Plant Nodulation Inducers Enhance Horizontal Gene Transfer of Azorhizobium Caulinodans Symbiosis Island

Total Page:16

File Type:pdf, Size:1020Kb

Plant Nodulation Inducers Enhance Horizontal Gene Transfer of Azorhizobium Caulinodans Symbiosis Island Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island Jun Linga,1, Hui Wanga,1, Ping Wua, Tao Lia, Yu Tanga, Nawar Naseerb, Huiming Zhenga, Catherine Masson-Boivinc, Zengtao Zhonga,c,2, and Jun Zhua,b,2 aDepartment of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; bDepartment of Microbiology, University of Pennsylvania, Philadelphia, PA 19104; and cInstitut National de la Recherche Agronomique, UMR 441, Laboratoire des Interactions Plantes-Microorganismes, Castanet-Tolosan 31326, France Edited by Bonnie L. Bassler, Princeton University and Howard Hughes Medical Institute, Princeton, NJ, and approved October 19, 2016 (received for review September 9, 2016) Horizontal gene transfer (HGT) of genomic islands is a driving force of program leading to nodule organogenesis (7). Nod factors are bacterial evolution. Many pathogens and symbionts use this mech- lipochito-oligosaccharides of diverse structures and the major anism to spread mobile genetic elements that carry genes important determinants of host specificity. Rhizobia have evolved via hor- for interaction with their eukaryotic hosts. However, the role of the izontal transfer of essential nodulation and nitrogen fixation host in this process remains unclear. Here, we show that plant genes that are carried by either large plasmids or genomic is- compounds inducing the nodulation process in the rhizobium-legume lands. Exchange of symbiotic material between rhizobial species mutualistic symbiosis also enhance the transfer of symbiosis islands. and genera has been frequent during evolution (8). The symbiosis We demonstrate that the symbiosis island of the Sesbania rostrata islands of the Mesorhizobium, Azorhizobium,andBradyhizobium symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and species are mainly located on the chromosome (9–11). For conjugative element (ICEAc) that is able to excise, form a circular example, the rhizobium strain Mesorhizobium loti R7A has a DNA, and conjugatively transfer to a specific site of gly-tRNA gene 502-kb ICE called ICEMlSymR7A that contains genes required of other rhizobial genera, expanding their host range. The HGT for nitrogen-fixing symbiosis with Lotus corniculatus (12). The frequency was significantly increased in the rhizosphere. An ICEAc- ICEMlSymR7A is inserted downstream of a phe-tRNA gene in located LysR-family transcriptional regulatory protein AhaR trig- the M. loti chromosome and can be transferred to nonsymbiotic gered the HGT process in response to plant flavonoids that induce mesorhizobia both in the laboratory and in the field, converting the expression of nodulation genes through another LysR-type pro- these strains into symbionts of L. corniculatus (12, 13). The tein, NodD. Our study suggests that rhizobia may sense rhizosphere transfer of ICEMlSymR7A is mediated by quorum sensing and is environments and transfer their symbiosis gene contents to other controlled by a complex multipartite regulatory system involving genera of rhizobia, thereby broadening rhizobial host-range an excisionase and an excision activator produced via a pro- specificity. grammed ribosomal frameshift (14–16). Here, we provide evidence that, in the S. rostrata-Azorhizobium horizontal gene transfer | host-range | integrative and caulinodans system, the symbiotic process and the symbiosis island conjugative element | naringenin | nodulation transfer are triggered by the same plant compound. The symbiosis island of A. caulinodans is an 87.6-kb integrative and conjugative Ac orizontal gene transfer (HGT) plays a major role in the element (ICE ) that is able to excise, form a circular DNA, and Hbiodiversity and ecology of bacteria by contributing to their conjugatively transfer to a specific site of gly-tRNA gene of various adaptability, fitness, and competitiveness (1). Gene acquisition rhizobial species, allowing them to stem nodulate S. rostrata. The Ac Ac involves mobile genetic elements (MGEs), such as plasmids and ICE transfer is enhanced by an ICE -located LysR-family genomic islands. Large MGEs can provide complex novel traits, protein, AhaR, in response to the plant flavonoid compounds MICROBIOLOGY such as virulence and mutualistic