Markers and Methods to Verify Mesenchymal Stem Cell Identity, Potency, and Quality Scott Schachtele, Ph.D., Christine Clouser, Ph.D., and Joy Aho, Ph.D

Total Page:16

File Type:pdf, Size:1020Kb

Markers and Methods to Verify Mesenchymal Stem Cell Identity, Potency, and Quality Scott Schachtele, Ph.D., Christine Clouser, Ph.D., and Joy Aho, Ph.D WHITE PAPER Markers and Methods to Verify Mesenchymal Stem Cell Identity, Potency, and Quality Scott Schachtele, Ph.D., Christine Clouser, Ph.D., and Joy Aho, Ph.D. ABSTRACT Mesenchymal stem cells (MSCs) are multipotent cells that are functionally defined by their capacity to self-renew and their ability to differentiate into multiple cell types including adipocytes, chondrocytes, and osteocytes. Translation of MSC-based therapies has been confounded by MSC population heterogeneity as well as non-standardized methods for their definition and characterization. This white paper begins by defining and discussing the evolution of MSC nomenclature. It then provides a detailed description of MSC markers and how they may vary by tissue source and species. Ultimately, this review discusses how to standardize MSC characterization by selecting markers for isolation, characterization, and validation. KEY TOPICS • Defining Mesenchymal Stem Cells • MSC Marker Variation by Species • Established and New MSC Markers • Methods for MSC Identification and Characterization • Methods for MSC Isolation • Media Definitions for MSC Expansion INTRODUCTION Mesenchymal stem cells (MSCs) are multipotent cells that adhere to plastic, have a Box 1. Minimal Experimental Criteria for MSC fibroblast-like morphology, express a specific set of surface antigens, and differentiate into as proposed by the International Society for adipocytes, chondrocytes, and osteocytes.1 Clinically, MSCs are of interest for their ability to Cellular Therapy modulate the immune system as well as their potential to regenerate tissues. However, the translation of MSC-based therapies has been hindered by the heterogeneity of the isolated • Adherence to plastic. cells as well as the lack of standardized methods for their definition and characterization. At • ≥95% of the MSC population must the forefront of these issues is the lack of a MSC-specific marker that can be used to express CD73/5′-Nucleotidase, definitively isolate and characterize MSCs. The absence of a MSC-specific marker limits the CD90/Thy1, and CD105/Endoglin purity of MSCs isolated by methods such as positive and negative selection. As a result, MSCs as measured by flow cytometry. are typically isolated by plastic adherence, which generates a heterogeneous population of • ≤2% of the MSC population must cells that differ in their growth kinetics and differentiation potential. This heterogeneity can express CD34, CD45, CD11b/ increase experimental variability, decrease the efficiency of differentiation, and contribute to Integrin alpha M or CD14, CD79 conflicting data in the literature. In an attempt to increase consistency in the definition and alpha or CD19, and HLA Class II. verification of MSCs, the International Society for Cellular Therapy (ISCT) proposed minimal criteria for the definition of human MSCs based on plastic adherence, multipotency, and the • Multipotent differentiation potential expression of a panel of surface antigens (Box 1).1 Since proposing the minimal criteria in as demonstrated by staining of 2006, several advances in MSC characterization and marker identification have been made. in vitro differentiated cells. These advances have led to improved methods for isolating, verifying, and assessing the quality of MSCs. This review summarizes the most recent MSC markers, definitions, and the latest methods used to characterize