] 1.3. T-cell acute lymphoblastic leukemia T-cell acute lymphoblastic leukemia (T-ALL) results from the malignant transformation of lymphoid precursor cells residing in the thymus that are primed towards T-cell development. T- ALL represents about 15% of pediatric ALL cases and 25% of adult ALL cases,[8] and is typically more frequent in males than females. Clinically, T-ALL patients show diffuse infiltration of the bone marrow by immature T-cell blasts, high white blood cells counts, mediastinal masses with pleural effusions, and frequent infiltration of the central nervous system at diagnosis.[9] Despite the advances in our understanding of the molecular genetics of T-ALL, current treatments are mostly based on multi-agent chemotherapy and stem cell transplantation in part of the patients. Although these treatment regimens are highly effective with overall survival reaching 85% on current treatment protocols, they are often associated with severe toxicity and 11 long-term side effects such as cardiomyopathy, bone necrosis, chronic graft versus host disease, infertility or secondary malignancies, impairing the quality of adult life. In addition, about 15% of pediatric T-ALL patients still relapse due to therapy resistance and those cases are associated with very dismal survival perspectives.[5, 10] Therefore, current research efforts are focused on the search for targets that will eventually lead to more effective and less toxic antileukemic drugs. In order to achieve more specific or individualized therapies it is crucial to improve our understanding of the molecular events that lead to the disease, and the mechanisms involved in disease progression and relapse. 1.3.1. T-cell development in the thymus T-cells can be distinguished between αβ- or γδ-cells based on the composition of the T-cell antigen receptor (TCR). While αβ T-cells comprise the majority (95%) of T-cell populations in lymphoid organs, γδ T-cells only represent a small fraction of T-cells that are mainly located in the gut mucosa. Normal T-cell development is a strictly regulated, multistep process in which lymphoid precursor cells differentiate into functionally diverse T-lymphocyte subsets in the thymus microenvironment. The different
Recommended publications
  • Supporting Information for Proteomics DOI 10.1002/Pmic.200400896
    Supporting Information for Proteomics DOI 10.1002/pmic.200400896 Odette Prat, Frdric Berenguer, Vronique Malard, Emmanuelle Tavan, Nicole Sage, Grard Steinmetz and Eric Quemeneur Transcriptomic and proteomic responses of human renal HEK293 cells to uranium toxicity ª 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de Table 1 : Differentially expressed genes in HEK293 cells treated with uranium at CI50 , CI30 and CI20. GENE ID GENE DESCRIPTION CI50 CI30 CI20 AANAT arylalkylamine N-acetyltransferase 1.66 AASDHPPT aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl transferase -1.73 ABCC8 ATP-binding cassette, sub-family C (CFTR/MRP), member 8 2.96 2.9 ABCF2 ATP-binding cassette, sub-family F (GCN20), member 2 1.86 ACAT2 acetyl-Coenzyme A acetyltransferase 2 (acetoacetyl Coenzyme A thiolase) -2.47 ACTB actin, beta -2.12 ACTR2 ARP2 actin-related protein 2 homolog (yeast) -1.94 ADAR adenosine deaminase, RNA-specific 1.87 1.92 ADNP activity-dependent neuroprotector -1.03 ADPRTL1 ADP-ribosyltransferase (NAD+; poly (ADP-ribose) polymerase)-like 1 1.48 2.31 2.1 AKAP1 A kinase (PRKA) anchor protein 1 1.59 AKR1C3 aldo-keto reductase family 1, member C3 -1.37 (3-alpha hydroxysteroid dehydrogenase, type II) ALS2CR3 amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 3 -1.21 APBB1 amyloid beta (A4) precursor protein-binding, family B, member 1 (Fe65) 4.41 APC adenomatosis polyposis coli -1.66 APP amyloid beta (A4) precursor protein (protease nexin-II, Alzheimer disease) -1.32 APPBP1 amyloid beta precursor
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Stroma-Free, Serum-Free Expansion and Differentiation of Hematopoietic Stem and Progenitor Cells to the T Cell Lineage Nooshin Tabatabaei-Zavareh1, Tim A