traits that enable bacteria to interact with eukaryotic hosts (2). However, the role of the host Significance in the transfer of MGE is poorly documented. One type of MGE that is widespread in prokaryotic genomes is called integrative Pathogenic or symbiosis islands are mobile genetic elements and conjugative elements (ICEs) (3). ICEs are self-transmissible that can provide recipient bacteria the capacity to establish mobile elements that carry genes encoding the machinery for intimate interactions with eukaryotic hosts. For example, le- DNA processing and transferring. These genes allow ICEs to gume symbionts have evolved via horizontal transfer of sym- excise themselves from the chromosome and form a closed cir- biotic plasmids or genomic islands. Here, we show that the cular molecule, conjugate, and site-specifically recombine into transfer of the symbiosis island of the Sesbania rostrata sym- recipient chromosomes. ICEs have been found to render a di- biont, Azorhizobium caulinodans, to other rhizobia is enhanced verse range of characteristics on the bacteria that carry them, by plant flavonoids that also serve as signals to initiate the including resistance to antibiotics and heavy metals, the ability to symbiotic process. These data suggest that eukaryotic hosts are degrade aromatic compounds, and promotion of biofilm for- involved in bacterial horizontal gene transfer to promote symbi- mation. Some ICEs carry traits such as virulence and symbiosis. otic interactions between rhizobia and legumes. Rhizobia are facultative endosymbionts that are able to form Author contributions: J.L., H.W., P.W., C.M.-B., Z.Z., and J.Z. designed research; J.L., H.W., nitrogen-fixing nodules on the root of legume hosts (4). Some P.W., T.L., Y.T., N.N., and H.Z. performed research; J.L., H.W., Z.Z., and J.Z. analyzed data; tropical legumes, such as Sesbania rostrata, are also nodulated on and J.L., H.W., N.N., C.M.-B., and J.Z. wrote the paper. the stem by their rhizobial partners (5). Initiation of symbiosis The authors declare no conflict of interest. requires a two-way signal exchange program involving plant This article is a PNAS Direct Submission. compounds and bacterial nodulation (nod) genes (6). The con- 1J.L. and H.W. contributed equally to this work. served LysR-family transcriptional regulator NodD perceives 2To whom correspondence may be addressed. Email: [email protected] or flavonoid signals released by the host legume, and activates nod [email protected]. genes that encode enzymes responsible for the synthesis of sig- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. naling Nod factors, which trigger the plant developmental 1073/pnas.1615121113/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1615121113 PNAS | November 29, 2016 | vol. 113 | no. 48 | 13875–13880 Downloaded by guest on September 28, 2021 that also induce the expression of the A. caulinodans nodulation were present. To study the excision and integration of ICEAc, the genes, implying that rhizobia may sense rhizosphere environments hallmark characteristics of diverse integrative and conjugative and modulate their genetic programs to induce both symbiotic and elements (3), we designed a set of primers that are specific for HGT machineries. sequences of either the donor or the recipients (Fig. 1 A and B and SI Appendix, Table S2). Using primer pairs m1-a2 and m4- Results a3, PCR products were detected in M. huakuii harboring ICEAc A. caulinodans Symbiosis Island ICEAc Can Horizontally Transfer to (Mh::ICEAc), but not in wildtype M. huakuii (Mh) (Fig. 1B), in- Other Rhizobial Genera. Analysis of the A. caulinodans ORS571 dicating the integration of ICEAc into the M. huakuii genome. genome (10) revealed that its 87.6-kb symbiosis region, which We also detected an ICE circular form in both A. caulinodans contains three nodulation loci that are involved in the bio- and Mh::ICEAc by using the primer pair a2-a3 (Fig. 1B), in- synthesis of Nod factors, has typical characteristics of a symbiosis dicative of excision events. The effect of growth phase on the island: It has a lower GC content and is inserted adjacent to a gly- excision of ICEAc was investigated by quantitative PCR (qPCR) tRNA gene. This region also contains genes related to conjugal of DNA purified from A. caulinodans cultures at different growth transfer, transposases, and integrases (Fig. 1A and SI Appendix, stages. Fig. 1C shows that excision