MSCs. RnDSy-lu-2945 DEFINING MESENCHYMAL STEM CELLS The in vivo identity and characteristics as well as the therapeutic potential of MSCs have been debated since their discovery by Alexander Friedenstein in 1968. As a result, several names have been proposed to reflect the changing understanding of MSC properties (Figure 1). However, newly proposed nomenclature for MSCs is not universally adopted by the field, resulting in the use of several different terms to describe the same cell type (Figure 1). While “mesenchymal stem cell” is commonly used to describe multipotent cells that express specific surface antigens and adhere to plastic, some scientists argue that the definition is vague, encompasses cells isolated from virtually every tissue, and does not necessarily predict the stem cell properties of the cells in an in vivo setting.2 For the purpose of this review, the term Because MSCs isolated from bone marrow have been shown to self-renew and regenerate “Mesenchymal Stem Cells” (MSCs) refers to skeletal tissue in vivo, some scientists suggest that these cells are more accurately multipotent, self-renewing cells that express defined by the term “skeletal stem cell.”3,4,5 Alternatively, the term “medicinal signaling cell” a specific set of surface antigens and can has been proposed as a replacement for “mesenchymal stem cell” as a way to indicate that differentiate into adipocytes, chondrocytes, the primary therapeutic benefit of MSCs may be attributed to secretion of bioactive molecules.6 and osteocytes when cultured in vitro. In this review, the term “mesenchymal stromal cells” is used to describe a heterogeneous population of cells that are adherent to plastic, have a fibroblast-like morphology, and express a specific set of marker proteins. Within this heterogeneous population are a subset of cells referred to as “mesenchymal stem cells,” which are multipotent, self-renewing cells that have the ability to differentiate into adipocytes, chondrocytes, and osteoblasts when cultured in vitro. In addition to the conceptual definitions of MSCs, the ISCT offers an experimental definition of MSCs (Box 1) to facilitate identification of human MSCs. The controversy over the definition and nomenclature of MSCs centers in part on the minimal criteria proposed by the ISCT. According to the minimal criteria, MSCs are not restricted to bone marrow but can be isolated from a wide range of tissues. The definition also suggests that MSCs isolated from different tissues are phenotypically The defining features of MSCs, as and functionally equivalent, which would imply that the cells share the same regenerative proposed by the ISCT. are little more capabilities in vivo. Thus, MSCs isolated from bone marrow and MSCs isolated from placenta than characteristics shared by connective would be expected to have the same ability to regenerate skeletal tissue in vivo. Some tissues and perivascular cells. scientists argue that this assumption is unfounded and that the defining features of MSCs, as proposed by the ISCT, are little more than characteristics shared by connective tissues and perivascular cells.2 Therefore, MSCs isolated from adipose tissues may not demonstrate the same regenerative properties in vivo as MSCs isolated from bone marrow. In fact, it has been proposed that MSCs are perivascular cells that are lineage-restricted, tissue-specific progenitors and that the local environment and perivascular position could account for the expression of common antigens.2 If this hypothesis is correct, MSCs isolated from bone marrow would have the ability to regenerate skeletal tissue in vivo, while adipose-derived MSCs would be restricted to the regeneration of adipose tissue in vivo. These issues emphasize the controversies surrounding