    Stroma-free, serum-free expansion and differentiation of hematopoietic stem and progenitor cells to the T cell lineage Nooshin Tabatabaei-Zavareh1, Tim A. Le Fevre1, Alexander J.Y. Man1, Evan A. Karas1, Stephen J. Szilvassy1, Terry E. Thomas1 , Allen C. Eaves1,2, and Albertus W. Wognum1 1 STEMCELL Technologies Inc., Vancouver, BC, Canada 2 Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada Introduction The use of T cells for cancer immunotherapy and other therapeutic applications relies on the isolation of T cells from peripheral blood and their subsequent activation and expansion in culture. T cells can also be generated from hematopoietic stem and/or progenitor cells (HSPCs) in cord blood (CB) or bone marrow (BM). This approach not only offers a renewable source of T cells, but also provides a model system to study disease mechanisms or validate new drugs that affect T cell development and/or function. Differentiation of HSPCs to T cells typically requires co-culture with stromal cell lines that have been engineered to express a Notch-ligand. In such cultures, CD34+CD38-/lo HSPCs develop into CD7+CD5+ pro-T cells that further differentiate to T lineage-committed progenitor cells (pre-T cells) characterized by the expression of CD1a. CD7+CD1a+ pre-T cells can then differentiate to express CD4 and become CD4 immature single-positive (CD4ISP) cells. CD4ISP cells give rise to CD4+CD8+ double positive (DP) cells. These finally mature into CD4 and CD8 single-positive (SP) CD3+TCRαβ+ T cells. Here we describe a serum-free culture method that recapitulates these differentiation steps in the absence of stromal cells and generates large numbers of functional T lineage cells from a limited number of purified CD34+ CB cells.
    [Show full text]
  • PRODUCT SPECIFICATION Product Datasheet
    Product Datasheet QPrEST PRODUCT SPECIFICATION Product Name QPrEST K1841 Mass Spectrometry Protein Standard Product Number QPrEST29029 Protein Name Uncharacterized protein KIAA1841 Uniprot ID Q6NSI8 Gene KIAA1841 Product Description Stable isotope-labeled standard for absolute protein quantification of Uncharacterized protein KIAA1841. Lys (13C and 15N) and Arg (13C and 15N) metabolically labeled recombinant human protein fragment. Application Absolute protein quantification using mass spectrometry Sequence (excluding EQCIQYCHKNMNAIVATPCNMNCINANLLTRIADLFSHNEVDDLKDKKDK fusion tag) FKSKLFCKKIERLFDPEYLNPDSRSNAA Theoretical MW 26883 Da including N-terminal His6ABP fusion tag Fusion Tag A purification and quantification tag (QTag) consisting of a hexahistidine sequence followed by an Albumin Binding Protein (ABP) domain derived from Streptococcal Protein G. Expression Host Escherichia coli LysA ArgA BL21(DE3) Purification IMAC purification Purity >90% as determined by Bioanalyzer Protein 230 Purity Assay Isotopic Incorporation >99% Concentration >5 μM after reconstitution in 100 μl H20 Concentration Concentration determined by LC-MS/MS using a highly pure amino acid analyzed internal Determination reference (QTag), CV ≤10%. Amount >0.5 nmol per vial, two vials supplied. Formulation Lyophilized in 100 mM Tris-HCl 5% Trehalose, pH 8.0 Instructions for Spin vial before opening. Add 100 μL ultrapure H2O to the vial. Vortex thoroughly and spin Reconstitution down. For further dilution, see Application Protocol. Shipping Shipped at ambient temperature Storage Lyophilized product shall be stored at -20°C. See COA for expiry date. Reconstituted product can be stored at -20°C for up to 4 weeks. Avoid repeated freeze-thaw cycles. Notes For research use only Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Multiparameter Phenotype Mapping of Normal and Post-Chemotherapy B
    Leukemia (1997) 11, 1266–1273 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 Multiparameter phenotype mapping of normal and post-chemotherapy B lymphopoiesis in pediatric bone marrow MN Dworzak, G Fritsch, C Fleischer, D Printz, G Fro¨schl, P Buchinger, G Mann and H Gadner Children’s Cancer Research Institute, St Anna Kinderspital, Kinderspitalgasse 6, A-1090 Vienna, Austria We studied the differentiation profiles of B cell precursors Materials and methods (BCP) in normal and post-chemotherapy pediatric bone marrow (BM) using multiparameter flow cytometry. The goal of our study was to draw a comprehensive phenotypic map of the Sample description three major maturational BCP stages in BM. By correlating lin- eage-associated markers, CD45RA, and several adhesion mol- Pediatric bone marrow (BM) samples (n = 44) were obtained ecules, the stage-specific patterns were found to differ in cer- from children undergoing diagnostic