products were present at low Fig. S1), suggesting that it may facilitate horizontal gene transfer frequency in log-phase growth cells but increased in the stationary events. To examine whether this symbiosis island (ICEAc) is able phase. Collectively, these data suggest that the A. caulinodans to transfer to other rhizobia, we inserted a kanamycin-resistant symbiosis island is an integrative and conjugative element that can cassette (KmR) into an intergenic region of ICEAc in wild-type excise from the chromosome to form a circular intermediate and A. caulinodans ORS571 (Fig. 1A). We then mixed the resulting conjugally transfer to different genera of rhizobia. strain with other rhizobial species and examined whether re- cipient strains acquired kanamycin resistance. We found that Conjugation
Recommended publications
  • Azorhizobium Doebereinerae Sp. Nov
    ARTICLE IN PRESS Systematic and Applied Microbiology 29 (2006) 197–206 www.elsevier.de/syapm Azorhizobium doebereinerae sp. Nov. Microsymbiont of Sesbania virgata (Caz.) Pers.$ Fa´tima Maria de Souza Moreiraa,Ã, Leonardo Cruzb,Se´rgio Miana de Fariac, Terence Marshd, Esperanza Martı´nez-Romeroe,Fa´bio de Oliveira Pedrosab, Rosa Maria Pitardc, J. Peter W. Youngf aDepto. Cieˆncia do solo, Universidade Federal de Lavras, C.P. 3037 , 37 200–000, Lavras, MG, Brazil bUniversidade Federal do Parana´, C.P. 19046, 81513-990, PR, Brazil cEmbrapa Agrobiologia, antiga estrada Rio, Sa˜o Paulo km 47, 23 851-970, Serope´dica, RJ, Brazil dCenter for Microbial Ecology, Michigan State University, MI 48824, USA eCentro de Investigacio´n sobre Fijacio´n de Nitro´geno, Universidad Nacional Auto´noma de Mexico, Apdo Postal 565-A, Cuernavaca, Mor, Me´xico fDepartment of Biology, University of York, PO Box 373, York YO10 5YW, UK Received 18 August 2005 Abstract Thirty-four rhizobium strains were isolated from root nodules of the fast-growing woody native species Sesbania virgata in different regions of southeast Brazil (Minas Gerais and Rio de Janeiro States). These isolates had cultural characteristics on YMA quite similar to Azorhizobium caulinodans (alkalinization, scant extracellular polysaccharide production, fast or intermediate growth rate). They exhibited a high similarity of phenotypic and genotypic characteristics among themselves and to a lesser extent with A. caulinodans. DNA:DNA hybridization and 16SrRNA sequences support their inclusion in the genus Azorhizobium, but not in the species A. caulinodans. The name A. doebereinerae is proposed, with isolate UFLA1-100 ( ¼ BR5401, ¼ LMG9993 ¼ SEMIA 6401) as the type strain.
    [Show full text]
  • Revised Taxonomy of the Family Rhizobiaceae, and Phylogeny of Mesorhizobia Nodulating Glycyrrhiza Spp
    Division of Microbiology and Biotechnology Department of Food and Environmental Sciences University of Helsinki Finland Revised taxonomy of the family Rhizobiaceae, and phylogeny of mesorhizobia nodulating Glycyrrhiza spp. Seyed Abdollah Mousavi Academic Dissertation To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public examination in lecture hall 3, Viikki building B, Latokartanonkaari 7, on the 20th of May 2016, at 12 o’clock noon. Helsinki 2016 Supervisor: Professor Kristina Lindström Department of Environmental Sciences University of Helsinki, Finland Pre-examiners: Professor Jaakko Hyvönen Department of Biosciences University of Helsinki, Finland Associate Professor Chang Fu Tian State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University, China Opponent: Professor J. Peter W. Young Department of Biology University of York, England Cover photo by Kristina Lindström Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae ISSN 2342-5423 (print) ISSN 2342-5431 (online) ISBN 978-951-51-2111-0 (paperback) ISBN 978-951-51-2112-7 (PDF) Electronic version available at http://ethesis.helsinki.fi/ Unigrafia Helsinki 2016 2 ABSTRACT Studies of the taxonomy of bacteria were initiated in the last quarter of the 19th century when bacteria were classified in six genera placed in four tribes based on their morphological appearance. Since then the taxonomy of bacteria has been revolutionized several times. At present, 30 phyla belong to the domain “Bacteria”, which includes over 9600 species. Unlike many eukaryotes, bacteria lack complex morphological characters and practically phylogenetically informative fossils. It is partly due to these reasons that bacterial taxonomy is complicated.
