Microduplication in the 2P16.1P15 Chromosomal Region Linked To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
XPO1E571K Mutation Modifies Exportin 1 Localisation And
cancers Article XPO1E571K Mutation Modifies Exportin 1 Localisation and Interactome in B-Cell Lymphoma Hadjer Miloudi 1, Élodie Bohers 1,2, François Guillonneau 3 , Antoine Taly 4,5 , Vincent Cabaud Gibouin 6,7 , Pierre-Julien Viailly 1,2 , Gaëtan Jego 6,7 , Luca Grumolato 8 , Fabrice Jardin 1,2 and Brigitte Sola 1,* 1 INSERM U1245, Unicaen, Normandie University, F-14000 Caen, France; [email protected] (H.M.); [email protected] (E.B.); [email protected] (P.-J.V.); [email protected] (F.J.) 2 Centre de lutte contre le Cancer Henri Becquerel, F-76000 Rouen, France 3 Plateforme Protéomique 3P5, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; [email protected] 4 Laboratoire de Biochimie Théorique, CNRS UPR 9030, Université de Paris, F-75005 Paris, France; [email protected] 5 Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, F-75005 Paris, France 6 INSERM, LNC UMR1231, F-21000 Dijon, France; [email protected] (V.C.G.); [email protected] (G.J.) 7 Team HSP-Pathies, University of Burgundy and Franche-Comtée, F-21000 Dijon, France 8 INSERM U1239, Unirouen, Normandie University, F-76130 Mont-Saint-Aignan, France; [email protected] * Correspondence: [email protected]; Tel.: +33-2-3156-8210 Received: 11 September 2020; Accepted: 28 September 2020; Published: 30 September 2020 Simple Summary: Almost 25% of patients with either primary mediastinal B-cell lymphoma (PMBL) or classical Hodgkin lymphoma (cHL) possess a recurrent mutation of the XPO1 gene encoding the major nuclear export protein. -
1325.Full-Text.Pdf
IN THIS ISSUE APC Mutation Position Dictates Effect of Tankyrase Inhibition in Colorectal Cancer • The effects of APC mutations, which in- • New animal models, human cells, and or- • Cases with different mutations in crease WNT signaling in colorectal can- ganoids were used to circumvent issues the same gene should be evaluated cer, can be reversed by TNKS inhibition . with mouse colorectal cancer models . separately for therapeutic response . Hyperactive WNT signaling is tumor growth in vivo. However, whether TNKS inhibition seen in most colorectal cancers, was effective depended on the mechanism of APC disrup- and inactivating mutations in the tion: APC mutants with truncations in the mutation cluster tumor suppressor adenomatous region were still able to regulate β-catenin and responded to polyposis coli (APC)—a scaffold TNKS blockade, whereas this was not the case when there protein mediating the formation were truncations earlier in the sequence. Truncations in the of the destruction complex (DC) mutation cluster region are commonly observed in patients, that facilitates β-catenin degrada- whereas the earlier truncations are present in commonly used tion—is the cause in 80% of such mouse models. Collectively, these results indicate that TNKS cases. Restoring DC activity (and, inhibition can restore control of WNT signaling in some thus, normal WNT signaling) in the context of inactivated APC-mutant cases and illustrate that different mutations in APC is possible through pharmacologic inhibition of tanky- the same gene, even those causing the same phenotype (in rase (TNKS) 1 and 2, which are functionally redundant. Using this case, WNT hyperactivation), can respond differently to APC-mutant animal models, human cells, and ex vivo orga- targeted therapies. -
Supporting Information for Proteomics DOI 10.1002/Pmic.200400896
Supporting Information for Proteomics DOI 10.1002/pmic.200400896 Odette Prat, Frdric Berenguer, Vronique Malard, Emmanuelle Tavan, Nicole Sage, Grard Steinmetz and Eric Quemeneur Transcriptomic and proteomic responses of human renal HEK293 cells to uranium toxicity ª 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de Table 1 : Differentially expressed genes in HEK293 cells treated with uranium at CI50 , CI30 and CI20. GENE ID GENE DESCRIPTION CI50 CI30 CI20 AANAT arylalkylamine N-acetyltransferase 1.66 AASDHPPT aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl transferase -1.73 ABCC8 ATP-binding cassette, sub-family C (CFTR/MRP), member 8 2.96 2.9 ABCF2 ATP-binding cassette, sub-family F (GCN20), member 2 1.86 ACAT2 acetyl-Coenzyme A acetyltransferase 2 (acetoacetyl Coenzyme A thiolase) -2.47 ACTB actin, beta -2.12 ACTR2 ARP2 actin-related protein 2 homolog (yeast) -1.94 ADAR adenosine deaminase, RNA-specific 1.87 1.92 ADNP activity-dependent neuroprotector -1.03 ADPRTL1 ADP-ribosyltransferase (NAD+; poly (ADP-ribose) polymerase)-like 1 1.48 2.31 2.1 AKAP1 A kinase (PRKA) anchor protein 1 1.59 AKR1C3 aldo-keto reductase family 1, member C3 -1.37 (3-alpha hydroxysteroid dehydrogenase, type II) ALS2CR3 amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 3 -1.21 APBB1 amyloid beta (A4) precursor protein-binding, family B, member 1 (Fe65) 4.41 APC adenomatosis polyposis coli -1.66 APP amyloid beta (A4) precursor protein (protease nexin-II, Alzheimer disease) -1.32 APPBP1 amyloid beta precursor -