the nomenclature of MSCs and such controversies will persist in the field until experiments are performed to assess thein vivo properties of MSCs isolated from different tissues sources. History and Timeline of Mesenchymal Stem Cell Nomenclature CFU-F and Multipotent Mesenchymal Osteogenic Stem Cells Mesenchymal Stem Cells Skeletal Stem Cells Stromal Cells (Arnold Caplan) (Paolo Bianco and Pamela Gehron Robey) (Friedenstein) (ISCT) 1988 1999 2002 2010 1970s 1991 2000 2006 Multipotent Adult Progenitor Cells Stromal Stem Cells Mesenchymal Progenitor Cells and Mesodermal Progenitor Cells Medicinal Signaling Cells (Maureen Owen and colleagues) (James Dennis and colleagues) (Yuehua Jiang and colleagues) (Arnold Caplan) Figure 1. The History and Timeline of Mesenchymal Stem Cell Nomenclature. MSCs were originally identified by Alexander Friedenstein as ©colony R&D Systems, forming Inc. unit fibroblasts (CFU-F) and osteogenic stem cells.7,8 However, since this time, a number of terms have been used to describe mesenchymal stem cells (MSCs) including “stromal stem cells,” which was proposed in 1988 by Maureen Owen, Ph.D. and colleagues to indicate that the cells reside in the stromal rather than the hematopoietic compartment. Rather than highlight the cells’ compartmental origin, Arnold Caplan, Ph.D. proposed the term “mesenchymal stem cells” in 1991 to emphasize the self-renewal property and differentiation potential of the cells.9 However, this nomenclature was challenged by James Dennis, Ph.D. and colleagues who suggested that the cells may be progenitors rather than stem cells. As a result, the term “mesenchymal progenitor cells” was proposed.”10 In 2000, Paolo Bianco, M.D. and Pamela Gehron Robey, Ph.D. coined “skeletal stem cell” to specify that the cells give rise to components of the skeletal system, while just two years later, the term “multipotent adult progenitor cells” was proposed by Yuehua Jiang, M.D. and colleagues to describe the multipotent nature and potential progenitor status of the cells.3,11 Since no direct evidence demonstrated the ability of MSCs to self-renew and differentiate in vivo, in 2006, the International Society for Cellular Therapy proposed the term “multipotent mesenchymal stromal cells.”1 More recently, in 2010, Arnold Caplan, Ph.D. suggested that the acronym MSC stand for “medicinal signaling cells” to reflect that the primary
Recommended publications
  • CD34 Negative Hematopoietic Stem Cells
    Sysmex Journal International Vol.12 No.1 (2002) REVIEW ARTICLE CD34 Negative Hematopoietic Stem Cells Fu-sheng WANG R&D, Sysmex Corporation of America, Gilmer Road 6699 RFD, Long Grove, IL 60047-9596, USA. Key Words SERIES 14 CD34– HSC, Biology, Clinical Application Received 2 April, 2002; Accepted 12 April, 2002 INTRODUCTION quent studies3-10), have significantly challenged the exist- ing concepts in stem cell biology and related clinical Two of the most exciting breakthroughs in hematopoietic applications, such as stem cell transplantation and gene stem cell (HSC) research were first, the discovery of therapy4). Therefore, it is not surprising that many HSC CD34 expression on HSC, anti-CD34 antibody develop- investigators have used some interesting titles for their ment and its applications in HSC transplantation1, 2); and papers, and commonly question marks have appeared in secondly, the recent discovery of CD34 negative (CD34–) the article titles. HSC3-10). These discoveries, together with the success in For example: studies of other stem cells, have resulted in the emer- • CD34– stem cells as the earliest precursors of gence of novel clinical treatments in stem cell regenera- hematopoietic progeny5) tive medicine. • Hematopoietic stem cells: Are they CD34-positive or CD34-negative?6) Following the studies of CD34 by Civin1) in 1988, CD34 • CD34+ or CD34–: Does it really Matter? 7) antibody selected cells were successfully used for the • Who is hematopoietic stem cell: CD34+ or CD34–? 8) reconstruction of hematopoiesis in lethally