    [Show full text]
  • The Journal of Phytopharmacology (Pharmacognosy and Phytomedicine Research) Phytopharmacology of Indian Plant Sesbania Grandiflora L
    Suresh et. al. www.phytopharmajournal.com Volume 1 Issue 2 2012 The Journal of Phytopharmacology (Pharmacognosy and Phytomedicine Research) Phytopharmacology of Indian plant Sesbania grandiflora L. Suresh Kashyap *1 , Sanjay Mishra 1 1. Rakshpal Bahadur College of Pharmacy, Bareilly-243001 [Email: [email protected]] Abstract: Sesbania grandiflora L. is an Indian medicinal plant which belongs to family Leguminosae. It is cultivated in south or west India in the ganga valley and in Bengal. The plant contains rich in tanins, flavonoides, coumarins, steroids and triterpens. The plant used in colic disorder, jaundice, poisoning condition, small-pox, eruptive fever, epilepsy etc. The present work is carried out on phytopharmacological survey of the plant. Keywords: Sesbania grandiflora, Plant, Biological source, Phytopharmacology Introduction: Plant drug profile Biological source Plant name - Sesbania grandiflora L. It consist of dried leaves of Sesbania Synonym – Agati grandiflora L. grandiflora L. , belonging to the family English – Agati sesban , Swamp pea Leguminosae. 1 Ayurvedic – Agastya, agasti, munidrum, Geographical source muni, vangasena, vakrapushpa, kumbha It is cultivated in south or west India in the Siddha/Tamil – Agatti ganga valley and in Bengal. It is believed to have originated either in India or Southeast Volume 1 Issue 2 2012 | THE JOURNAL OF PHYTOPHARMACOLOGY 63 Suresh et. al. www.phytopharmajournal.com Asia and grows primarily in hot and humid Macroscopical character 4 areas of the world. Sesbania is found from Sesbania grandiflora L. is a small erect, northern Luzon to Mindanao in settled areas fast-growing, and sparsely branched tree that at low and medium altitudes. It was certainly reaches 10 m in height.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Fabales Fabaceae) Two New Legume Records for Natural Flora of the United Arab Emirates
    Biodiversity Journal , 2015, 6 (3): 719–722 Sesbania bispinosa (Jacq.) W. Wight and Trifolium repens L. (Fabales Fabaceae) two new legume records for natural flora of the United Arab Emirates Tamer Mahmoud 1* , Sanjay Gairola 1, Hatem Shabana 1 & Ali El-Keblawy 1, 2 1Sharjah Seed Bank and Herbarium, Sharjah Research Academy, Sharjah, United Arab Emirates 2Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates Corresponding author, e-mail: [email protected] ABSTRACT In this report, we have recorded for the first time the presence of Sesbania bispinosa (Jacq.) W. Wight and Trifolium repens L. (Fabales Fabaceae) in natural flora of the United Arab Emirates (UAE). Based on extensive field surveys and literature review, it was apparent that these species have not been recorded before in the UAE flora.It might be important to mention that the two new records have great economic and agricultural importance. Both species are spontaneously occurring in the natural habitat and considered as good forage and can adapt to a wide range of environmental conditions. Specimens of both newly recoded species are deposited in the Sharjah Seed Bank and Herbarium (SSBH), UAE. Descriptions and photo - graphs of these species are provided. The new records of vascular plants in UAE flora would help ecologists and conservation biologists in more potential scientific research and natural resources exploitations. KEY WORDS Naturalized plants; new record; Sesbania bispinosa; Trifolium repens; United Arab Emirates. Received 13.08.2015; accepted 05.09.2015; printed 30.09.2015 INTRODUCTION the country. It is interesting to note that despite of being first record in the country, S.