Inhibition of the Nuclear Export Receptor XPO1 As a Therapeutic Target for Platinum-Resistant Ovarian Cancer Ying Chen1, Sandra Catalina Camacho1, Thomas R
Published OnlineFirst September 20, 2016; DOI: 10.1158/1078-0432.CCR-16-1333 Cancer Therapy: Preclinical Clinical Cancer Research Inhibition of the Nuclear Export Receptor XPO1 as a Therapeutic Target for Platinum-Resistant Ovarian Cancer Ying Chen1, Sandra Catalina Camacho1, Thomas R. Silvers1, Albiruni R.A. Razak2, Nashat Y. Gabrail3, John F. Gerecitano4, Eva Kalir1, Elena Pereira5, Brad R. Evans1, Susan J. Ramus6, Fei Huang1, Nolan Priedigkeit1, Estefania Rodriguez1, Michael Donovan7, Faisal Khan7, Tamara Kalir7, Robert Sebra1, Andrew Uzilov1, Rong Chen1, Rileen Sinha1, Richard Halpert8, Jean-Noel Billaud8, Sharon Shacham9, Dilara McCauley9, Yosef Landesman9, Tami Rashal9, Michael Kauffman9, Mansoor R. Mirza9, Morten Mau-Sørensen10, Peter Dottino5, and John A. Martignetti1,5,11 Abstract Purpose: The high fatality-to-case ratio of ovarian cancer is Results: XPO1 RNA overexpression and protein nuclear directly related to platinum resistance. Exportin-1 (XPO1) is a localization were correlated with decreased survival and plat- nuclear exporter that mediates nuclear export of multiple tumor inum resistance in ovarian cancer. Targeted XPO1 inhibition suppressors. We investigated possible clinicopathologic correla- decreased cell viability and synergistically restored platinum tions of XPO1 expression levels and evaluated the efficacy of sensitivity in both immortalized ovarian cancer cells and XPO1 inhibition as a therapeutic strategy in platinum-sensitive PDCL. The XPO1 inhibitor–mediated apoptosis occurred and -resistant ovarian cancer. through both p53-dependent and p53-independent signaling Experimental Design: XPO1 expression levels were analyzed to pathways. Selinexor treatment, alone and in combination with define clinicopathologic correlates using both TCGA/GEO data- platinum, markedly decreased tumor growth and prolonged sets and tissue microarrays (TMA). -
KPT-350 (And Other XPO1 Inhibitors)
Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. KPT-350 (and other XPO1 inhibitors) Evidence Summary CNS penetrant XPO1 inhibitor with pleiotropic effects. May protect against neuroinflammation and proteotoxic stress, but similar drugs show a poor benefit to side effect profile in cancer. Neuroprotective Benefit: KPT-350 may reduce neuroinflammation and partially alleviate nucleocytoplasmic transport defects, but effects are pleiotropic and dependent on cellular and environmental conditions. Aging and related health concerns: XPO1 inhibition may promote autophagy, but has pleiotropic effects and is only marginally beneficial in cancer. Safety: KPT-350 has not been clinically tested. Tested XPO1 inhibitors are associated with myelosuppression, gastrointestinal events, anorexia, low blood sodium, and neurological events. Poor benefit to side effect ratio in cancer. 1 Availability: In clinical trials and Dose: Oral administration KPT-350 research use Dose not established for KPT-350 Chemical formula: Half-life: Unknown for KPT-350 BBB: KPT-350 is penetrant C18H17F6N5O2 6-7 hours for selinexor MW: 449.3 g/mol SINEs terminal half-life ~24 hours Clinical trials: None completed for Observational studies: Evidence for KPT-350. Phase 1 in ALS is ongoing. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Renal Medullary Carcinomas Depend Upon SMARCB1 Loss And