BM aspiration for the fol- tain details from previously published concepts. Among the earliest BCP, a subset of CD34+CD10lo precursors was repeat- lowing diagnoses in the absence of BM involvement at the edly observed in addition to the well characterized time of immunologic investigation: suspicion of storage dis- CD34+CD10hiCD19+ majority of cells. Only two-thirds of these ease (n = 1), bacterial lymphadenitis (n = 1), neuroblastoma CD34+CD10lo cells expressed CD19. However, uniformity of (n = 1), severe aplastic anemia in remission (n = 2), single sys- phenotypic features, absence of T lineage markers, and the tem Langerhans cell histiocytosis (n = 1), idiopathic throm- regeneration kinetics after chemotherapy suggest the B lineage = + lo bocytopenic purpura (n 1), early stage (localized) non- affiliation of the CD34 CD10 precursors in general.
    [Show full text]
  • Microduplication in the 2P16.1P15 Chromosomal Region Linked To
    Lovrecic et al. Molecular Cytogenetics (2018) 11:39 https://doi.org/10.1186/s13039-018-0388-y CASE REPORT Open Access Microduplication in the 2p16.1p15 chromosomal region linked to developmental delay and intellectual disability Luca Lovrecic1* , Chiara Gnan2, Federica Baldan3, Alessandra Franzoni2, Sara Bertok4, Giuseppe Damante5, Bertrand Isidor6 and Borut Peterlin1 Abstract Background: Several patients with the 2p16.1p15 microdeletion syndrome have been reported. However, microduplication in the 2p16.1p15 chromosomal region has only been reported in one case, and milder clinical features were present compared to those attributed to 2p16.1p15 microdeletion syndrome. Some additional cases were deposited in DECIPHER database. Case presentation: In this report we describe four further cases of 2p16.1p15 microduplication in four unrelated probands. They presented with mild gross motor delay, delayed speech and language development, and mild dysmorphic features. In addition, two probands have macrocephaly and one a congenital heart anomaly. Newly described cases share several phenotype characteristics with those detailed in one previously reported microduplication case. Conclusion: The common features among patients are developmental delay, speech delay, mild to moderate intellectual disability and unspecific dysmorphic features. Two patients have bilateral clinodactyly of the 5th finger and two have bilateral 2nd-3rd toes syndactyly. Interestingly, as opposed to the deletion phenotype with some cases of microcephaly, 2 patients are reported
    [Show full text]
  • Fundamental Differences in Cell Cycle Deregulation in Human Papillomavirus–Positive and Human Papillomavirus–Negative Head/Neck and Cervical Cancers
    Research Article Fundamental Differences in Cell Cycle Deregulation in Human Papillomavirus–Positive and Human Papillomavirus–Negative Head/Neck and Cervical Cancers Dohun Pyeon,1,2 Michael A. Newton,3 Paul F. Lambert,1 Johan A. den Boon,1,2 Srikumar Sengupta,1,2 Carmen J. Marsit,6 Craig D. Woodworth,7 Joseph P. Connor,4 Thomas H. Haugen,8 Elaine M. Smith,9 Karl T. Kelsey,6 Lubomir P. Turek,8 and Paul Ahlquist1,2,5 1McArdle Laboratory for Cancer Research; 2Institute for Molecular Virology; Departments of 3Statistics and of Biostatistics and Medical Informatics and 4Obstetrics and Gynecology; 5Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin; 6Departments of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts; 7Department of Biology, Clarkson University, Potsdam, New York; 8Department of Pathology, Veterans Affairs Medical Center; and 9Department of Epidemiology, University of Iowa, Iowa City, Iowa Abstract lower female reproductive tract, penis, and anus (1). In particular, Human papillomaviruses (HPV) are associated with nearly all high-risk HPVs are associated with nearly all cervical cancers, a cervical cancers, 20% to 30% of head and neck cancers (HNC), leading cause of cancer death in women worldwide despite the and other cancers. Because HNCs also arise in HPV-negative effectiveness in developed countries of screening for early patients, this type of cancer provides unique opportunities to detection of precancerous lesions (1). Prophylactic HPV vaccines define similarities and differences of HPV-positive versus HPV- should eventually reduce infections by the most prevalent high-risk HPVs, but do not cover all high-risk HPVs.