    [Show full text]
  • ENSG Gene Encodes Effector TCR Pathway Costimulation Inhibitory/Exhaustion Synapse/Adhesion Chemokines/Receptors
    ENSG Gene Encodes Effector TCR pathway Costimulation Inhibitory/exhaustion Synapse/adhesion Chemokines/receptors ENSG00000111537 IFNG IFNg x ENSG00000109471 IL2 IL-2 x ENSG00000232810 TNF TNFa x ENSG00000271503 CCL5 CCL5 x x ENSG00000139187 KLRG1 Klrg1 x ENSG00000117560 FASLG Fas ligand x ENSG00000121858 TNFSF10 TRAIL x ENSG00000134545 KLRC1 Klrc1 / NKG2A x ENSG00000213809 KLRK1 Klrk1 / NKG2D x ENSG00000188389 PDCD1 PD-1 x x ENSG00000117281 CD160 CD160 x x ENSG00000134460 IL2RA IL-2 receptor x subunit alpha ENSG00000110324 IL10RA IL-10 receptor x subunit alpha ENSG00000115604 IL18R1 IL-18 receptor 1 x ENSG00000115607 IL18RAP IL-18 receptor x accessory protein ENSG00000081985 IL12RB2 IL-12 receptor x beta 2 ENSG00000186810 CXCR3 CXCR3 x x ENSG00000005844 ITGAL CD11a x ENSG00000160255 ITGB2 CD18; Integrin x x beta-2 ENSG00000156886 ITGAD CD11d x ENSG00000140678 ITGAX; CD11c x x Integrin alpha-X ENSG00000115232 ITGA4 CD49d; Integrin x x alpha-4 ENSG00000169896 ITGAM CD11b; Integrin x x alpha-M ENSG00000138378 STAT4 Stat4 x ENSG00000115415 STAT1 Stat1 x ENSG00000170581 STAT2 Stat2 x ENSG00000126561 STAT5a Stat5a x ENSG00000162434 JAK1 Jak1 x ENSG00000100453 GZMB Granzyme B x ENSG00000145649 GZMA Granzyme A x ENSG00000180644 PRF1 Perforin 1 x ENSG00000115523 GNLY Granulysin x ENSG00000100450 GZMH Granzyme H x ENSG00000113088 GZMK Granzyme K x ENSG00000057657 PRDM1 Blimp-1 x ENSG00000073861 TBX21 T-bet x ENSG00000115738 ID2 ID2 x ENSG00000176083 ZNF683 Hobit x ENSG00000137265 IRF4 Interferon x regulatory factor 4 ENSG00000140968 IRF8 Interferon
    [Show full text]
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Chondrogenesis of Mesenchymal Stem Cells in a Novel Hyaluronate-Collagen-Tricalcium Phosphate Scaffolds for Knee Repair F.G
    EuropeanF Meng et Cells al. and Materials Vol. 31 2016 (pages 79-94) DOI: 10.22203/eCM.v031a06 TCP-COL-HA scaffolds for cartilage ISSN regeneration 1473-2262 CHONDROGENESIS OF MESENCHYMAL STEM CELLS IN A NOVEL HYALURONATE-COLLAGEN-TRICALCIUM PHOSPHATE SCAFFOLDS FOR KNEE REPAIR F.G. Meng§, Z.Q. Zhang§, G.X. Huang, W.S. Chen, Z.J. Zhang, A.S. He and W.M. Liao* Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China §These two authors contributed equally to this work. Abstract Introduction Scaffolds are expected to play a key role in the induction Damaged articular cartilage has poor self-repair capability of chondrogenesis of mesenchymal stem cells (MSCs) owing to the low metabolic rate of chondrocytes (Chen for cartilage tissue regeneration. Here, we report the et al., 2009; Hunziker, 2002; Steadman et al., 2002). development of a novel tricalcium phosphate-collagen- Tissue engineering is considered a potential strategy hyaluronate (TCP-COL-HA) scaffold that can function as for regenerating damaged tissue (Jackson and Simon, a stem cell carrier to induce chondrogenesis and promote 1999). Mesenchymal stem cells (MSCs) are an especially cartilage repair, and the investigation of chondroinductive promising tool since they can be easily isolated from bone properties of scaffolds containing varying amounts of TCP, marrow and expanded in vitro without the loss of their COL and HA. TCP-COL-HA scaffolds, as well as TCP- capacity to differentiate into various cell types, including COL scaffolds at two different TCP/COL ratios (50:50 and chondrocytes and osteoblasts (Caplan, 2005).