RESEARCH ARTICLE Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition Andrew L Hong1,2,3, Yuen-Yi Tseng3, Jeremiah A Wala3, Won-Jun Kim2, Bryan D Kynnap2, Mihir B Doshi3, Guillaume Kugener3, Gabriel J Sandoval2,3, Thomas P Howard2, Ji Li2, Xiaoping Yang3, Michelle Tillgren2, Mahmhoud Ghandi3, Abeer Sayeed3, Rebecca Deasy3, Abigail Ward1,2, Brian McSteen4, Katherine M Labella2, Paula Keskula3, Adam Tracy3, Cora Connor5, Catherine M Clinton1,2, Alanna J Church1, Brian D Crompton1,2,3, Katherine A Janeway1,2, Barbara Van Hare4, David Sandak4, Ole Gjoerup2, Pratiti Bandopadhayay1,2,3, Paul A Clemons3, Stuart L Schreiber3, David E Root3, Prafulla C Gokhale2, Susan N Chi1,2, Elizabeth A Mullen1,2, Charles WM Roberts6, Cigall Kadoch2,3, Rameen Beroukhim2,3,7, Keith L Ligon2,3,7, Jesse S Boehm3, William C Hahn2,3,7* 1Boston Children’s Hospital, Boston, United States; 2Dana-Farber Cancer Institute, Boston, United States; 3Broad Institute of Harvard and MIT, Cambridge, United States; 4Rare Cancer Research Foundation, Durham, United States; 5RMC Support, North Charleston, United States; 6St. Jude Children’s Research Hospital, Memphis, United States; 7Brigham and Women’s Hospital, Boston, United States Abstract Renal medullary carcinoma (RMC) is a rare and deadly kidney cancer in patients of African descent with sickle cell trait. We have developed faithful patient-derived RMC models and using whole-genome sequencing, we identified loss-of-function intronic fusion events in one SMARCB1 allele with concurrent loss of the other allele. Biochemical and functional characterization of these models revealed that RMC requires the loss of SMARCB1 for survival. -
PRODUCT SPECIFICATION Product Datasheet
Product Datasheet QPrEST PRODUCT SPECIFICATION Product Name QPrEST K1841 Mass Spectrometry Protein Standard Product Number QPrEST29029 Protein Name Uncharacterized protein KIAA1841 Uniprot ID Q6NSI8 Gene KIAA1841 Product Description Stable isotope-labeled standard for absolute protein quantification of Uncharacterized protein KIAA1841. Lys (13C and 15N) and Arg (13C and 15N) metabolically labeled recombinant human protein fragment. Application Absolute protein quantification using mass spectrometry Sequence (excluding EQCIQYCHKNMNAIVATPCNMNCINANLLTRIADLFSHNEVDDLKDKKDK fusion tag) FKSKLFCKKIERLFDPEYLNPDSRSNAA Theoretical MW 26883 Da including N-terminal His6ABP fusion tag Fusion Tag A purification and quantification tag (QTag) consisting of a hexahistidine sequence followed by an Albumin Binding Protein (ABP) domain derived from Streptococcal Protein G. Expression Host Escherichia coli LysA ArgA BL21(DE3) Purification IMAC purification Purity >90% as determined by Bioanalyzer Protein 230 Purity Assay Isotopic Incorporation >99% Concentration >5 μM after reconstitution in 100 μl H20 Concentration Concentration determined by LC-MS/MS using a highly pure amino acid analyzed internal Determination reference (QTag), CV ≤10%. Amount >0.5 nmol per vial, two vials supplied. Formulation Lyophilized in 100 mM Tris-HCl 5% Trehalose, pH 8.0 Instructions for Spin vial before opening. Add 100 μL ultrapure H2O to the vial. Vortex thoroughly and spin Reconstitution down. For further dilution, see Application Protocol. Shipping Shipped at ambient temperature Storage Lyophilized product shall be stored at -20°C. See COA for expiry date. Reconstituted product can be stored at -20°C for up to 4 weeks. Avoid repeated freeze-thaw cycles. Notes For research use only Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Anticancer Activity by Inhibition of Nucleocytoplasmic Shuttling Fabio Conforti1, Yisong Wang1,2, Jose A
Published OnlineFirst August 31, 2015; DOI: 10.1158/1078-0432.CCR-15-0408 Molecular Pathways Clinical Cancer Research Molecular Pathways: Anticancer Activity by Inhibition of Nucleocytoplasmic Shuttling Fabio Conforti1, Yisong Wang1,2, Jose A. Rodriguez3, Anna Teresa Alberobello1, Yu-Wen Zhang1, and Giuseppe Giaccone1 Abstract A dynamic distribution between nucleus and cytoplasm involved in the shuttling process, exportin XPO1, also known as (nucleocytoplasmic shuttling) is one of the control mechanisms chromosome region maintenance 1, appears to play a particularly adapted by normal cells to regulate the activity of a variety of prominent role in pathogenesis of both hematological malignan- molecules. Growing evidence suggests that dysregulation of the cies and solid tumors. Given the importance of nucleocytoplas- nucleocytoplasmic shuttling is involved in promoting abnormal mic shuttling in cancer pathogenesis and the rapidly expanding cell survival, tumor progression, and drug resistance, and is knowledge in this field, attempts have been made to develop associated