    [Show full text]
  • DNA Homologies Among Members of the Genus Azorhizobium and Other Stem- and Root-Nodulating Bacteria Isolated from The
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1991, p. 114-120 Vol. 41, No. 1 0020-7713/91/010114-07$02.00/0 Copyright 0 1991, International Union of Microbiological Societies DNA Homologies among Members of the Genus Azorhizobium and Other Stem- and Root-Nodulating Bacteria Isolated from the I Tropical Legume Sesbania rostrata G. RINAUD0,172*S. ORENGA,3 M. P. FERNANDEZ,3 H. MEUGNIER,4 AND R. BARDIN3 Laboratoire d'Ecologie Microbienne, Universite' Claude Bernard Lyon I, F-69622 Villeurbanne Cedex,' Ofice de Recherche Scientifique et Technique Outre Mer2 and Unite' de Recherche Associe'e au Centre National de la Recherche Scienti$que 697,3 and Laboratoire de Bacte'riologie, Faculte' de Me'decine Alexis Carrel,4 F-69392 Lyon Cedex 8, France The diversity among 191 bacterial strains isolated from stem and root nodules (151 and 40 strains, respectively) of Sesbuniu rostrutu grown in different geographical areas in Senegal and in The Philippines was studied by using DNA-DNA hybridization techniques (S1 nuclease method), by determining DNA base compositions, by performing legume nodulation tests, and by determining nitrogenase activity. The following conclusions were drawn. (i) All of the strains produced stem and root nodules on S. rostrutu. (ii) Most of the organisms (184 strains) belonged to the genus Azorhizobium; their guanine-plus-cytosine contents ranged from 66 to 68 mol% ,they fixed N, under free-living conditions, and they produced effective nodules on the stems and roots of S. rostrata. (iii) The seven other strains probably belonged to the genus Rhizobium, since guanine- plus-cytosine contents ranged from 59 to 63 mol% and they did not fix N, under free-living conditions; three strains produced effective root nodules, but their stem nodules exhibited very low activity or were ineffective, and the four remaining strains produced ineffective nodules on both stems and roots.
    [Show full text]
  • Antimicrobial Activity. Sesbania Grandiflora (L.) Pers
    Kachroo Vipin et al. IRJP 2 (7) 2011 85-87 INTERNATIONAL RESEARCH JOURNAL OF PHARMACY ISSN 2230 – 8407 Available online http://www.irjponline.com Research Article ANTIMICROBIAL ACTIVITY OF SESBANIA GRANDIFLORA (L.) PERS . Kachroo Vipin1*, Gupta Kumar Arun2, Gupta Rajesh1 1Sri Sai College of Pharmacy, Dalhousie road, Badhani, Pathankot, Punjab, India 2Department of Pharmacy, BPS Mahila Vishwavidyalaya, Khanpur Kalan Sonipat(HR), India Article Received on: 10/05/11 Revised on: 21/06/11 Approved for publication: 08/07/11 *Kachroo Vipin, Sri Sai College of Pharmacy, Dalhousie road, Badhani, Pathankot, Punjab, India E-mail: [email protected],[email protected] ABSTRACT Sesbania grandiflora (L.) Pers is a plant that is used in traditional medicine for the treatment of cold,fever, stomach disorder, diarrhea and jaundice and as skin cleanser. To evaluate the scientific basis for the use of the plant, the antimicrobial activities of extracts of the stem bark and leaves were evaluated against some common gram negative and gram positive bacteria and fungi. The study also investigated the chemical constituents of the plant and the effect of temperature and pH on its antimicrobial activity. Sesbania grandiflora (L.) Pers has broad spectrum antibacterial activity and a potential source ofnew classes of antibiotics that could be useful for infectious disease chemotherapy and control.The phytochemical constituents of the dried powdered plant parts were extracted using aqueous and organic solvents (acetone and ethanol). The antimicrobial activity of the concentrated extracts was evaluated by determination of the diameter of zone of inhibition against both gram negative and gram positive bacteria and fungi using the disc diffusion method.
    [Show full text]
  • Sesbania Sesban) from the Republic of Chad: a Review
    Ecology, Morphology, Distribution, and Use of Sesbania tchadica (Sesbania Sesban) from the Republic of Chad: A Review Ousman Brahim Mahamat ( [email protected] ) Abdelmalek Essaâdi University Saoud Younes Abdelmalek Essaâdi University Boy Brahim Otchom N฀Djamena University Steve Franzel International Centre for Research in Agroforestry: World Agroforestry Centre Al-Djazouli Ouchar Mahamat Abdelmalek Essaâdi University Asraoui Fadoua Abdelmalek Essaâdi University El ismaili Soumaya Abdelmalek Essaâdi University Systematic Review Keywords: Sesbania tchadica (Sesbania sesban), leguminosae, morphology, distribution, ora of Chad, fertilizer soil plant, medicinal plants Posted Date: May 20th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-543115/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Ecology, Morphology, Distribution, and Use of Sesbania tchadica (Sesbania Sesban) 1 from the Republic of Chad: A Review. 2 Ousman Brahim Mahamat1, Saoud Younes1 , Boy Brahim Otchom2 Steve Franzel3, Al-Djazouli Ouchar Mahamat4, Asraoui 3 Fadoua1, El ismaili Soumaya5 4 1Laboratory of Applied Biology and Pathology, Faculty of Sciences, Abdelmalek Essaâdi University, Tetouan, Morocco. 5 2Natural Substances Research Laboratory, Faculty of Exact and Applied Sciences, N‟Djamena University, Republic of Chad. 6 3International Centre for Research in Agroforestry: World Agroforestry Centre, Consultative Group on International Agricultural 7 Research, Nairobi, Kenya. 8 4Laboratory of Geology and Oceanology, Department of Geology, Faculty of Sciences, Abdelmalek Essaâdi University. 9 5Innovating Technologies Laboratory, civil engineering department, National School of Applied Sciences ENSA-Tangier, 10 Abdelmalek Essaâdi University. 11 Key message: A review of literature of potential uses and a survey study about the tree Sesbania tchadica (Sesbania Sesban) 12 leguminous native from the Republic of Chad are described in this paper.