    [Show full text]
  • Expression of the Hematopoietic Stem Cell Antigen CD34 on Blood and Bone Marrow Monoclonal Plasma Cells from Patients with Multiple Myeloma
    Bone Marrow Transplantation, (1997) 19, 553–556 1997 Stockton Press All rights reserved 0268–3369/97 $12.00 Expression of the hematopoietic stem cell antigen CD34 on blood and bone marrow monoclonal plasma cells from patients with multiple myeloma T Kimlinger1 and TE Witzig2 1Department of Laboratory Medicine and 2Division of Internal Medicine and Hematology, Mayo Clinic and Mayo Foundation, Rochester, MN, USA Summary: led to strategies to deplete the tumor cells from the harvest product prior to reinfusion of the stem cells. Monoclonal plasma cells (CD38+CD45−/dim) are typi- One of the current attempts at purifying the harvest pro- cally present in the blood of patients with active mye- duct uses antibody to the CD34 antigen to positively select loma and can contaminate stem cell harvests. This has and enrich hematopoietic stem cells and in the process led to strategies that select CD34+ cells for use in auto- purge the stem cell product of tumor cells and T cells.11–13 logous stem cell transplantation with the goal of The CD34 antigen identifies a lymphohematopoietic stem decreasing tumor cell contamination. The aim of this cell, is present on 1–5% of adult bone marrow cells, and study was to learn if the CD34 antigen is expressed on is expressed on early B cells. The characteristics of this monoclonal plasma cells in the blood or marrow of important antigen and its clinical relevance have recently patients with multiple myeloma. We used three-color been reviewed.14 CD34+ hematopoietic cells from blood or flow cytometry (surface CD38;CD45 and cytoplasmic marrow can reconstitute hematopoiesis after high-dose kappa or lambda) to identify monoclonal plasma cells therapy programs.15 The number of CD34+ cells reinfused in the blood (n = 24) and marrow (n = 37) from patients predicts the time to engraftment.16,17 with plasma cell proliferative disorders.
    [Show full text]
  • MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells
    Published OnlineFirst July 18, 2013; DOI: 10.1158/0008-5472.CAN-13-0677 Cancer Tumor and Stem Cell Biology Research MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells Dina Stroopinsky1, Jacalyn Rosenblatt1, Keisuke Ito1, Heidi Mills1, Li Yin2, Hasan Rajabi2, Baldev Vasir2, Turner Kufe1, Katarina Luptakova1, Jon Arnason1, Caterina Nardella1, James D. Levine1, Robin M. Joyce1, Ilene Galinsky2, Yoram Reiter3, Richard M. Stone2, Pier Paolo Pandolfi1, Donald Kufe2, and David Avigan1 Abstract Acute myeloid leukemia (AML) is a malignancy of stem cells with an unlimited capacity for self-renewal. MUC1 is a secreted, oncogenic mucin that is expressed aberrantly in AML blasts, but its potential uses to target AML þ À stem cells have not been explored. Here, we report that MUC1 is highly expressed on AML CD34 /lineage / À CD38 cells as compared with their normal stem cell counterparts. MUC1 expression was not restricted to AML þ À CD34 populations as similar results were obtained with leukemic cells from patients with CD34 disease. Engraftment of AML stem cell populations that highly express MUC1 (MUC1high) led to development of leukemia in NOD-SCID IL2Rgammanull (NSG) immunodeficient mice. In contrast, MUC1low cell populations established normal hematopoiesis in the NSG model. Functional blockade of the oncogenic MUC1-C subunit with the peptide inhibitor GO-203 depleted established AML in vivo, but did not affect engraftment of normal hematopoietic cells. Our results establish that MUC1 is highly expressed in AML stem cells and they define the MUC1-C subunit as a valid target for their therapeutic eradication.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Antibody-Dependent Cellular Cytotoxicity Riiia and Mediate Γ
    Effector Memory αβ T Lymphocytes Can Express Fc γRIIIa and Mediate Antibody-Dependent Cellular Cytotoxicity This information is current as Béatrice Clémenceau, Régine Vivien, Mathilde Berthomé, of September 27, 2021. Nelly Robillard, Richard Garand, Géraldine Gallot, Solène Vollant and Henri Vié J Immunol 2008; 180:5327-5334; ; doi: 10.4049/jimmunol.180.8.5327 http://www.jimmunol.org/content/180/8/5327 Downloaded from References This article cites 43 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/180/8/5327.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Effector Memory ␣␤ T Lymphocytes Can Express Fc␥RIIIa and Mediate Antibody-Dependent Cellular Cytotoxicity1 Be´atrice Cle´menceau,*† Re´gine Vivien,*† Mathilde Berthome´,*† Nelly Robillard,‡ Richard Garand,‡ Ge´raldine Gallot,*† Sole`ne Vollant,*† and Henri Vie´2*† Human memory T cells are comprised of distinct populations with different homing potential and effector functions: central memory T cells that mount recall responses to Ags in secondary lymphoid organs, and effector memory T cells that confer immediate protection in peripheral tissues.