with poor cancer prognosis. Aberrant nucleocytoplas- compounds able to revert the aberrant nucleocytoplasmic shut- mic shuttling in cancer cells may result from a hyperactive status of tling. A promising new drug, KPT-330 (Selinexor), which belongs diverse signal-transduction pathways, such as the PI3K–AKT and to the class of XPO1 inhibitors called selective inhibitors of MAPK pathways, or from alterations in the general nuclear nuclear export, is now being tested in phase I/II clinical trials. import/export machinery. Among the large number of molecules Clin Cancer Res; 21(20); 1–6. Ó2015 AACR. Background Nucleocytoplasmic shuttling dysregulation in cancer A dynamic subcellular compartmentalization via nucleocyto- Physical separation of the nucleus from the cytoplasm by the plasmic shuttling is one of the regulatory mechanisms used by nuclear envelope is a hallmark of eukaryotic cells. -
E3 Ubiquitin Ligase SP1 Regulates Peroxisome Biogenesis in Arabidopsis
E3 ubiquitin ligase SP1 regulates peroxisome PNAS PLUS biogenesis in Arabidopsis Ronghui Pana, John Satkovicha, and Jianping Hua,b,1 aDepartment of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824; and bPlant Biology Department, Michigan State University, East Lansing, MI 48824 Edited by Natasha V. Raikhel, Center for Plant Cell Biology, Riverside, CA, and approved September 30, 2016 (received for review August 17, 2016) Peroxisomes are ubiquitous eukaryotic organelles that play pivotal signal type 1) and N-terminal PTS2 sequences, respectively roles in a suite of metabolic processes and often act coordinately (15, 16). In Arabidopsis, PEX5 is also required for PTS2 protein with other organelles, such as chloroplasts and mitochondria. Peroxi- import (16). Two membrane proteins, PEX13 and PEX14, form somes import proteins to the peroxisome matrix by peroxins (PEX the docking site for PEX5 and PEX7 (17, 18). After receptor proteins), but how the function of the PEX proteins is regulated is docking, cargo proteins translocate into the matrix before re- poorly understood. In this study, we identified the Arabidopsis RING ceptors are recycled to the cytosol (19–21). These processes re- (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor quire the RING (really interesting new gene)-finger peroxins of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane PEX2,PEX10,andPEX12(22–25), the ATPases PEX1 and protein with a regulatory role in peroxisome protein import. SP1 PEX6 and their membrane tether APEM9 (aberrant peroxisome interacts physically with the two components of the peroxisome morphology 9) and the ubiquitin-conjugating enzyme PEX4 and protein docking complex PEX13–PEX14 and the (RING)-finger per- its membrane anchor PEX22 (26–29). -
2014A Veenhuis Microbial Cell
Microreview www.microbialcell.com De novo peroxisome biogenesis revisited Marten Veenhuis and Ida J. van der Klei* Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands. * Corresponding Author: Ida J. van der Klei, P.O. Box 11103; 9700 CC Groningen, The Netherlands; Tel: +31 50 363 2179/2400; Fax: +31 50 363 2348; E-mail: [email protected] We describe an alternative peroxisome formation made in pex19 cells of both species although the pex19 pathway in yeast pex3 and pex19 cells, which relies on vesicles differed from those present in pex3 cells in that the existence of small peroxisomal remnants that are they contained, besides Pex13, Pex14 and Pex8, also Pex3. present in these cells. This groundbreaking result chal- Pex13 and Pex14 are key components of the matrix protein lenges current models prescribing that peroxisomes receptor docking complex. In the membrane remnants derive de novo from the ER. Our data also has major small amounts of matrix protein were present suggesting implications for the sorting pathway of specific peroxi- that Pex13 and Pex14 were correctly inserted and func- somal membrane proteins (PMPs). We propose a novel tional as receptor docking site. The low matrix content may be explained in that the proteins of the receptor recycling sorting pathway for the PMPs Pex13 and Pex14 that is system (including the RING finger proteins) were not pre- independent of the known Pex3/Pex19 machinery. sent on these structures, thereby preventing recycling of the PTS1 receptor Pex5. Indeed, Pex5 was found associated Peroxisomes are crucial, multifunctional organelles the with the vesicles, whereas other PMPs, e.g.