    [Show full text]
  • Brain Tumor Cells in Circulation Are Enriched for Mesenchymal Gene Expression
    Author Manuscript Published OnlineFirst on August 19, 2014; DOI: 10.1158/2159-8290.CD-14-0471 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Brain Tumor Cells in Circulation are Enriched for Mesenchymal Gene Expression Authors: James P. Sullivan1,3,*, Brian V. Nahed1,4*, Marissa W. Madden1, Samantha M. Oliveira1, Simeon Springer1, Deepak Bhere5, Andrew S. Chi1,5, Hiroaki Wakimoto1,4, S. Michael Rothenberg1, 3, Lecia V. Sequist1, 3, Ravi Kapur2, Khalid Shah5,6, A. John Iafrate1,7, William T. Curry1,4, Jay S. Loeffler1, Tracy T. Batchelor1,5, David N. Louis1,7, Mehmet Toner2,8, Shyamala Maheswaran1,8†, Daniel A. Haber1,3,9† Author’s Affiliations: 1Massachusetts General Hospital Cancer Center, 2Center for Engineering in Medicine and Departments of 3Medicine, 4Neurosurgery, 5Neurology, 6Radiology, 7Pathology, and 8Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA 9Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA * Denotes equal contribution Corresponding Authors: †Shyamala Maheswaran, Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129. Phone: 617-726-6552; Fax: 617-726-6919; Email: [email protected] †Daniel A. Haber, Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA, 02129. Phone: 617-726-7805; Fax: 617-726-6919; Email: [email protected] Running Title: Mesenchymal Glioblastoma Cells in Circulation. Downloaded from cancerdiscovery.aacrjournals.org on September 24, 2021. © 2014 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 19, 2014; DOI: 10.1158/2159-8290.CD-14-0471 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • LECTURE 07 Immune Cells Surface Receptors and Their Functions
    LECTURE: 07 Title: IMMUNE CELL SURFACE RECEPTORS AND THEIR FUNCTIONS LEARNING OBJECTIVES: The student should be able to: • The chemical nature of the cellular surface receptors. • Define the location of the cellular receptors. • Enumerate the different given terms for the word "receptor". • Define the term "CD" marker. • Describe the location of the immune receptors. • Classify the cellular receptors according to the information they offer. • Classify the cellular receptors according to their families. • Enumerate some common immunoglobulin receptors. • Enumerate some common complement receptors. • Enumerate some adhesion molecules receptors. • Enumerate the main functions of the immune cell receptors. • Realize the importance of the immune receptors. LECTURE REFRENCE: 1. TEXTBOOK: ROITT, BROSTOFF, MALE IMMUNOLOGY. 6th edition. pp. 29, 143, 76, 77, 78, 221, 325. 2. TEXTBOOK: ABUL K. ABBAS. ANDREW H. LICHTMAN. CELLULAR AND MOLECULAR IMMUNOLOGY. 5TH EDITION. Chapter. 6 .pg 105. Chapter 4. pg 65- 80. 1 Lymphocytes can be identified by characteristic markers Lymphocytes and other leukocytes express different surface molecules which can be used for distinguishing cell population. A systemic nomenclature called the CD system has been developed, in which the term CD refers to (cluster of designation). These different cell surface molecules are detected with specific monoclonal antibodies, each of these molecules are given CD number. Molecular markers can be further defined according to the information they offer about the cell. For example; A. Lineage markers are exclusive to a particular cell line, e.g., CD3, which is found only on T cells. B. Maturation markers are transiently expressed during cell differentiation, e.g., CD1, which is only found on cells developing in thymus and is not present on peripheral T cells.