    [Show full text]
  • Anti-Human CD31 (EPR3094)-151Eu
    PRD025-3151025D PRODUCT INFORMATION SHEET Anti-Human CD31/PECAM-1-151Eu Pathologist-Verified Clone for Imaging Mass Cytometry™ Catalog: 3151025D Clone: EPR3094 Package size and concentration: 25 µg, 0.5 mg/mL Isotype: Rabbit IgG Storage: Store at 4 °C. Do not freeze. Formulation: Antibody stabilizer with 0.05% sodium azide Reactivity: Human Application: IMC-Paraffin Technical Information Application: The metal-tagged antibody is designed and formulated for the application of Imaging Mass Cytometry (IMC™) using the Fluidigm Hyperion™ Imaging System on formalin-fixed, paraffin-embedded (FFPE) tissue sections. Quality control: Each lot of conjugated antibody is quality control- tested by Imaging Mass Cytometry on tissue sections. Recommended concentration: For optimal performance it is recommended that the antibody be titrated for the desired application. Suggested initial dilution range: IMC-Paraffin: 1:50 to 1:200 Description CD31, also known as platelet endothelial cell adhesion molecule-1 (PECAM-1) or endoCAM, is a type I transmembrane glycoprotein. It is expressed by endothelial cells on blood vessels, as well as by monocytes, granulocytes, platelets and a small subset of T cells. It plays a role in wound healing, angiogenesis and removal of aged neutrophils and in cellular migration in an inflammatory situation. Human spleen (FFPE) stained with 151Eu-anti-CD31 (EPR3094) at a dilution of 1:100 (green pseudocolor), 141Pr-anti-αSMA (1A4) (red pseudocolor), and iridium DNA intercalator (blue pseudocolor). Heat-mediated antigen retrieval was performed using Tris/EDTA buffer pH 9. Scale bar size = 100 µm. References Chang, Q. et al. "Staining of frozen and formalin-fixed, paraffin-embedded tissues with metal-labeled antibodies for imaging mass cytometry analysis." Current Protocols in Cytometry 82 (2017): 12.47.1–12.47.8.
    [Show full text]
  • Epha Receptors and Ephrin-A Ligands Are Upregulated by Monocytic
    Mukai et al. BMC Cell Biology (2017) 18:28 DOI 10.1186/s12860-017-0144-x RESEARCHARTICLE Open Access EphA receptors and ephrin-A ligands are upregulated by monocytic differentiation/ maturation and promote cell adhesion and protrusion formation in HL60 monocytes Midori Mukai, Norihiko Suruga, Noritaka Saeki and Kazushige Ogawa* Abstract Background: Eph signaling is known to induce contrasting cell behaviors such as promoting and inhibiting cell adhesion/ spreading by altering F-actin organization and influencing integrin activities. We have previously demonstrated that EphA2 stimulation by ephrin-A1 promotes cell adhesion through interaction with integrins and integrin ligands in two monocyte/ macrophage cell lines. Although mature mononuclear leukocytes express several members of the EphA/ephrin-A subclass, their expression has not been examined in monocytes undergoing during differentiation and maturation. Results: Using RT-PCR, we have shown that EphA2, ephrin-A1, and ephrin-A2 expression was upregulated in murine bone marrow mononuclear cells during monocyte maturation. Moreover, EphA2 and EphA4 expression was induced, and ephrin-A4 expression was upregulated, in a human promyelocytic leukemia cell line, HL60, along with monocyte differentiation toward the classical CD14++CD16− monocyte subset. Using RT-PCR and flow cytometry, we have also shown that expression levels of αL, αM, αX, and β2 integrin subunits were upregulated in HL60 cells along with monocyte differentiation while those of α4, α5, α6, and β1 subunits were unchanged. Using a cell attachment stripe assay, we have shown that stimulation by EphA as well as ephrin-A, likely promoted adhesion to an integrin ligand- coated surface in HL60 monocytes. Moreover, EphA and ephrin-A stimulation likely promoted the formation of protrusions in HL60 monocytes.