    [Show full text]
  • Pharmacological Effects of Sesbania Sesban Linn : an Overview
    PharmaTutor PRINT ISSN: 2394-6679 | E-ISSN: 2347-7881 16 Pharmacological effects of Sesbania sesban Linn : An overview Saptarshi Samajdar1*, Amiya Kr. Ghosh2 1Centre for Pharmaceutical Sciences and Natural Products, Central University of Punjab, Punjab, India 2Department of Pharmacy, Utkal University, Orissa * [email protected] ABSTRACT Sesbania Sesban Linn (Family: Fabaceae) found all through the fields of India and ordinarily called as Jayanti. Herbals which shape a piece of our nourishment and give us an extra helpful impact are sought after and Sesbania Sesban Linn is one of such plant. The plant has got great restorative significance. Blooms contain cyanidin and delphinidin glucosides, Pollen and dust tubes contain alphaketoglutaric, oxaloacetic and pyruvic acids. The leaves of Sesbania is additionally found to have hepatoprotective and powerful hostile to oxidant and against urolithiatic action. The ethanolic and fluid extraction of various parts of Sesbania. The present survey outlines the different pharmacological activities of Sesbania sesban Linn. Keywords: Sesbania sesban Linn, Pharmacology, Phytochemistry, medicinal plant INTRODUCTION Bengali : jainti, jayant The World Health Organization (WHO) appraises that English : common sesban, Egyptian rattle pod, around 80% of individuals living in developing frother, river bean, sesban, sesbania nations depend only on conventional drugs for their Hindi : jainti, jait, rawasa essential medicinal services needs. India is essentially Sanskrit : jayanti, jayantika a herbarium of the world. Sesbania sesban Linn. is outstanding restorative plant very much circulated BOTANY: all through India and other tropical nations it is Sesbania is an erect, branched, stout, shrubby plant, found all through the fields of India. Sesbania 2 to 3 meters in height.
    [Show full text]
  • Stem-Nodulating Nitrogen-Fixing Bacterium Isolated from Sesbania Rostrata
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1988, p. 89-98 Vol. 38, No. 1 0020-7713/88/010089-10$02 .OO/O Copyright 0 1988, International Union of Microbiological Societies Characterization of Azorhizobium caulinodans gen. nov. sp. nov., a Stem-Nodulating Nitrogen-Fixing Bacterium Isolated from Sesbania rostrata B. DREYFUS,1*2*J. L. GARCIA,3 AND M. GILLIS4 Laboratoire de Biologie des Sols, O.R.S.T.O.M.,B.P. 1386, Dakar, Senegal’; Laboratorium voor Genetica, Rijksuniversiteit, Ledeganckstraat 35, B-9000 Gent, Belgium2; Laboratoire de Microbiologie, O.R.S.T.O.M., Universite‘ de Provence, 13331 Marseille Cedex, France3; and Laboratorium voor Microbiologie en Microbiele Genetica, Ruksuniversiteit, B-9000 Gent, Belgium4 Twenty stem- and root-nodulating bacterial strains isolated from stem nodules of Sesbania rostrata were compared by numerical analysis of 221 phenotypic features with nine strains which effectively nodulate only the roots of this plant and with representative strains from the genera Rhizobium and Bradyrhizobium. Representative organisms from the different clusters were investigated further, together with possibly related organisms, by performing comparative gel electrophoresis of whole-cell proteins and by performing deoxyri- bonucleic acid (DNA)-DNA and DNA-ribosomal ribonucleic acid (rRNA) hybridizations. 3H-labeledrRNA was prepared from Sesbunia stem- and root-nodulating bacterial strain ORS 571T (T = type strain); [14C]rRNA from Bradyrhizobium japonicum NZP 5549T was also used. The following conclusions were drawn: (i) the Sesbania root-nodulating bacterial strains are genuine rhizobia; (ii) the Sesbania stem- and root-nodulating strains are quite different from Rhizobium and Bradyrhizobium, and thus they constitute a separate rRNA subbranch on the Rhodopseudomonas palusfris rRNA branch in rRNA superfamily IV; and (iii) the closest relative of these organisms is Xanthobacfer, but they are phenotypically and genotypically sufficiently different from the latter genus to deserve a separate generic rank.