    [Show full text]
  • CD5-Positive Acute Lymphoblastic Leukemia Dawood Ahmed1, Tahir Aziz Ahmed1, Suhaib Ahmed 2, Hamid Nawaz Tipu1 and Muhammad Amin Wiqar1
    CASE REPORT CD5-Positive Acute Lymphoblastic Leukemia Dawood Ahmed1, Tahir Aziz Ahmed1, Suhaib Ahmed 2, Hamid Nawaz Tipu1 and Muhammad Amin Wiqar1 ABSTRACT CD5-positive B-ALL is a rare variant of Acute Lymphoblastic Leukemia (ALL). In literature, only three cases have been reported so far. This fourth case report describes a young lady who was diagnosed as ALL (L-2) on bone marrow examination and was found to be CD5 positive B-cell acute lymphoblastic leukemia on immunophenotyping. Cytogenetic analysis revealed translocation t(9:22). Key words: CD5. Immunophenotyping. Acute lymphoblastic leukemia. INTRODUCTION blood examination. On peripheral blood examination hemoglobin (Hb) was reported 7.6 g/dl, Total Leukocyte CD5 is a 67-kd glycoprotein that is expressed by most Count (TLC) 18,600/µl with 85% lymphocytes, 9% T-cells and a subset of B-cells called B-1 cells. neutrophils, 4% eosinophils and 2% monocytes. CD5-positive B-cells are found in fetal spleen, cord Lymphocytes were described as atypical and abnormal blood and peritoneal cavity of adults. Similar cells are cells and bone marrow aspiration was advised. Blood also present in the marginal zones of lymphoid follicles counts carried out at the time of bone marrow aspiration in spleen. Only 5 to 10% of B-cells belong to this revealed ESR 120 mm after one hour, Hb 5.3 g/dl, TLC category in blood and lymphoid tissues.1 These cells 26,900/µl with 82% lymphocytes and 18% neutrophils in produce IgM antibodies (natural antibodies) against the peripheral blood specimen. Platelets count was polysaccharide and lipid antigens.
    [Show full text]
  • Molecular Update and Evolving Classification of Large B-Cell Lymphoma
    cancers Review Molecular Update and Evolving Classification of Large B-Cell Lymphoma Arantza Onaindia 1,2,*, Nancy Santiago-Quispe 2, Erika Iglesias-Martinez 2 and Cristina Romero-Abrio 2 1 Bioaraba Health Research Institute, Oncohaematology Research Group, 01070 Vitoria-Gasteiz, Spain 2 Osakidetza Basque Health Service, Araba University Hospital, Pathology Department, 01070 Vitoria-Gasteiz, Spain; [email protected] (N.S.-Q.); [email protected] (E.I.-M.); [email protected] (C.R.-A.) * Correspondence: [email protected]; Tel.: +34-699-639-645 Simple Summary: The development of high-throughput technologies in recent years has increased our understanding of the molecular complexity of lymphomas, providing new insights into the pathogenesis of large B-cell neoplasms and identifying different molecular biomarkers with prog- nostic impact, that lead to the revision of the World Health Organization consensus classification of lymphomas. This review addresses the main histopathological and molecular features of large B-cells lymphomas, providing an overview of the main recent novelties introduced by the last update of the consensus classification. Abstract: Diffuse large B-cell lymphomas (DLBCLs) are aggressive B-cell neoplasms with consid- erable clinical, biologic, and pathologic diversity. The application of high throughput technologies to the study of lymphomas has yielded abundant molecular data leading to the identification of Citation: Onaindia, A.; distinct molecular identities and novel pathogenetic pathways. In light of this new information, Santiago-Quispe, N.; newly refined diagnostic criteria have been established in the fourth edition of the World Health Iglesias-Martinez, E.; Romero-Abrio, Organization (WHO) consensus classification of lymphomas, which was revised in 2016.
    [Show full text]