    [Show full text]
  • Molecules with Specificity for Cd45 and Cd79 Moleküle Mit Cd45- Und Cd79-Spezifizität Molécules Présentant Une Spécificité Vis-À-Vis De Cd45 Et Cd79
    (19) *EP003169704B1* (11) EP 3 169 704 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07K 16/28 (2006.01) 29.07.2020 Bulletin 2020/31 (86) International application number: (21) Application number: 15738655.8 PCT/EP2015/066368 (22) Date of filing: 16.07.2015 (87) International publication number: WO 2016/009029 (21.01.2016 Gazette 2016/03) (54) MOLECULES WITH SPECIFICITY FOR CD45 AND CD79 MOLEKÜLE MIT CD45- UND CD79-SPEZIFIZITÄT MOLÉCULES PRÉSENTANT UNE SPÉCIFICITÉ VIS-À-VIS DE CD45 ET CD79 (84) Designated Contracting States: • WRIGHT, Michael John AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Slough GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Berkshire SL1 3WE (GB) PL PT RO RS SE SI SK SM TR • TYSON, Kerry Designated Extension States: Slough BA ME Berkshire SL1 3WE (GB) Designated Validation States: MA (74) Representative: UCB Intellectual Property c/o UCB Celltech (30) Priority: 16.07.2014 GB 201412659 IP Department 208 Bath Road (43) Date of publication of application: Slough, Berkshire SL1 3WE (GB) 24.05.2017 Bulletin 2017/21 (56) References cited: (73) Proprietor: UCB Biopharma SRL WO-A1-2011/025904 WO-A1-2013/085893 1070 Brussels (BE) • GOLD ET AL.: "The B Cell Antigen Receptor (72) Inventors: Activates the AKT/Glycogegn Synthase Kinase-3 • FINNEY, Helene Margaret Signalling Pathway via Phosphatydilinositol Slough 3-Kinase", J. IMMUNOLOGY, vol. 163, 1999, Berkshire SL1 3WE (GB) pages 1894-1905, XP002745175, • RAPECKI, Stephen Edward Slough Berkshire SL1 3WE (GB) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Stroma-Free, Serum-Free Expansion and Differentiation of Hematopoietic Stem and Progenitor Cells to the T Cell Lineage Nooshin Tabatabaei-Zavareh1, Tim A
    Stroma-free, serum-free expansion and differentiation of hematopoietic stem and progenitor cells to the T cell lineage Nooshin Tabatabaei-Zavareh1, Tim A. Le Fevre1, Alexander J.Y. Man1, Evan A. Karas1, Stephen J. Szilvassy1, Terry E. Thomas1 , Allen C. Eaves1,2, and Albertus W. Wognum1 1 STEMCELL Technologies Inc., Vancouver, BC, Canada 2 Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada Introduction The use of T cells for cancer immunotherapy and other therapeutic applications relies on the isolation of T cells from peripheral blood and their subsequent activation and expansion in culture. T cells can also be generated from hematopoietic stem and/or progenitor cells (HSPCs) in cord blood (CB) or bone marrow (BM). This approach not only offers a renewable source of T cells, but also provides a model system to study disease mechanisms or validate new drugs that affect T cell development and/or function. Differentiation of HSPCs to T cells typically requires co-culture with stromal cell lines that have been engineered to express a Notch-ligand. In such cultures, CD34+CD38-/lo HSPCs develop into CD7+CD5+ pro-T cells that further differentiate to T lineage-committed progenitor cells (pre-T cells) characterized by the expression of CD1a. CD7+CD1a+ pre-T cells can then differentiate to express CD4 and become CD4 immature single-positive (CD4ISP) cells. CD4ISP cells give rise to CD4+CD8+ double positive (DP) cells. These finally mature into CD4 and CD8 single-positive (SP) CD3+TCRαβ+ T cells. Here we describe a serum-free culture method that recapitulates these differentiation steps in the absence of stromal cells and generates large numbers of functional T lineage cells from a limited number of purified CD34+ CB cells.
    [Show full text]