    [Show full text]
  • Research Collection
    Research Collection Doctoral Thesis Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil Author(s): Ragot, Sabine A. Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010630685 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO.23284 DEVELOPMENT AND APPLICATION OF MOLECULAR TOOLS TO INVESTIGATE MICROBIAL ALKALINE PHOSPHATASE GENES IN SOIL A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by SABINE ANNE RAGOT Master of Science UZH in Biology born on 25.02.1987 citizen of Fribourg, FR accepted on the recommendation of Prof. Dr. Emmanuel Frossard, examiner PD Dr. Else Katrin Bünemann-König, co-examiner Prof. Dr. Michael Kertesz, co-examiner Dr. Claude Plassard, co-examiner 2016 Sabine Anne Ragot: Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil, c 2016 ⃝ ABSTRACT Phosphatase enzymes play an important role in soil phosphorus cycling by hydrolyzing organic phosphorus to orthophosphate, which can be taken up by plants and microorgan- isms. PhoD and PhoX alkaline phosphatases and AcpA acid phosphatase are produced by microorganisms in response to phosphorus limitation in the environment. In this thesis, the current knowledge of the prevalence of phoD and phoX in the environment and of their taxonomic distribution was assessed, and new molecular tools were developed to target the phoD and phoX alkaline phosphatase genes in soil microorganisms.
    [Show full text]
  • Factsheet - Sesbania Sesban
    Factsheet - Sesbania sesban http://www.tropicalforages.info/key/Forages/Media/Html/Sesbania_se... Scientific name Sesbania sesban (L.) Merr. Synonyms Aeschynomene sesban L. Emerus sesban (L.) Kuntze Sesban aegyptiaca Poiret Sesbania aegyptiaca Poiret Sesbania confaloniana (Chiov.) Chiov. Sesbania pubescens sensu auct. Family/tribe Family: Fabaceae (alt. Leguminosae) subfamily: Faboideae tribe: Robinieae. Also placed in: Papilionaceae. Common names Egyptian pea; jayanti, janti, puri (Indonesia); katuray, katodai (Philippines); yay-tha-kyee, yethugyi (Myanmar); snao kook (Cambodia); sapao lom (Laos); sami, saphaolom (Thailand); dien-dien (Vietnam). Morphological description Shrub or short-lived tree up to 8 m tall. Stem up to 12 cm in diameter, usually pubescent, sometimes becoming glabrous. Leaves, including a short petiole, 2-18 cm long, pinnately compound; leaflets in 6-27 pairs, linear, oblong, up to 26 mm x 5 mm, glabrous or almost so above, sometimes pubescent beneath, often pilose at the margins; stipules narrowly triangular, up to 7 mm long, pubescent. Racemes 2-20 flowered, up to 20 cm long; glabrous or sparsely pilose; peduncle up to 5 cm long; pedicels 4-12 mm long, glabrous. Pod subcylindrical, straight or slightly curved, up to 20-30 cm x 2-5 mm, straw-coloured, often with a brown or reddish-brown blotch over each septum, 10-15 seeded, glabrous . Seed subcylindrical, 3-4.5 mm x 2 mm x 2 mm, olive-green or brown, usually mottled. There are 55-80 seeds/g. Distribution Native to or naturalized in: Africa: Egypt, Chad, Djibouti, Ethiopia, Somalia, Sudan, Kenya, Uganda, Cameroon, Rwanda, Cote D'Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, Mali, Niger, Nigeria, Senegal, Sierra Leone, Togo, Angola, Malawi, Zambia, Zimbabwe, Botswana, South Africa - Natal, Transvaal, Swaziland.
    [Show full text]